用户名: 密码: 验证码:
Petrogenesis of the Late Triassic shoshonitic Shadegai pluton from the northern North China Craton: Implications for crust-mantle interaction and post-collisional extension
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis of the Late Triassic shoshonitic Shadegai pluton from the northern North China Craton: Implications for crust-mantle interaction and post-collisional extension
  • 作者:Liqiong ; Jia ; Liang ; Wang ; Genhou ; Wang ; Shibin ; Lei ; Xuan ; Wu
  • 英文作者:Liqiong Jia;Liang Wang;Genhou Wang;Shibin Lei;Xuan Wu;Development Research Center,China Geological Survey;National Geological Archive of China;Gold Geology Institute of Chinese Armed Police Force;School of Earth Sciences and Resources,China University of Geosciences (Beijing);Headquarters of Gold Exploration Branch of Chinese Armed Police Force;
  • 英文关键词:Magma mixing;;Crust-mantle interaction;;Lithospheric delamination;;Post-collision;;North China Craton
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Development Research Center,China Geological Survey;National Geological Archive of China;Gold Geology Institute of Chinese Armed Police Force;School of Earth Sciences and Resources,China University of Geosciences (Beijing);Headquarters of Gold Exploration Branch of Chinese Armed Police Force;
  • 出版日期:2019-03-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:02
  • 基金:supported by the Land and Resources Survey Project of China (Grant Nos. 1212011120725 and 12120113072200)
  • 语种:英文;
  • 页:240-255
  • 页数:16
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P588.145
摘要
Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(~(87)Sr/~(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(~(87)Sr/~(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.
        Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(~(87)Sr/~(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(~(87)Sr/~(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.
引文
Atherton, M.P., Ghani, A.A., 2002. Slab break off:a model for Caledonian, late granite syn-collisional magmatism in the orthotectonic(metamorphic)zone of Scotland and Donegal, Ireland. Lithos 62, 65-85.
    Bai, X., Liu, S.W., Wang, W., Yang, P., Li, Q., 2013. U-Pb geochronology and Lu-Hf isotopes of zircons from newly identified Permian-Early Triassic plutons in western Liaoning province along the northern margin of the North China Craton:constraints on petrogenesis and tectonic setting. International Journal of Earth Sciences 102, 671-685.
    Bea, F., Pereira, M.D., Stroh, A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite(a laser ablation-ICP-MS study). Chemical Geology117,291-312.
    Bird, P., 1979. Continental delamination and the Colorado plateau. Journal of Geophysical Research 84, 7561-7571.
    Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters148, 243-258.
    Bloomer, S.H., Stern, R.J., Fisk, E., Geschwind, C.H., 1989. Shoshonitic-volcanism in the Northern Mariana arc:mineralogic and major and trace element characterisitics. Journal of Geophysical Research 94, 4469-4496.
    Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to withinplate regimes necessarily imply two contrasting, mantle and crustal, sources?A review. Lithos 78,1-24.
    Chappell, B.W., White, A.J.R., 1992. I-and S-type granites in the lachlan fold belt.Transactions of Royal Society of Edinburgh Earth Sciences 83,1-26.
    Chappell, B.W., Wyborn, D., 2012. Origin of enclaves in S-type granites of the lachlan fold belt. Lithos 154, 235-247.
    Chen, B., Niu, X.L., Wang, Z.Q., Gao, L., Wang, C., 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Science China(Earth Sciences)56,1294-1307.
    Chen, B., Zhai, M.G., 2003. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geological Magazine 140, 87-93.
    Chen, N.H.C., Zhao, G.C., Jahn, B.M., Zhou, H., Sun, M., 2017. Geochemistry and geochronology of the delinggou intrusion:implications for the subduction of the Paleo-Asian Ocean beneath the North China Craton. Gondwana Research 43,178-192.
    Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R.,Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17,1567-1574.
    Chung, S.L., Chu,M.F., Ji,J.Q., O'Reilly, S.Y., Person, N.J., Liu, D.Y., Lee, T.Y., Lo, C.H.,2009. The nature and timing of crustal thickening in Southern Tibet:geochemical and zircon Hf isotopic constrains from post collisional adakites.Tectonophysics 477, 36-48.
    Clemens, J.D., Wall, V.J., 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos 21, 53-66.
    Collins, W.J., 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids:implications for crustal architecture and tectonic models. Australian Journal of Earth Sciences 45, 483-500.
    Dai, C.C., Huang, C., Jiao, Z., Wang, X.L., 2017. Geochemistry and geochronology of west Shadegai granites in Wulashan of inner Mongolia and its geological significance. Geoscience 31, 662-671(in Chinese with English abstract).
    Davis, G.A., Zheng, Y., Wang, C., Darby, B.J., Zhang, C., Gehrels, G.E., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Memoir 194:Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia:from Continental Assembly to Intracontinental Deformation, pp. 171-197.
    Davis, J.H., von Blackenourg, F., 1995. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogenics. Earth and Planetary Science Letters 129, 327-1343.
    DePaolo, D.J., 1981. Neodymium isotopes in the Colorado front range and crustmantle evolution in the proterozoic. Nature 291.193-196.
    Ding, L.X.,Ma, C.Q., Li, J.W., Robinson, P.T., Deng, X.D., Zhang, C., Xu, W.C.,2011.Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton:implications for postcollisional magmatism associated with the Qinling. Lithos 126, 212-232.
    Donaire, T., Pascual, E., Pin, C., Duthou, J.L., 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:the case of the Los Pedroches granodiorite,Iberian Massif, Spain. Contributions to Mineralogy and Petrology 149, 247-265.
    Dorais, M.J., Whitney, J.A., Roden, M., 1990. Origin of mafic enclaves in the dinkey creek pluton, central Sierra Nevada Batholith, California. Journal of Petrology 31,853-881.
    Duan,M., Niu, Y.L., Kong, J.J., Sun, P., Hu, Y., Zhang, Y., Chen, S., Li, J.Y., 2016. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in west Qinling orogen. Lithos 260, 443-456.
    Elburg, M.A., 1996. Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt,Australia. Lithos 38,1-22.
    Fan, W.M., Zhang, H.F., Baker, J., Jarvis, K.E., Mason, P.R.D., Menzies, M.A., 2000. On and off the North China Craton:where is the Archean keel? Journal of Petrology41, 933-950.
    Feeley, T.C., Wilson, L.F., Underwood, S.J., 2008. Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California:insights into magma chamber processes. Lithos 106,173-189.
    Fu, L.B., Wei, J.H., Kusky, T.M., Chen, H.Y., Tan, J., Li, Y.J., Kong, LJ., Jiang, Y.J., 2012.Triassic shoshonitic dykes from the northern North China Craton:petrogenesis and geodynamic significance. Geological Magazine 149, 39-55.
    Gao, S., Rudnick, R.L.,Yuan, H.L.,Liu, X.M., Liu, Y.S., Xu, W.L.,Ling, W.L.,Ayers, J.,Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892-897.
    Gao, W., Wang, Z.X., Song, W.J., Wang, D.X., Li, C.L., 2014. Zircon U-Pb geochronology, geochemistry and tectonic implications of Triassic A-type granites from southeastern Zhejiang, South China. Journal of Asian Earth Sciences 96,255-268.
    Ghanem, H., Jarrar, G.H., 2013. Geochemistry and petrogenesis of the 595 Ma shoshonitic Qunai monzogabbro, Jordan. Journal of African Earth Sciences 88,1-14.
    Gill, R., 2010. Igneous Rocks and Process, a Practical Guide. Wiley-Blackwell, p. 428.
    Gill, R.C.O., Aparicio, A., Azzouzi, M.E., Hernandez, J., Thirlwall, M.F., Bourgois, J.,Marriner, G.F., 2004. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco:geochemical and isotopic constraints on Neogene tectonic processes. Lithos 78, 363-388.
    Goldstein, S.L.,O'Nion, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of atomospheric dusts and particulates from major river system. Earth and Planetary Science Letters 70, 221-236.
    Gong, W.B., Hu, J.M., Chen, H., Li, Z.H., Qu, H.J., Yang, Y., 2015. Late Mesozoic tectonic evolution and kinematic mechanisms in the Daqing Shan at the northern margin of the North China Craton. Journal of Asian Earth Sciences 114,103-114.
    Goswami, B., Bhattacharyya, C., 2014. Petrogenesis of shoshonitic granitoids, eastern India:implications for the late Grenvillian post-collisional magmatism. Geosciences Frontiers 5, 821-843.
    Griffin, W.L.,O'reilly, S.Y., Ryan, C.G., 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China, Proton microprobe studies.In:Abstract of the International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and its Environs. Beijing, pp. 65-66.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E.,O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64,133-147.
    Griffin, W., Wang, X.,Jackson, S.D., Pearson, N.J., O'Reilly, S.Y., Xu,X.S., Zhou, X.M.,2002. Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.
    Gu, F.H., Zhang, Y.M., Liu, R.P., Zheng, L., Sun, X., 2015. Magma mixing and mingling of the Shadegai granite in Inner Mongolia:evidence from petrography, mineral chemistry and geochronology. Acta Petrologica Sinica 31, 1374-1390(in Chinese with English abstract).
    Hamilton, P.J., O'Nions, R.K., Bridgwater, D., Nutman, A., 1983. Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth and Planetary Science Letters 62, 263-272.
    Hammouda, T., 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth and Planetary Science Letters 214, 357-368.
    Han, B.F., Kagami, H., Li, H.M., 2004. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granites, Hebei province, China:implications for early Mesozoic crust-mantle interaction in North China Block. Acta Petrologica Sinica 20,1375-1388(in Chinese with English abstract).
    Harrison, T.M., Watson, W.B., 1984. The behavior of apatite during crustal anatexis:equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta 48,1467-1477.
    Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram. Journal of Petrology 48,2341-2357.
    Holden, P., Halliday, A.N., Stephens, W.E., Henney, P.J., 1991. Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma.Chemical Geology 92,135-152.
    Hosseini, M., Ghaderi, R., Alirezaei, S., Sun, W.D., 2017. Geological characteristics and geochronology of the Takht-e-Gonbad copper deposit, SE Iran:a variant of porphyry type deposits. Ore Geology Reviews 86, 440-458.
    Hou, K.J., Li, Y.H., Tian, Y.Y., 2009. In situ U-Pb zircon dating using laser ablationmulti ion couting-ICP-MS. Mineral Deposits 28, 481-492(in Chinese with English abstract).
    Hou, K.J., Li, Y.H., Zou, T.R., Qu, X.M., Shi, Y.R., Xie, G.Q., 2007. Laser ablation-MC-ICPMS technique for Hf isotope micro analysis of zircon and its geological applications. Acta Petrologica Sinica 23, 2595-2604(in Chinese with English abstract).
    Hou, T., Zhang, Z.H., Keiding, J.K., Veksler, I.V., 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton:implications for lithospheric mantle measomatism and the origin of apatite ores. Journal of Petrology 56, 893-918.
    Hou, W.R., Nie, F.J.,Bian,H.Y., Liu, H.L.,Huang, Z.Q., Fan, Y.W., 2012. LA-ICP-MS zircon U-Pb geochronology of Xishadegai intrusion and its significance. Mineral Deposits 31, 973-974(in Chinese with English abstract).
    Hou,W.R., Nie,R.J.,Hu,J.M., Liu,Y.F., Xiao, W., Liu, Y., Zhang, K., 2011. Geochronology and geochemistry of Shadegai granites in Wulashan area, inner Mongolia and its geological significance. Journal of Jilin University(Earth Science Edition)41,1914-1927(in Chinese with English abstract).
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
    Jiang, N.,2005. Petrology and geochemistry of the Shuiquangou syenitic complex,northern margin of the North China Craton. Journal of the Geological Society162, 203-215.
    Jiang, N., Liu, Y., Zhou, W., Yang,J., Zhang, S., 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton. Geochimica et Cosmochimica Acta 71, 2591-2608.
    Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J., Yang, W.Z., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt,Xinjiang, northwestern China:implications for granitoids geneses. Lithos 63,165-187.
    Karsli, O., Dokuz, A., Uysal, I., Ketenci, M., Chen, B., Kandemir, R., 2012. Deciphering the shoshonitic monzonites with I-type characteristic, the Sisdagi pluton, NE Turkey:magmatic response to continental lithospheric thinning. Journal of Asian Earth Sciences 51, 45-62.
    Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.Nature 437, 724-727.
    King, P.L., White, A.J.R., Chappell, B.W., Allen, C.M., 1997. Characterization and origin of aluminous a-type granites from the lachlan fold belt, southeastern Australia.Journal of Petrology 38, 371-391.
    Kumar, S., Rino, V., Pal, A.B., 2004. Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Research 7, 539-548.
    La Fleche, M., Camire, G., Jenner, G., 1998. Geochemistry of post-Acadian, carboniferous continental intraplate basalts from the maritimes basin, magdalen islands,Quebec, Canada. Chemical Geology 148,115-136.
    Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Yang, Y.H., Liu, Y.S., 2012. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton:implication for crust-mantle interaction and post-collisional magmatism. Lithos 140-141,183-199.
    Lesher, C.E., 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature 344, 235-237.
    Li, J.Y., 2006. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences 26, 207-224.
    Li, H.,Ling, M.X., Ding, X.,Zhang, H.,Li, Y.C., Liu, D.Y., Sun, W.D., 2014a. The geochemical characteristics of Haiyang A-type granite complex in Shandong,eastern China. Lithos 200-201,142-156.
    Li, N.B., Niu, H.C., Bao, Z.W., Shan, Q., Yang, W.B., Jiang, Y.H., Zeng, L.J., 2014b.Geochronology and geochemistry of the Paleoproterozoic Fe-rich mafic sills from the Zhongtiao Mountains:petrogenesis and tectonic implications. Precambrian Research 255, 668-684.
    Li, S., Wilde, S.A., Wang, T., 2013. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China:petrogenesis and tectonic implications. Lithos 179, 99-119.
    Li, X.Y., Guo, F., Wang, Y.J., 2002. Post-orogenic tectono-magmatism and its implications for evolution of orogenic belts. Geological Journal of China Universities8, 68-78(in Chinese with English abstract).
    Liegeois, J.P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin of postcollisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45,1-28.
    Litvinovsky, B.A., Tsygankov, A.A., Jahn, B.M., Katzira, Y., Be'eri-Shlevind,Y., 2011.Origin and evolution of overlapping calc-alkaline and alkaline magmas:the Late Palaeozoic post-collisional igneous province of Transbaikalia(Russia). Lithos125, 845-874.
    Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of>3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20,339-342.
    Liu, D.Y., Wilde, S.A., Wan,Y.S., Wu,J.S., Zhou,H.Y., Dong,C.Y., Yin, X.Y., 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. American Journal of Science 308, 200-231.
    Liu, L., Qiu, J.S., Zhao, J.L., 2016. A hybrid origin for two Cretaceous monzonitic plutons in eastern Zhejiang Province, Southeast China:geochronological,geochemical, and Sr-Nd-Hf isotopic evidence. Journal of Asian Earth Sciences115,183-203.
    Liu, S., Hu, Z.C., Gao, S., Feng, C.X., Coulson, I.M., Feng, G.Y., Qi, Y.Q., Yang, Y.H.,Yang, C.G., Tang, L., 2012. U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of the Precambrian mafic dyke swarms in the North China Craton(NCC). Lithos 140-141, 38-52.
    Liu, S.W., Pan, Y.M., Xie, Q.L., Zhang, J., Li, Q.G., 2005. Geochemistry of the Paleoproterozoic Nanying granitic gneisses in the Fuping complex:implications for the tectonic evolution of the Central zone, North China Craton. Journal of Asian Earth Sciences 24, 643-658.
    Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., Chen, H.H., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55,1535-1546.
    Lugmair, G.W., Harti, K., 1978. Lunar initial 143Nd/144Nd:differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349-357.
    Ma,Q., Zheng, J.P., Griffin, W.L.,Zhang, M.,Tang, H.Y., Su, Y.P., Ping, X.Q.,2012.Triassic"adakitic"rocks in an extensional setting(North China):melts from the cratonic lower crust, Lithos 149,159-173.
    Ma, X., Chen, B., Chen,J.F., Niu, X.L., 2013. Zircon SHRIMP U-Pb age, geochemical, SrNd isotopic, and in-situ Hf isotopic data of the Late Carboniferous-Early Permian plutons in the northern margin of the North China Craton. Science China(Earth Science)56,126-144.
    Maas, R., Nicholls, I.A., Legg, C., 1997. Igneous and metamorphic enclaves in the Stype Deddick granodiorite, Lachlan Fold Belt, SE Australia:petrographic,geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology 38, 815-841.
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635-643.
    Manley, C.R., Glazner, A.F., Farmer, G.L., 2000. Timing of volcanism in the Sierra Nevada of California:evidence for Pliocene delamination of the batholithic root? Geology 28, 811-814.
    Mao, D.B., Chen, Z.H., Zhong, C.T., Zuo, Y.C., Shi, S., Hu, X.D., 2003. Studies on the geochronology and geochemical characteristics of Mesozoic intrusions in Beichagoumen area, northern Hebei Province. Acta Petrologica Sinica 19, 661-674(in Chinese with English abstract).
    Mao, J.W., Xie, G.Q., Duan, C., Pirajno, F., Ishiyama, D., Chen, Y.C., 2011. A tectonogenetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the middle-lower Yangtze River Valley,Eastern China. Ore Geology Reviews 43, 294-314.
    McKenzie, D., Bickle, D., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625-679.
    Meng, F.X., Gao, S., Yuan, H.L., Gong, H., 2010. Permian-Triassic(260-220 Ma)crustal growth of eastern central Asian orogenic belt as revealed by detrital zircon studies. American Journal of Science 310, 364-404.
    Meng,R.,Q., Wei, H.H., Wu, G.L., Duan, L., 2014. Early mesozoic tectonic settings of the northern North China Craton. Tectonophysics 611,155-156.
    Menzies, M.,Xu, Y.G., Zhang, H.F., Fan, W.M., 2007. Integration of geology, geophysics and geochemistry:a key to understanding the North China Craton, Lithos 96,1-21.
    Menzies, M.A., 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In:Menzies, M.A.,Hawkesworth, C.J.(Eds.), Mantle Metasomatism. Academic Press, London,pp. 313-361.
    Menzies, M.A., Fan, W.M., Zhang, M., 1993. Palaeozoic and Cenozoic lithoprobes and the loss of>120 km of Archaean lithosphere, Sino-Korean craton, China.Geological Society London Special Publications 76, 71-81.
    Miao, L.C., Qiu, Y.M., McNaughton,NJ., Luo, Z.K., Groves, D., Zhai,Y.S., Fan, W.M.,Zhai, M.G., Guan, K., 2002. SHRIMP U-Pb zircon geochronology of granitoids from Dongping Area, Hebei Province, China:constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews 19,187-204.
    Middlemost, E.A.K., 1994. Naming materials in magma/igneous rock system. Earth Science Reviews 37, 215-224.
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP MS. Chemical Geology 255,231-235.
    Morrison, G.W., 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos 13, 97-108.
    Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dorr, W.,Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y.S.,Gotze, J., Hager, T., Kroner, A., Valley, J.W., 2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon.Geostandards and Geoanalytical Research 32, 247-265.
    Niu, X.L.,Chen, B.,Liu, A.K., Suzuki, K.,Ma, X.,2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos 149,146-158.
    Niu, Y., O'Hara, M.,2008. Global correlations of ocean ridge basalt chemistry with axial depth:a new perspective. Journal of Petrology 49, 633-664.
    Noyes, H., Frey, F.A., Wones, D.R., 1983. A tale of two plutons:geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, central Sierra Nevada, California. Journal of Geology 91, 487-509.
    Ozdamar,S., Foden, M.F., Billoer, M.Z., 2017. Petrology of the shoshonitic Cambasi pluton in NE Turkey and implications for the closure of the Neo-Tethys Ocean:insights from geochemistry, geochronology and Sr-Nd isotopes. Lithos284-285, 477-492.
    Pearce, J.A., 1982. Trace element characteristic of lavas from destructive plate boundaries. In:Thorpe, R.S.(Ed.), Andesites:Orogenic Andesites and Related Rocks. Wiley, New York, pp. 528-548.
    Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu, northern Turkey. Contributions to Mineralogy and Petrology 58, 63-81.
    Peng, T.P., Wilde, S.A., Fan, W.M., Peng, B.X., Mao, Y.S., 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong North China Craton:petrogenesis and implications for the final breakup of the Columbia supercontinent.Precambrian Research 235,190-207.
    Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G., 2003. Magma mixing in the Sithonia Plutonic Complex, Greece:evidence from mafic microgranular enclaves. Mineralogy and Petrology 78,173-200.
    Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.L, 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature 408,669-673.
    Pognante, U.,1990. Shoshonitic and ultrapotassic post-collisional dykes from northern Karakorum(Sinkiang, China). Lithos 26, 305-316.
    Pu, W., Gao,J.F., Zhao, K.D., Ling, H.F., Jiang, S.Y., 2005. Separation method of Rb-Sr,Sm-Nd using DCTA and HIBA. Journal of Nanjing University(Natural Sciences)41, 445-450(in Chinese with English abstract).
    Pu, W., Zhao, K.D., Ling, H.F., Jiang, S.Y., 2004. High precision Nd isotope measurement by Triton TI mass spectrometry. Acta Geoscientica Sinica 25, 271-274(in Chinese with English abstract).
    Renjith, M.L, Charan, S.N., Subbarao, D.V., Babu, E.V.S.S.K., Rajashekhar, V.B., 2014.Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India. Geoscience Frontiers 5, 801-820.
    Rollinson, H.R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman Singapore Publishers Ltd., Singapore, pp. 1-351.
    Rudnick, R., Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L.(Ed.), Treatise on Geochemistry, vol. 3. Elsevier-Pergamon, Oxford, pp. 1-64.
    Schmidt, M.W., Vielzeuf, D., Auzanneau, E., 2004. Melting and dissolution of subducting crust at high pressures:the key role of white mica. Earth and Planetary Science Letters 228, 65-84.
    Shellnutt,J.G., Jahn, B.M., Dostal,J., 2010. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos 119, 34-46.
    Shi, Y.R., Liu, C., Deng, J.F., Jian, P., 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution. Acta Petrologica Sinica 30, 3155-3171(in Chinese with English abstract).
    Shi, Y.R., Liu, D.Y., Miao, L.C., Zhang, F.Q., Jian, P., Zhang, W., Hou, K.J., Xu, J.Y., 2010.Devonian A-type granitic magmatism on the northern margin of the North China Craton:SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Research 17, 632-641.
    Slama, J., Rosler, J., Condon, D.J., Crowley, J.L.,Gerdes, A., Hanchar, J.M.,Horstwood,M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U.,
    Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249,1-35.
    Soderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311-324.
    Sparks, R.S.J., Marshall, L., 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research 29, 99-124.
    Sparks, R.S.J., Sigurdsson, H., Wilson, L., 1977. Magma mixing:a mechanism for triggering acid explosive eruptions. Nature 267, 315-317.
    Sun, H.R., Huang, Z.L., Li, W.B., Leng, C.B., Ma, D.Y., Zhang, X.C., 2014. Chronology,geochemistry and Sr-Nd isotope studies of Jurassic intrusions in the Diyanqinamu porphyry Mo mine, central Inner Mongolia, China. Journal of Asian Earth Sciences 88, 85-97.
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society London Special Publications 42, 313-345.
    Teng, X.M., Yang, Q.Y., Santosh, M., 2015. Devonian magmatism associated with arccontinent collision in the northern North China Craton:evidence from the Longwangmiao ultramafic intrusion in the Damiao area. Journal of Asian Earth Sciences 113, 626-643.
    Tian, W., Chen, B., Liu, C.Q., Zhang, H.F., 2007. Zircon U-Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica 23, 583-590(in Chinese with English abstract).
    Turner, S.,Amand, N., Rogers, N., Hawkesworth, C., Harris, N.,Kelley, S.,Calsteren, P.V., Deng, W.M., 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37, 45-71.
    Vernon, R.H., 1984. Microgranitoid enclaves in granites:globules of hybrid magma quenched in a plutonic environment. Nature 309, 438-439.
    Vernon, R.H., 2007. Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Canadian Mineralogist 45,147-178.
    Vernon, R.H., Etheridge, M.A., Wall, V.J., 1988. Shape and microstructure of microgranitoid enclaves:indicators of magma mingling and flow. Lithos 22,1-11.
    von Blanckenburg, F., Davies, J.H., 1995. Slab breakoff:a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14,120-131.
    Wang, W., Liu, S.W., Santosh, M., Zhang, L., Bai, X., 2015a. 1.23 Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research 27(4), 1407-1418.
    Wang, W., Liu, S.W., Santosh, M., Deng, Z.B., Guo, B.,Zhao, Y., Zhang, S.H., Yang, P.T.,Bai, X., Guo, R.R., 2015b. Late Paleoproterozoic geodynamics of the North China Craton:geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research 27, 300-325.
    Wang, C., Song, S.G., Niu, Y.L., Su, L., 2015c. Late Triassic adakitic plutons within the Archean terrane of the North China Craton:melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos 212-215, 353-367.
    Wang, L., Wang, G.H., Lei, S.B., Chang, C.J., Hou, W.R.Jia, L.Q., Zhao, G.M., Chen, H.J.,2015d. Petrogenesis of Dahuabei pluton from Wulashan, Inner Mongolia:constraints from geochemistry, zircon U-Pb dating and Sr-Nd-Hf isotopes. Acta Petrologica Sinica 31,1977-1994(in Chinese with English abstract).
    Wang, F., Chen, F.K., Hou, Z.H., Peng, P., Zhai, M.G., 2009. Zircon ages and Sr-Nd-Hf isotopic composition of late Paleozoic granitoids in the Chongli-Chicheng area,northern margin of the North China block. Acta Petrologica Sinica 25,3057-3074(in Chinese with English abstract).
    Wang, L., Guo, X.D., Jia, L.Q., Wang, Z.H., Lu, Y.C., Zhang, T.Y., 2012. Genesis study on dark enclaves in the Machangqing complex, West Yunnan. Bulletin of Mineralogy Petrology and Geochemistry 31, 479-526(in Chinese with English abstract).
    Wang, L., Wang, G.H., Lei, S.B., Qing, M., Jia, L.Q., Chang, C.J., Kang, J.K., Hou, W.R.,2017. The Early Carboniferous Xiaomiaogou granite porphyry dykes in the northern margin of the North China Craton:implication for crust-mantle interaction and intraplate magmatism. Geological Journal 52, 489-509.
    Wang, L., Wang, G.H., Lei, S.B., Wang, W., Qing, M., Jia, LQ., Chang, C.J., Kang, J.K.,Hou, W.R., 2016. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Paleoproterozoic mafic dykes from the Wulashan area, North China Craton:petrogenesis and geodynamic implications. Precambrian Research 286.306-324.
    Wang, W., Liu, S.W., Bai, X., Li, Q.G., Yang, P.T., Zhao, Y., Zhang, S.H., Guo, R.R., 2013.Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suites of the North China Craton:implications for petrogenesisand geodynamic setting. Lithos 162-163, 175-194.
    Wang, Y.J., Fan, W.M., Zhang, Y.H., Guo, F., Zhang, H.F., Peng, T.P., 2004. Geochemical,40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research 135, 55-77.
    Wei, Y., Zheng, J.P., Su, Y.P., Ma, Q., Griffin, W.L., 2015. Lithological and age structure of the lower crust beneath the northern edge of the North China Craton:xenolith evidence. Lithos 216-217, 211-223.
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419.
    Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence for'conservative'element mobility during subduction zone processes.Earth and Planetary Science Letters 192, 331-346.
    Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234,105-126.
    Wyman, D.A., Kerrich, R., 1993. Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada:petrogenesis, age and tectonic setting. Journal of Petrology 34,1067-1109.
    Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:termination of the central Asian orogenic belt. Tectonics 22,1484-1505.
    Xiong, L.E., Wei, J., Shi, W., Fu, LB., Li, H., Zhou, H.Z., Chen, J.J., Chen, M.T., 2017.Geochronology, petrology and geochemistry of the Mesozoic Dashizhuzi granites and lamprophyre dykes in eastern Hebei-western Liaoning:implications for lithospheric evolution beneath the North China Craton. Geological Magazine 1-24.
    Xu, C., He, Y.K., Zheng, R.G., Zhang, W., Meng, Q.P., Zhang, Y.Y., 2014. Geochemical characteristics of Early Cretaceous shoshonites in the middle and western northern margin of the North China Craton and a comparative study. Acta Scientiarum Naturalium Universitatis Pekinensis 50, 301-315(in Chinese with English abstract).
    Xu,L.L., Bi, X.W., Hu,R.Z., Qi, Y.Q., Tang, Y.Y., Wang, X.S., Zhu,J.J., 2016. Redox states and genesis of magmas associated with intra-continental porphyry Cu-Au mineralization within the Jinshajiang-Red River alkaline igneous belt, SW China. Ore Geology Reviews 73, 330-345.
    Xu, Y.G., Li, H.Y., Pang, C.J., He, B., 2009. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin 54, 3379-3396.
    Yan, G.H., Mou,B.L.,Xu, B.L.,He, G.Q., Tan, L.K., Zhao, H., He, Z.F., Zhang, R.Y.,Qiao, G.S., 1999. Triassic alkaline intrusives in the Yanliao-Yinshan area:their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China(D series)42, 582-587.
    Yang, J.H., Sun, J.F., Zhang, M.,Wu, F.Y., Wilde, S.A., 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology 328,149-167.
    Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., 2006. A hybrid origin for the Qianshan A-type granite, northeast China:geochemical and Sr-Nd-Hf isotopic evidence. Lithos 89, 89-106.
    Yang, J.H., Wu, F.Y., Wilde, S.A., Belousova, E.A., Griffin, W.L., 2008. Mesozoic decratonization of the north China block. Geology 36, 467-470.
    Yang J.H., Wu, F.Y., Wilde, S.A., Liu, X.M., 2007a. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology 242,155-175.
    Yang, J.H., Wu, F.Y., Wilde, S.A., Xie, L.W., Yang, Y.H., Liu, X.M., 2007b. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotope analysis of zircons.Contributions to Mineralogy and Petrology 153,177-190.
    Ye, H., Zhang, S.H., Zhao, Y., Wu, F., 2014a. Petrogenesis and emplacement deformation of the Late Triassic Dushan composite batholith in the Yanshan fold and thrust belt:implications for the tectonic settings of the northern margin of the North China Craton during the Early Mesozoic. Earth Science Frontiers 21,275-292(in Chinese with English abstract).
    Ye, H., Zhang, S.H., Zhao, Y., 2014b. Origin of two contrasting latest Permian-Triassic volcanic suites in the northern North China Craton:implications for early Mesozoic lithosphere thinning. International Geology Review 56,1630-1657.
    Zhai, M.G., Santosh, M., 2013. Metallogeny of the North China Craton:link with secular changes in the evolving Earth. Gondwana Research 24, 275-297.
    Zhang, H.F., Parrish, R., Zhang, L., Xu, W.C., Yuan, H.L, Gao, S., Crowley, Q.G., 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:implication for lithospheric delamination. Lithos 97, 323-335.
    Zhang, L.Q., Zhang, H.F., Zhang, S.S., Xi, Z.L., Luo, B.J., Yang, H., Pan, F.B., Zhou, Z.C.,Zu, W.C., Guo, L., 2017. Lithospheric delamination in post-collisional setting:evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China. Lithos 288-289, 20-34.
    Zhang, S.,H., Zhao, Y., Davis, G.A.,Ye, H., Wu, F., 2014a. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:implications for lithospheric thinning and decratonization. Earth Science Reviews 131,49-87.
    Zhang, Z., Zhang, H.F., Shao, J.A., Ying, J.F., Yang, Y.H., Santosh, M., 2014b. Mantle upwelling during permian to triassic in the northern margin of the North China Craton:constraints from southern inner Mongolia. Journal of Asian Earth Sciences 79,112-129.
    Zhang, S.H., Liu, S.W., Zhao, Y., Yang, J.H., Song, B., Liu, X.M., 2007a. The 1.75 Ga-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton:magmatism related to a Paleoproterozoic orogen.Precambrian Research 155, 287-312.
    Zhang, S.H., Zhao, Y., Song, B., Yang, Y.H., 2007b. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from Western Beijing:evidence for missing late Paleozoic arc volcano eruptions at the northern margin of the North China block. Gondwana Research 12,157-165.
    Zhang, S.H., Zhao, Y, Song, B.,Yang, Z.Y., Hu, J.M., Wu, H.,2007c. Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Paleozoic active continental margin. Journal of the Geological Society 164, 451-463.
    Zhang, S.H., Zhao, Y., Kroner, A., Liu, X.M., Xie, L.W., Chen, F.K., 2009a. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences 98,1441-1467.
    Zhang, S.H., Zhao, Y., Song, B., Hu, J.M., Liu, S.W., Yang, Y.H., Chen, F.K., Liu, X.M.,Liu, J., 2009b. Contrasting late Carboniferous and late Permian-middle Triassic intrusive suites from the northern margin of the North China Craton:geochronology, petrogenesis and tectonic implications. Geological Society of America Bulletin 121,181-200.
    Zhang, S.H., Zhao, Y., Liu, J.M., Hu, Z.C., 2016a. Different sources involved in generation of continental arc volcanism:the Carboniferous-Permian volcanic rocks in the northern margin of the North China block. Lithos 240-243,382-401.
    Zhang, S.H., Zhao, Y., Ye, H., Hu, G.H., 2016b. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Research 272,203-225.
    Zhang, X.H., Mao,Q., Zhang, H.F., Zhai, M.G., Yang, Y.H., Hu, Z.C., 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin:the early Permian Guyang batholith from the northern North China Craton. Lithos 125, 569-591.
    Zhang, X.H., Xue, F.H., Yuan, LL., Ma, Y.G., Wilde, S.A., 2012a. Late Permian appinite granite complex from northwestern Liaoning, North China Craton:petrogenesis and tectonic implications. Lithos 155, 201-217.
    Zhang, X.H., Yuan, L.L., Xue, F.H., Zhang, Y.B., 2012b. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China:magmatic monitor of Mesozoic decratonization and a craton-orogen boundary. Lithos 144-145,12-23.
    Zhang, Q., Ran, H., Li, C.D., 2012c. A-type granite:what is the essence? Acta Petrologica et Mineralogica 31, 621-626.
    Zhang, S.H., Zhao, Y., Ye, H., Hou, K.J., Li, C.F., 2012d. Early Mesozoic alkaline complexes in the northern North China Craton:implications for cratonic lithospheric destruction. Lithos 155,1-18.
    Zhang, X.H., Zhang, H.F., Jiang, N., Zhai, M.H., Zhang, Y.B., 2010a. Early Devonian alkaline intrusive complex from the northern North China Craton:a petrological monitor of post-collisional tectonics. Journal of the Geological Society 167,717-730.
    Zhang, X.H., Zhang, H.F., Wilde, S.A., Yang, Y.H., Chen, C.H., 2010b. Late Permian to early Triassic mafic to felsic intrusive rocks from North Liaoning, North China:petrogenesis and implications for Phanerozoic continental crustal growth.Lithos 117, 283-306.
    Zhang, Z.C., Xiao, X.C., Wang, J., Wang, Y., Kusky, T.M., 2008. Post-collisional PlioPleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China:geochemical constraints on mantle source characteristics and petrogenesis. Journal of Asian Earth Sciences 2008, 379-403.
    Zhao, G.C., Cawood, A.P., Li, S.Z., Wilde, A.S., Sun, M., Zhang, J., He, Y.H., Yin, C.Q.,2012a. Amalgamation of the North China Craton:key issues and discussion.Precambrian Research 222-223, 55-76.
    Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B.Z., Lu, J.J., 2012b. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the ShiHang zone, South China. Gondwana Research 22, 310-324.
    Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2005. Late Archean to paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research136,177-202.
    Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2001. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research 107,45-73.
    Zhao, Q.Y., Li, G., Liu, Z.H., Xu, Z.Y., Li, C.F., Wang, W.Q., Wang, X.A., 2009. Characteristics and origin of the Shadegai pluton in the daqingshan area, innerMongolia. Journal of Jilin University(Earth Science Edition)39,1073-1079(in Chinese with English abstract).
    Zhu, R.X., Fan, H.R., Li, J.W., Meng, Q.R., Li, S.R., Zeng, Q.D., 2015. Decratonic gold deposits. Science China(Earth Sciences)58,1523-1537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700