用户名: 密码: 验证码:
Performance and microbial community analysis of an algal-activated sludge symbiotic system: Effect of activated sludge concentration
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance and microbial community analysis of an algal-activated sludge symbiotic system: Effect of activated sludge concentration
  • 作者:Li ; Sun ; Wei ; Zuo ; Yu ; Tian ; Jun ; Zhang ; Jia ; Liu ; Ni ; Sun ; Jianzheng ; Li
  • 英文作者:Li Sun;Wei Zuo;Yu Tian;Jun Zhang;Jia Liu;Ni Sun;Jianzheng Li;State Key Laboratory of Urban Water Resource and Environment (SKLUWRE),School of Environment,Harbin Institute of Technology;
  • 英文关键词:Algal-activated sludge;;symbiotic system;;Sludge concentration;;Wastewater treatment;;Algal and bacterial communities
  • 中文刊名:Journal of Environmental Sciences
  • 英文刊名:环境科学学报(英文版)
  • 机构:State Key Laboratory of Urban Water Resource and Environment (SKLUWRE),School of Environment,Harbin Institute of Technology;
  • 出版日期:2018-12-21
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:02
  • 基金:supported by the HIT Environment and Ecology Innovation Special Funds (No.HSCJ201609);; the Applied Technology Research and Development Program of Harbin (No.2017AB4AS035);; the National Natural Science Foundation of China (No.51708157);; Harbin Youth Talent Support Program (No.2017RAQXJ230)
  • 语种:英文;
  • 页:124-135
  • 页数:12
  • CN:11-2629/X
  • ISSN:1001-0742
  • 分类号:X703;X172
摘要
It was focused on the effect of different sludge concentrations on the performances of an algal-activated sludge symbiotic system in terms of wastewater treatment, algal-activated sludge characteristics and community structure. The results showed that the highest nutrient removal efficiencies were obtained in the reactor R~2 with soluble chemical oxygen demand(sC OD), ammonia nitrogen(NH_4~+-N) and phosphate(PO_4~(3-)-P) removal efficiencies of(90.6 ± 2.3)%,(97.69 ± 2.6)% and(83.81 ± 2.3)%, respectively. Further investigation exhibited that sludge concentration has a great effect on the dissolved oxygen(DO) concentration, the pH, the growth of algae and the extracellular polymeric substance(EPS) production, which resulted in influencing the settleability and the performance of symbiotic system. The denaturing gradient gel electrophoresis(DGGE) analysis demonstrated that the sludge concentration had a selective power for particular members of algae. Meantime, the stimulated algal population would selectively excite the members of bacteria benefited for the formation of algal-bacterial consortia.The variation of microbial compositions, which was influenced by the different sludge concentrations, might be ultimately responsible for the different treatment performances.
        It was focused on the effect of different sludge concentrations on the performances of an algal-activated sludge symbiotic system in terms of wastewater treatment, algal-activated sludge characteristics and community structure. The results showed that the highest nutrient removal efficiencies were obtained in the reactor R~2 with soluble chemical oxygen demand(sC OD), ammonia nitrogen(NH_4~+-N) and phosphate(PO_4~(3-)-P) removal efficiencies of(90.6 ± 2.3)%,(97.69 ± 2.6)% and(83.81 ± 2.3)%, respectively. Further investigation exhibited that sludge concentration has a great effect on the dissolved oxygen(DO) concentration, the pH, the growth of algae and the extracellular polymeric substance(EPS) production, which resulted in influencing the settleability and the performance of symbiotic system. The denaturing gradient gel electrophoresis(DGGE) analysis demonstrated that the sludge concentration had a selective power for particular members of algae. Meantime, the stimulated algal population would selectively excite the members of bacteria benefited for the formation of algal-bacterial consortia.The variation of microbial compositions, which was influenced by the different sludge concentrations, might be ultimately responsible for the different treatment performances.
引文
Ahmed,Z.,Lim,B.,Cho,J.,Song,K.,Kim,K.,Ahn,K.,2008.Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor:Effect of different carbon sources.Water Res.42,198-210.
    APHA,AWWA,WEF,2005.Standard Methods for the Examination of Water and Wastewater.21st ed.Am.Pub.Health Assoc,Washington,DC.
    Bai,A.B.,Stündl,L.,Bársony,P.,Fehér,M.,Jobbágy,P.,Herpergel,Z.,et al.,2012.Algae production on pig sludge.Agron.Sustain.Dev.32,611-618.
    Boelee,N.C.,Temmink,H.,Janssen,M.,Buisman,C.J.N.,Wijffels,R.H.,2014.Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater.Ecol.Eng.64,213-221.
    Bordel,S.,Guieysse,B.,Mu?oz,R.,2009.Mechanistic model for the reclamation of industrial wastewaters using algal-bacterial photobioreactors.Environ.Sci.Technol.43,3200-3207.
    Caron,D.A.,Gellene,A.G.,Smith,J.,Seubert,E.L.,Campbell,V.,Sukhatme,G.S.,et al.,2015.Response of phytoplankton and bacterial biomass during a wastewater effluent diversion into nearshore coastal waters.Estuar.Coast.Shelf Sci.1-14.
    Chen,B.,Li,F.,Liu,N.,Ge,F.,Xiao,H.,Yang,Y.,2015.Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium.Bioresour.Technol.190,299-306.
    Di Pippo,F.,Bohn,A.,Congestri,R.,De Philippis,R.,Albertano,P.,2009.Capsular polysaccharides of cultured phototrophic biofilms.Biofouling 25,495-504.
    Di Pippo,F.,Ellwood,N.T.W.,Guzzon,A.,Siliato,L.,Micheletti,E.,De Philippis,R.,et al.,2012.Effect of light and temperature on biomass,photosynthesis and capsular polysaccharides in cultured phototrophic biofilms.J.Appl.Phycol.24,211-220.
    Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.,Smith,F.,1956.Colorimetric method for determination of sugars and related substances.Anal.Chem.28,350-356.
    Eixler,S.,Karsten,U.,Selig,U.,2006.Phosphorus storage in Chlorella vulgaris(Trebouxiophyceae,Chlorophyta)cells and its dependence on phosphate supply.Phycologia 45(1),53-60.
    Ekama,G.A.,Wentzel,M.C.,1999.Difficulties and development in biological nutrient removal technology and modeling.Water Sci.Technol.39,1-11.
    Green,S.J.,Rishishwar,L.,Prakash,O.,Jordan,I.K.,Kostka,J.,2015.Insights into environmental microbial denitrification from integrated metagenomic,cultivation,and genomic analyses.In:Highlander,S.K.,Rodriguez-Valera,F.,White,B.A.(Eds.),Encyclopedia of Metagenomics.Springer,Boston,pp.293-303.
    Huang,W.,Li,B.,Zhang,C.,Zhang,Z.,Lei,Z.,Lu,B.,et al.,2015.Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.Bioresour.Technol.179,187-192.
    Humenik,F.J.,Hanna Jr.,G.P.,1971.Algal-bacterial symbiosis for removal and conservation of wastewater nutrients.Water Pollut.43,580-594.
    Jorquera,O.,Kiperstok,A.,Sales,E.A.,Embiru?u,M.,Ghirardi,M.L.,2010.Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors.Bioresour.Technol.101,1406-1413.
    Kim,H.,Choi,Y.,Jeon,H.J.,Bhatia,S.K.,Kim,Y.,Kim,Y.,et al.,2015.Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria,Microbacterium sp.HJ1.Biomass Bioenergy 74,213-219.
    Kim,B.,Ramanan,R.,Cho,D.,Choi,G.,La,H.,Ahn,C.,et al.,2012.Simple,rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii.PLoS One 7(5),1-9.
    Lee,C.S.,Lee,S.,Ko,S.,Oh,H.,Ahn,C.,2015.Effects of photoperiod on nutrient removal,biomass production,and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.Water Res.68,680-691.
    Li,Y.,Chen,Y.,Chen,P.,Min,M.,Zhou,W.,Martinez,B.,et al.,2011.Characterization of a microalga Chlorella sp.well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production.Bioresour.Technol.102,5138-5144.
    Liu,J.,Zuo,W.,Zhang,J.,Li,H.,Li,L.,Tian,Y.,2017.Shifts in microbial community structure and diversity in a MBRcombined with worm reactors treating synthetic wastewater.J.Environ.Sci.54,246-255.
    Lowry,O.H.,Rosebrough,N.J.,Farr,A.L.,Randall,R.J.,1951.Protein measurement with the Folin phenol reagent.J.Biol.Chem.193,265-275.
    Mara,D.D.,Pearson,H.,1986.Artificial freshwater environment:waste stabilization ponds technology.In:Rehm,H.J.,Reed,G.(Eds.),Biotechnology.Weinheim,VCH Verlagsgesellschaft MBH,pp.177-206.
    Molina Grima,E.,Belarbi,E.H.,Acién Fernández,F.G.,Robles Medina,A.,Chisti,Y.,2003.Recovery of microalgal biomass and metabolites:process options and economics.Biotechnol.Adv.20,491-515.
    Mujtaba,G.,Rizwan,M.,Lee,K.,2017.Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris.J.Ind.Eng.Chem.49,145-151.
    Mu?oz,R.,Guieysse,B.,2006.Algal-bacterial processes for the treatment of hazardous contaminants:a review.Water Res.40,2799-2815.
    Oswald,W.J.,2003.My sixty years in applied algology.J.Appl.Phycol.15,99-106.
    Park,J.,Craggs,R.J.,2011.Algal production in wastewater treatment high rate algal ponds for potential biofuel use.Water Sci.Technol.63,2403-2410.
    Reddy,Kiran Kumar G.,Nancharaiah,Y.V.,Venugopalan,V.P.,2014.Biodegradation of dibutyl phosphite by Sphingobium sp.AMGD5 isolated from aerobic granular biomass.Int.Biodeterior.Biodegrad.91,60-65.
    Robinson,P.K.,1998.Immobilized algal technology for wastewater treatment purposes.Wastewater treatment with algae.Springer,Berlin Heidelberg,pp.1-16.
    Romaní,A.M.,Fund,K.,Artigas,J.,Schwartz,T.,Sabater,S.,Obst,U.,2008.Relevance of polymeric matrix enzymes during biofilm formation.Microb.Ecol.56,427-436.
    Rothenberger,M.B.,Burkholder,J.M.,Wentworth,T.R.,2009.Use of long-term data and multivariate ordination techniques to identify environmental factors governing estuarine phytoplankton species dynamics.Limnol.Oceanogr.54(6),2107-2127.
    Roudsari,F.P.,Mehrnia,M.R.,Asadi,A.,Moayedi,Z.,Ranjbar,R.,2014.Effect of microalgae/activated sludge ratio on cooperative treatment of anaerobic effluent of municipal wastewater.Appl.Biochem.Biotechnol.172,131-140.
    Schumacher,G.,Blume,T.,Sekoulov,I.,2003.Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm.Water Sci.Technol.47,195-202.
    Su,Y.,Mennerich,A.,Urban,B.,2011.Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture.Water Res.45,3351-3358.
    Su,Y.,Mennerich,A.,Urban,B.,2012.Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment:Influence of algae and sludge inoculation ratios.Bioresour.Technol.105,67-73.
    Tang,C.,Zuo,W.,Tian,Y.,Sun,N.,Wang,Z.W.,Zhang,J.,2016.Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors.Bioresour.Technol.222,156-164.
    Tolhurst,T.J.,Gust,G.,Paterson,D.M.,2002.The influence of an extracellular polymeric substance(EPS)on cohesive sediment stability.Proc.Mar.Sci.5,409-425.
    Valigore,J.M.,Gostomski,P.A.,Wareham,D.G.,O'Sullivan,A.D.,2012.Effects of hydraulic and solids retention times on productivity and settleability of microbial(microalgal-bacterial)biomass grown on primary treated wastewater as a biofuel feedstock.Water Res.46,2957-2964.
    Viswanath,B.,Bux,F.,2012.Biodiesel production potential of wastewater microalgae Chlorella sp.under photoautotrophic and heterotrophic growth conditions.Br.J.Eng.Technol.1(1),251-264.
    Wang,M.,Kuo-Dahab,W.C.,Dolan,S.,Park,C.,2014.Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae,Chlorella sp.and Micractinium sp.,in wastewater treatment.Bioresour.Technol.154,131-137.
    Xiao,R.,Zheng,Y.,2016.Overview of microalgal extracellular polymeric substances(EPS)and their applications.Biotechnol.Adv.34,1225-1244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700