用户名: 密码: 验证码:
Synthesis of high purity Li_2CO_3 and MgCO_3·3H_2O in a homogeneous-like organic phase
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of high purity Li_2CO_3 and MgCO_3·3H_2O in a homogeneous-like organic phase
  • 作者:Lang ; Li ; Jinsong ; Sui ; Wei ; Qin
  • 英文作者:Lang Li;Jinsong Sui;Wei Qin;Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University;
  • 英文关键词:Li_2CO_3;;MgCO_3·3H_2O;;Morphology;;Crystallization mechanism
  • 中文刊名:Chinese Journal of Chemical Engineering
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:05
  • 基金:Supported by the National Natural Science Foundation of China(U1607118)
  • 语种:英文;
  • 页:260-264
  • 页数:5
  • CN:11-3270/TQ
  • ISSN:1004-9541
  • 分类号:O782
摘要
Herein, three kinds of Li_2CO_3 and two kinds of MgCO_3·3H_2O crystals are easily synthesized in a homogeneouslike organic phase. The morphology and size of synthesized crystals are controllable and adjustable in the single organic phase, with the morphology of Li_2CO_3 ranging from micro-flaky, flower to nanobranch, MgCO_3·3H_2O ranging from nanosphere to nanorod. Compared with coupled reaction and solvent extraction process, of which the crystallization process occurred in the interface of two phase, our proposed method made it possible that the crystallization process occurred in the single organic phase, which resulted in better crystal morphology.Moreover, the formation mechanism of different crystal morphologies is discussed, the results showed that the crystals in micron size and nano size are involved in two crystallization mechanism, the micron particles in the form of flake and flower-like is a typical radial growth, which means that the growth occurs by diffusion around a nucleus as starting point, while the reaction model for small particles should be similar to a water-in-oil structure. As the reaction carried out, the crystal should be restricted in a constrained organic structure.
        Herein, three kinds of Li_2CO_3 and two kinds of MgCO_3·3H_2O crystals are easily synthesized in a homogeneouslike organic phase. The morphology and size of synthesized crystals are controllable and adjustable in the single organic phase, with the morphology of Li_2CO_3 ranging from micro-flaky, flower to nanobranch, MgCO_3·3H_2O ranging from nanosphere to nanorod. Compared with coupled reaction and solvent extraction process, of which the crystallization process occurred in the interface of two phase, our proposed method made it possible that the crystallization process occurred in the single organic phase, which resulted in better crystal morphology.Moreover, the formation mechanism of different crystal morphologies is discussed, the results showed that the crystals in micron size and nano size are involved in two crystallization mechanism, the micron particles in the form of flake and flower-like is a typical radial growth, which means that the growth occurs by diffusion around a nucleus as starting point, while the reaction model for small particles should be similar to a water-in-oil structure. As the reaction carried out, the crystal should be restricted in a constrained organic structure.
引文
[1]C.L.Zeng,P.Y.Guo,W.T.Wu,Electrochemical impedance spectra for the corrosion of two-phase Cu-15Al alloy in eutectic(Li,K)2CO3at 650°C in air,Electrochim.Acta 49(2004)1445-1450.
    [2]A.J.Smith,S.H.Kim,N.K.Duggirala,J.Jin,L.Wojtas,J.Ehrhart,B.Giunta,J.Tan,M.J.Zaworotko,R.D.Shytle,Improving lithium therapeutics by crystal engineering of novel ionic cocrystals,Mol.Pharm.10(2013)4728-4738.
    [3]T.D.Gould,A.M.Picchini,H.Einat,H.K.Manji,Targeting glycogen synthase kinase-3in the CNS:implications for the development of new treatments for mood disorders,Curr.Drug Targets 7(2006)1399-1409.
    [4]Y.D.D.C.Sorescu,Density functional theory studies of the structural,electronic,and phonon properties of Li2O,and Li2CO3:Application to CO2capture reaction,Phys.Rev.B 79(2009)4301.
    [5]L.Ji,Z.Lin,M.Alcoutlabi,X.Zhang,Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries,Energy Environ.Sci.4(2011)2682-2699.
    [6]J.Luo,W.Zhang,H.Yuan,C.Jin,L.Zhang,H.Huang,C.Liang,Y.Xia,J.Zhang,Y.Gan,X.Tao,Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors,ACS Nano 11(2017)2459-2469.
    [7]Lang Li,Jinsong Sui,Wei Qin,Superior capacity,rate,long cycle life and high temperature performance of multilayered porous ultralong LiMn2O4 nanorods for lithium ion batteries,J.Electroanal.Chem.833(2019)304-312.
    [8]P.G.Bruce,B.Scrosati,J.Tarascon,Nanomaterials for rechargeable lithium batteries,Angew.Chem.Int.Ed.47(2008)2930-2946.
    [9]B.Scrosati,J.Garche,Lithium batteries:Status,prospects and future,J.Power Sources195(2010)2419-2430.
    [10]P.G.Bruce,S.A.Freunberger,L.J.Hardwick,J.Tarascon,Li-O2and Li-S batteries with high energy storage,Nat.Mater.11(2011)19-29.
    [11]Lang Li,Jinsong Sui,Rui Huang,Wei Xiang,Wei Qin,Dependence of electrochemical properties of spinel Li Mn2O4on Li2CO3with micro-flaky,micro-flower and nanorod morphologies,RSC Adv.7(2017)42289-42295.
    [12]Wenting Cheng,Zhibao Li,Nucleation kinetics of nesquehonite(MgCO3·3H2O)in the MgCl2-Na2CO3,J.Cryst.Growth 312(2010)1563-1571.
    [13]W.Xiang,S.Liang,Z.Zhou,W.Qin,W.Fei,Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium,Hydrometallurgy.166(2016)9-15.
    [14]Z.Zhou,S.Liang,W.Qin,W.Fei,Extraction equilibria of lithium with tributyl phosphate,diisobutyl ketone,acetophenone,methyl isobutyl ketone,and 2-heptanone in kerosene and Fe Cl3,Ind.Eng.Chem.Res.52(2013)7912-7917.
    [15]X.Liu,G.Zhu,K.Yang,J.Wang,A mixture of LiNi1/3Co1/3Mn1/3O2and LiCoO2as positive active material of LIB for power application,J.Power Sources 174(2007)1126-1130.
    [16]H.Dixit,W.Zhou,J.Idrobo,J.Nanda,V.R.Cooper,Facet-dependent disorder in pristine high-voltage lithium-manganese-rich cathode material,ACS Nano 8(2014)12710-12716.
    [17]F.Lin,I.M.Markus,D.Nordlund,T.Weng,M.D.Asta,H.L.Xin,M.M.Doeff,Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries,Nat.Commun.5(2014)3529.
    [18]J.Cho,LiNi0.74Co0.26-xMgxO2cathode material for a Li-ion cell,Chem.Mater.12(2000)3089-3094.
    [19]B.C.Sun,X.M.Wang,J.M.Chen,Synthesis of nano-CaCO3by simultaneous absorption of CO2and NH3into CaCl2solution in a rotating packed bed,Chem.Eng.J.168(2011)731-736.
    [20]Y.Li,X.Song,G.Chen,et al.,Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction-crystallization process,Chem.Eng.J.278(2015)55-61.
    [21]L.Xin,W.Wang,W.Man,et al.,Experimental study of CO2mineralization in Ca2+-rich aqueous solutions using tributylamine as an enhancing medium,Energy Fuel 28(2014)2047-2053.
    [22]W.Wang,L.Xin,W.Peng,et al.,Enhancement of CO2mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine,Ind.Eng.Chem.Res.52(2013)8028-8033.
    [23]Guilan Chen,Xingfu Song,Chunhua Dong,Mineralizing CO2as MgCO3·3H2O using abandoned Mg Cl2based on a coupled reaction-extraction-alcohol precipitation process,Energy Fuel 30(2016)7551-7559.
    [24]Z.Zhou,F.Liang,Q.Wei,et al.,Coupled reaction and solvent extraction process to form Li2CO3:Mechanism and product characterization,AICHE J.60(2014)282-288.
    [25]Xin X,Zhu T.Coupled process of reaction and solvent extraction I.The reaction between CO2,and Sr Cl2,coupled with solvent extraction of HCl.Hydrometallurgy.76(2005)11-17.
    [26]Y.Lu,Y.Liu,C.Zhou,G.Luo,Preparation of Li2CO3nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor,Ind.Eng.Chem.Res.53(2014)11015-11020.
    [27]W.Yi,C.Yan,P.Ma,Removal of calcium and magnesium from LiHCO3solutions for preparation of high-purity Li2CO3by ion-exchange resin,Desalination.249(2009)729-735.
    [28]Y.Sun,X.Song,J.Wang,J.Yu,Preparation of Li2CO3by gas-liquid reactive crystallization of LiOH and CO2,Cryst.Res.Technol.47(2012)437-442.
    [29]Y.Sun,X.Song,J.Wang,J.Yu,Preparation of lithium carbonate hollow spheres by spray pyrolysis,Cryst.Res.Technol.46(2011)173-177.
    [30]Y.Li,X.Song,G.Chen,S.Sun,Y.Xu,Extraction of hydrogen chloride by a coupled reaction-solvent extraction process,Front.Chem.Sci.Eng.9(2015)479-487.
    [31]G.Chen,X.Song,C.Dong,S.Sun,Z.Sun,Mineralizing CO2as MgCO3·3H2O using abandoned MgCl2based on a coupled reaction-extraction-alcohol precipitation process,Energy Fuel 30(2016)7551-7559.
    [32]F.Chen,X.Wang,W.Liu,et al.,Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures,Sep.Purif.Technol.169(2016)50-58.
    [33]Y.Li,X.Song,S.Sun,et al.,Extraction equilibrium of hydrochloric acid at low concentrations between water and N235 in isoamyl alcohol solution:experiments and simulation,J.Chem.Eng.Data 60(2015)3000-3008.
    [34]L.Pastero,F.R.Massaro,D.Aquilano,Experimental and theoretical morphology of single and twinned crystals of Li2CO3(Zabuyelite),Cryst.Growth Des.7(2007)2749-2755.
    [35]S.Chen,S.Yu,J.Jiang,F.Li,Y.Liu,Polymorph discrimination of CaCO3mineral in an ethanol/water solution:Formation of complex vaterite superstructures and aragonite rods,Chem.Mater.18(2006)115-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700