用户名: 密码: 验证码:
生物炭吸附重金属离子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advances on adsorption of heavy metals by biochar
  • 作者:王重庆 ; 王晖 ; 江小燕 ; 黄荣 ; 曹亦俊
  • 英文作者:WANG Chongqing;WANG Hui;JIANG Xiaoyan;HUANG Rong;CAO Yijun;School of Chemical Engineering and Energy, Zhengzhou University;School of Chemistry and Chemical Engineering, Central South University;
  • 关键词:吸附 ; 解吸 ; 生物炭 ; 表面改性 ; 重金属 ; 废水
  • 英文关键词:adsorption;;desorption;;biochar;;surface modification;;heavy metals;;waste water
  • 中文刊名:化工进展
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:郑州大学化工与能源学院;中南大学化学化工学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:01
  • 基金:中国博士后科学基金项目(2018M630838);; 河南省高等学校重点科研项目(19B530002)
  • 语种:中文;
  • 页:699-713
  • 页数:15
  • CN:11-1954/TQ
  • ISSN:1000-6613
  • 分类号:X703
摘要
生物炭在过去的十几年里受到了广泛关注,由于其低成本、环境友好、可再生等优点,在环境管理方面具有良好的应用前景。本文介绍了生物炭的概念、应用和性质,重点综述了生物炭吸附重金属离子的研究进展,并探讨了目前面临的挑战和应用前景。生物炭是在缺氧或无氧条件下热化学转化生物质得到多孔富碳材料,主要用于土壤改良,可以提高作物产量、实现碳封存以及减少温室气体排放,并且在催化、能源和水处理等方面具有潜在的应用。生物炭制备方法包括热解、气化、水热炭化等,生物炭的性质受生物质原料、制备工艺和技术参数影响。重点介绍了生物炭吸附重金属离子的相关研究,包括生物炭吸附重金属离子的影响因素、吸附机理和改性生物炭的制备。通过吸附动力学、吸附等温线、吸附热力学和表征技术可以揭示表面络合、静电引力、表面沉淀和离子交换等吸附机理。生物炭吸附重金属离子的最新研究主要致力于通过改性提高生物炭的吸附性能,改性方法主要包括物理化学活化以及复合金属氧化物或化合物、功能有机物、纳米粒子等。生物炭吸附重金属离子面临一些问题和挑战,距离实际废水处理应用还有一定差距。
        the past decades,biochar has received considerable attention due to potential environmental applications and advantages of low cost,environmental friendliness and renewability.In this paper,the concept,applications and properties of biochar were summarized,as well as research advances on adsorption of heavy metals.Biochar is the porous carbonaceous materials produced by thermochemical conversion of biomass in zero or limited oxygen atmosphere and it is suitable for soil amendment.Biochar can improve crop yields,realize carbon sequestration and mitigate climate change,and also has potential applications in catalysis,energy production and wastewater treatment.Biochar can be prepared by pyrolysis,gasification and hydrothermal carbonization,and its properties depend on biomass feeds,thermochemical process and technical parameters.Adsorption of heavy metals onto biochar was surveyed,including affecting parameters,adsorption mechanism and modifications of biochar.Adsorption mechanism can be revealed by adsorption kinetics,isotherms,thermodynamics and advanced characterizations.Recent advances focus on improving adsorption performance of biochar by surface modifications,which are achieved via physicochemical activations or impregnating metal oxides,functional organics or nano particles.There exist some challenges and wide gap for treatment of real wastewater by biochar.
引文
[1]XIE T,REDDY K R,WANG C,et al.Characteristics and applications of biochar for environmental remediation:a review[J]Critical Reviews in Environmental Science and Technology,201545(9):939-969.
    [2]LEHMANN J,JOSEPH S.Biochar for environmental management science,technology and implementation[M].2nd ed.London Routledge,2015.
    [3]VERHEIJEN F,JEFFERY S,BASTOS A C,et al.Biochar application to soils,a critical scientific review of effects on soil properties,processes and functions[R].European Commission Italy,2010.
    [4]SHACKLEY S,CARTER S,KNOWLES T,et al.Sustainable gasification-biochar systems?A case-study of rice-husk gasification in Cambodia.PartⅠ:Context,chemical properties environmental and health and safety issues[J].Energy Policy2012,42:49-58.
    [5]International Biochar Initiative.Standardized product definition and product testing guidelines for biochar that is used in soil[EBOL].https://www.biochar-international.org/wp-content/uploads2018/04/IBI_Biochar_Standards_V2.1_Final.pdf.
    [6]LIBRA J A,RO K S,KAMMANN C,et al.Hydrotherma carbonization of biomass residuals:a comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J]Biofuels,2011,2(1):71-106.
    [7]WOOLF D,AMONETTE J E,STREET-PERROTT F A,et al Sustainable biochar to mitigate global climate change[J].Nature Communications,2010,56:1-9.
    [8]ROBERTS K G,GLOY B A,JOSEPH S,et al.Life cycle assessment of biochar systems:estimating the energetic economic,and climate change potential[J].Environmental Science&Technology,2009,44(2):827-833.
    [9]QIAN K,KUMAR A,ZHANG H,et al.Recent advances in utilization of biochar[J].Renewable and Sustainable Energy Reviews,2015,42:1055-1064.
    [10]LAIRD D,FLEMING P,WANG B,et al.Biochar impact on nutrient leaching from a Midwestern agricultural soil[J]Geoderma,2010,158(3/4):436-442.
    [11]WARNOCK D D,LEHMANN J,KUYPER T W,et al.Mycorrhiza responses to biochar in soil-concepts and mechanisms[J].Plan and Soil,2007,300(1/2):9-20.
    [12]YU X Y,MU C L,GU C,et al.Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils[J].Chemosphere,2011,85(8):1284-1289.
    [13]SINGH B P,COWIE A L,SMERNIK R J.Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J].Environmental Science&Technology,2012,46(21):11770-11778.
    [14]LAIRD D A,BROWN R C,AMONETTE J E,et al.Review of the pyrolysis platform for coproducing bio‐oil and biochar[J].Biofuels,Bioproducts and Biorefining,2009,3(5):547-562.
    [15]LEHMANN J,GAUNT J,RONDON M.Bio-char sequestration in terrestrial ecosystems-A review[J].Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427.
    [16]BOLAN N S,THANGARAJAN R,SESHADRI B,et al.Landfills as a biorefinery to produce biomass and capture biogas[J].Bioresource Technology,2013,135:578-587.
    [17]MOHAN D,PITTMAN C U,STEELE P H.Pyrolysis of wood/biomass for bio-oil:a critical review[J].Energy&Fuels,2006,20(3):848-889.
    [18]WOOLF D.Biochar as a soil amendment:a review of the environmental implications[R].2008.http://orgprints.org/13268/1/Biochar_as_a_soil_amendment_-_a_review.pdf.
    [19]MOHAN D,SARSWAT A,OK Y S,et al.Organic and inorganic contaminants removal from water with biochar,a renewable,low cost and sustainable adsorbent-A critical review[J].Bioresource Technology,2014,160:191-202.
    [20]YAN Q,WAN C,LIU J,et al.Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons[J].Green Chemistry,2013,15(6):1631-1640.
    [21]KASTNER J R,MILLER J,GELLER D P,et al.Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon[J].Catalysis Today,2012,190(1):122-132.
    [22]QIN J,CHEN Q,SUN M,et al.Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation[J].Chemical Engineering Journal,2017,330:804-812.
    [23]MIAN M M,LIU G.Recent progress in biochar-supported photocatalysts:synthesis,role of biochar,and applications[J].RSCAdvances,2018,8(26):14237-14248.
    [24]王艳,李春花,龚畏,等.Fe/生物炭活化过硫酸盐降解偶氮染料金橙Ⅱ[J].应用化工,2017,46(12):2328-2330.WANG Y,LI C H,GONG W,et al.Study on azo dyes OrangeⅡ,removal using Fe/BC activated persulfate[J].Applied Chemical Industry,2017,46(12):2328-2330.
    [25]KHATAEE A,KAYAN B,GHOLAMI P,et al.Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2nanoparticles on biochar[J].Ultrasonics Sonochemistry,2017,39:540-549.
    [26]PARK J H,WANG J J,XIAO R,et al.Degradation of Orange Gby Fenton-like reaction with Fe-impregnated biochar catalyst[J].Bioresource Technology,2018,249:368-376.
    [27]HOUBEN D,EVRARD L,SONNET P.Mobility,bioavailability and pH-dependent leaching of cadmium,zinc and lead in a contaminated soil amended with biochar[J].Chemosphere,2013,92(11):1450-1457.
    [28]XU R,XIAO S,YUAN J,et al.Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J]Bioresource Technology,2011,102(22):10293-10298.
    [29]CANTRELL K B,HUNT P G,UCHIMIYA M,et al.Impact o pyrolysis temperature and manure source on physicochemical characteristics of biochar[J].Bioresource Technology,2012,107419-428.
    [30]KEILUWEIT M,NICO P S,JOHNSON M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J].Environmental Science&Technology,2010,44(4)1247-1253.
    [31]UCHIMIYA M,CHANG S C,KLASSON K T.Screening biochars for heavy metal retention in soil:role of oxygen functional groups[J].Journal of Hazardous Materials,2011,190(1/2/3):432-441.
    [32]AHMAD M,RAJAPAKSHA A U,LIM J E,et al.Biochar as a sorbent for contaminant management in soil and water:a review[J]Chemosphere,2014,99:19-33.
    [33]XU X,CAO X,ZHAO L.Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J].Chemosphere,2013,92(8):955-961.
    [34]DING W,DONG X,IME I M,et al.Pyrolytic temperatures impac lead sorption mechanisms by bagasse biochars[J].Chemosphere2014,105:68-74.
    [35]KUMAR S,LOGANATHAN V A,GUPTA R B,et al.An assessment of U()removal from groundwater using biochar produced from hydrothermal carbonization[J].Journal o Environmental Management,2011,92(10):2504-2512.
    [36]常皓,柴立元,王云燕,等.Cu2+-H2O系羟合配离子配位平衡研究[J].矿冶工程,2007,27(6):37-40.CHANG H,CHAI L Y,WANG Y Y,et al.Study on equilibrium o hydroxyl complex ions in Cu2+H2O system[J].Mining and Metallurgical Engineering,2007,27(6):37-40.
    [37]LU H,ZHANG W,YANG Y,et al.Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar[J].Water Research,2012,46(3):854-862.
    [38]ZHANG W,MAO S,CHEN H,et al.Pb(Ⅱ)and Cr(Ⅵ)sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J].Bioresource Technology,2013147:545-552.
    [39]KONG H,HE J,GAO Y,et al.Cosorption of phenanthrene and mercury()from aqueous solution by soybean stalk-based biochar[J].Journal of Agricultural and Food Chemistry,2011,59(22)12116-12123.
    [40]TAN K L,HAMEED B H.Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]Journal of the Taiwan Institute of Chemical Engineers,2017,7425-48.
    [41]FEBRIANTO J,KOSASIH A N,SUNARSO J,et al.Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent a summary of recent studies[J].Journal of Hazardous Materials2009,162(2/3):616-645.
    [42]FAROOQ U,KOZINSKI J A,KHAN M A,et al.Biosorption o heavy metal ions using wheat based biosorbents-A review of the recent literature[J].Bioresource Technology,2010,101(14):5043-5053.ⅥⅡ-
    [43]FOO K Y,HAMEED B H.Insights into the modeling of adsorption isotherm systems[J].Chemical Engineering Journal,2010,156(1):2-10.
    [44]SUD D,MAHAJAN G,KAUR M P.Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review[J].Bioresource Technology,2008,99(14):6017-6027.
    [45]TAN X,LIU Y,ZENG G,et al.Application of biochar for the removal of pollutants from aqueous solutions[J].Chemosphere,2015,125:70-85.
    [46]DONG X,MA L Q,LI Y.Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J].Journal of Hazardous Materials,2011,190(1/2/3):909-915.
    [47]CAO X,MA L,GAO B,et al.Dairy-manure derived biochar effectively sorbs lead and atrazine[J].Environmental Science&Technology,2009,43(9):3285-3291.
    [48]DING W,DONG X,IME I M,et al.Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars[J].Chemosphere,2014,105:68-74.
    [49]SIZMUR T,FRESNO T,AKGüL G,et al.Biochar modification to enhance sorption of inorganics from water[J].Bioresource Technology,2017,246:34-47.
    [50]HO S H,ZHU S,CHANG J S.Recent advances in nanoscalemetal assisted biochar derived from waste biomass used for heavy metals removal[J].Bioresource Technology,2017,246:123-134.
    [51]SHIM T,YOO J,RYU C,et al.Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity[J].Bioresource Technology,2015,197:85-90.
    [52]HO S H,YANG Z,NAGARAJAN D,et al.High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J].Bioresource Technology,2017,246:142-149.
    [53]SUN K,TANG J,GONG Y,et al.Characterization of potassium hydroxide(KOH)modified hydrochars from different feedstocks for enhanced removal of heavy metals from water[J].Environmental Science and Pollution Research,2015,22(21):16640-16651.
    [54]PENG H,GAO P,CHU G,et al.Enhanced adsorption of Cu(Ⅱ)andCd(Ⅱ)byphosphoricacid-modifiedbiochars[J].Environmental Pollution,2017,229:846-853.
    [55]ZHAO N,ZHAO C,LV Y,et al.Adsorption and coadsorption mechanisms of Cr(Ⅰ)and organic contaminants on H3PO4treated biochar[J].Chemosphere,2017,186:422-429.
    [56]ZHAO T,YAO Y,LI D,et al.Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(Ⅰ)and Pb(Ⅱ)[J].Science of the Total Environment,2018,640:73-79.
    [57]ZHOU N,CHEN H,FENG Q,et al.Effect of phosphoric acid on the surface properties and Pb()adsorption mechanisms of hydrochars prepared from fresh banana peels[J].Journal of Cleaner Production,2017,165:221-230.
    [58]WANG Q,WANG B,LEE X,et al.Sorption and desorption of Pb(Ⅱ)to biochar as affected by oxidation and pH[J].Science of the Total Environment,2018,634:188-194.
    [59]WANG Y,LIU R.H2O2treatment enhanced the heavy metals removal by manure biochar in aqueous solutions[J].Science of the Total Environment,2018,628:1139-1148.Ⅱ
    [60]CIBATI A,FOEREID B,BISSESSUR A,et al.Assessment o Miscanthus×giganteus derived biochar as copper and zinc adsorbent:study of the effect of pyrolysis temperature,pH and hydrogen peroxide modification[J].Journal of Cleaner Production2017,162:1285-1296.
    [61]HO S H,WANG D,WEI Z,et al.Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis[J].Bioresource Technology,2018,247463-470.
    [62]ZHANG S,ZHANG H,CAI J,et al.Evaluation and prediction o cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar[J].Energy&Fuels,2017,32(4):4469-4477.
    [63]TAN G,SUN W,XU Y,et al.Sorption of mercury()and atrazine by biochar,modified biochars and biochar based activated carbon in aqueous solution[J].Bioresource Technology,2016,211727-735.
    [64]WANG S,GAO B,ZIMMERMAN A R,et al.Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J].Bioresource Technology,2015,175:391-395.
    [65]HAN Y,CAO X,OUYANG X,et al.Adsorption kinetics o magnetic biochar derived from peanut hull on removal of Cr(from aqueous solution:effects of production conditions and particle size[J].Chemosphere,2016,145:336-341.
    [66]BAIG S A,ZHU J,MUHAMMAD N,et al.Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(Ⅲ,Ⅴadsorption from aqueous solutions[J].Biomass and Bioenergy2014,71:299-310.
    [67]REDDY D H K,LEE S M.Magnetic biochar composite:facile synthesis,characterization,and application for heavy meta removal[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,454:96-103.
    [68]RUTHIRAAN M,ABDULLAH E C,MUBARAK N M,et al.Apromising route of magnetic based materials for removal of cadmium and methylene blue from waste water[J].Journal o Environmental Chemical Engineering,2017,5(2):1447-1455.
    [69]GUPTA P L,JUNG H,TIWARI D,et al.Insight into the mechanism of Cd(Ⅱ)and Pb(Ⅱ)removal by sustainable magnetic biosorbent precursor to Chlorella vulgaris[J].Journal of the Taiwan Institute of Chemical Engineers,2017,71:206-213.
    [70]HE R,PENG Z,LYU H,et al.Synthesis and characterization o an iron-impregnated biochar for aqueous arsenic removal[J]Science of the Total Environment,2018,612:1177-1186.
    [71]SON E B,POO K M,CHANG J S,et al.Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J].Science of the Tota Environment,2018,615:161-168.
    [72]ZHOU Y,LIU X,XIANG Y,et al.Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution:adsorption mechanism and modelling[J].Bioresource Technology,2017,245:266-273.
    [73]KARUNANAYAKE A G,TODD O A,CROWLEY M,et al.Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir[J].Chemical Engineering Journal,2018331:480-491.
    [74]ZHOU Q,LIAO B,LIN L,et al.Adsorption of Cu(Ⅱ)and Cd(Ⅱfrom aqueous solutions by ferromanganese binary oxide-biocharⅡⅥcomposites[J].Science of the Total Environment,2018,615:115-122.
    [75]YANG F,ZHANG S,LI H,et al.Corn straw-derived biochar impregnated withα-FeOOH nanorods for highly effective copper removal[J].Chemical Engineering Journal,2018,348:191-201.
    [76]GAN C,LIU Y,TAN X,et al.Effect of porous zinc-biochar nanocomposites on Cr()adsorption from aqueous solution[J].RSC Advances,2015,5(44):35107-35115.
    [77]YU J,JIANG C,GUAN Q,et al.Enhanced removal of Cr(Ⅵ)from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J].Chemosphere,2018,195:632-640
    [78]WAN S,WU J,ZHOU S,et al.Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide(HMO)nanoparticles:behavior and mechanism[J].Science of the Total Environment,2018,616:1298-1306.
    [79]LI B,YANG L,WANG C,et al.Adsorption of Cd(Ⅱ)from aqueous solutions by rape straw biochar derived from different modification processes[J].Chemosphere,2017,175:332-340.
    [80]JUNG K W,LEE S Y,LEE Y J.Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu()from aqueous media[J].Bioresource Technology,2018,260:204-212.
    [81]LIANG J,LI X,YU Z,et al.Amorphous MnO2modified biochar derived from aerobically composted swine manure for adsorption of Pb()and Cd()[J].ACS Sustainable Chemistry&Engineering,2017,5(6):5049-5058.
    [82]LIU C M,DIAO Z H,HUO W Y,et al.Simultaneous removal of Cu2+and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution:synthesis,reactivity and mechanism[J].Environmental Pollution,2018,239:698-705.
    [83]QIAN L,ZHANG W,YAN J,et al.Nanoscale zero-valent iron supported by biochars produced at different temperatures:synthesis mechanism and effect on Cr()removal[J].Environmental Pollution,2017,223:153-160.
    [84]ZUO W Q,CHEN C,CUI H J,et al.Enhanced removal of Cd(Ⅱ)from aqueous solution using CaCO3nanoparticle modified sewage sludge biochar[J].RSC Advances,2017,7(26):16238-16243.
    [85]WANG T,LI C,WANG C,et al.Biochar/MnAl-LDH composites for Cu(Ⅱ)removal from aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,538:443-450.
    [86]YU C,WANG M,DONG X,et al.Removal of Cu()from aqueous solution using Fe3O4-alginate modified biochar microspheres[J].RSC Advances,2017,7(84):53135-53144.
    [87]WANG B,GAO B,WAN Y.Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(Ⅱ)[J].Journal of Industrial and Engineering Chemistry,2018,61:161-168.
    [88]WANG Y Y,LIU Y X,LU H H,et al.Competitive adsorption of Pb(),Cu(),and Zn()ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions[J].Journal of Solid State Chemistry,2018,261:53-61.
    [89]JUNG K W,LEE S Y,LEE Y J.Facile one-pot hydrothermal synthesisofcubicspinel-typemanganeseferrite/biocharcomposites for environmental remediation of heavy metals from aqueous solutions[J].Bioresource Technology,2018,261:1-9.
    [90]WANG S,ZHOU Y,GAO B,et al.The sorptive and reductiveⅥⅡⅡⅡⅥⅡⅡⅡⅡ(nZVI)in relation to its crystallite size[J].Chemosphere,2017,186:495-500.
    [91]WANG C,WANG H.Pb()sorption from aqueous solution by novel biochar loaded with nano-particles[J].Chemosphere,2018,192:1-4.
    [92]SHI S,YANG J,LIANG S,et al.Enhanced Cr()removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2particles[J].Science of the Total Environment,2018,628:499-508.
    [93]LING L L,LIU W J,ZHANG S,et al.Magnesium oxide embedded nitrogen self-doped biochar composites:fast and high-efficiency adsorption of heavy metals in an aqueous solution[J].Environmental Science&Technology,2017,51(17):10081-10089.
    [94]ZHANG M,LIU Y,LI T,et al.Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr()from aqueous solution[J].RSC Advances,2015,5(58):46955-46964.
    [95]HUANG X,LIU Y,LIU S,et al.Effective removal of Cr(Ⅵ)usingβcyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J].RSC Advances,2016,6(1):94-104.
    [96]MA Y,LIU W J,ZHANG N,et al.Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J].Bioresource Technology,2014,169:403-408.ⅡⅥⅥ-
    [97]SHI Y,ZHANG T,REN H,et al.Polyethylene imine modified hydrochar adsorption for chromium()and nickel()removal from aqueous solution[J].Bioresource Technology,2018,247:370-379.
    [98]LUO M,LIN H,LI B,et al.A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J].Bioresource Technology,2018,259:312-318.
    [99]DENG J,LIU Y,LIU S,et al.Competitive adsorption of Pb(),Cd()and Cu()onto chitosan-pyromellitic dianhydride modified biochar[J].Journal of Colloid and Interface Science,2017,506:355-364.
    [100]YANG G X,JIANG H.Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J].Water Research,2014,48:396-405.
    [101]YU W,LIAN F,CUI G,et al.N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution[J].Chemosphere,2018,193:8-16.
    [102]ZHANG Y,CAO B,ZHAO L,et al.Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions[J].Applied Surface Science,2018,427:147-155.
    [103]WANG T,SUN H,REN X,et al.Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials[J].Ecotoxicology and Environmental Safety,2018,148:285-292.ⅥⅡⅡⅡⅡ

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700