用户名: 密码: 验证码:
Transcriptome analysis of salt-stress response in three seedling tissues of common wheat
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transcriptome analysis of salt-stress response in three seedling tissues of common wheat
  • 作者:Qiaoling ; Luo ; Wan ; Teng ; Shuang ; Fang ; Hongwei ; Li ; Bin ; Li ; Jinfang ; Chu ; Zhensheng ; Li ; Qi ; Zheng
  • 英文作者:Qiaoling Luo;Wan Teng;Shuang Fang;Hongwei Li;Bin Li;Jinfang Chu;Zhensheng Li;Qi Zheng;State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;National Centre for Plant Gene Research(Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
  • 英文关键词:Jasmonic acid;;Photosynthesis;;RNA-Seq;;Salt tolerance;;Triticum aestivum
  • 中文刊名:The Crop Journal
  • 英文刊名:作物学报(英文版)
  • 机构:State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;National Centre for Plant Gene Research(Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
  • 出版日期:2019-06-15
  • 出版单位:The Crop Journal
  • 年:2019
  • 期:03
  • 基金:supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA08030105);; Key Programs of the Chinese Academy of Sciences (KFZD-SW112);; STS Project of Chinese Academy of Sciences (KFJ-STS-ZDTP-024)
  • 语种:英文;
  • 页:108-122
  • 页数:15
  • CN:10-1112/S
  • ISSN:2095-5421
  • 分类号:S512.1
摘要
Xiaoyan 60(XY60) is a new wheat variety bred in the laboratory of Zhensheng Li.After salt treatment, seedlings of XY60 maintain green leaves and produce longer roots than the high yielding cultivar Zhongmai 175(ZM175).To explain these different phenotypes we carried out an RNA-Seq analysis using 12 samples from three tissues of both varieties subjected to salt and control treatments.By comparing data from the salt treated plants with the control, 703, 979, and 1197 differentially expressed genes(DEGs) were detected in new leaves, old leaves, and roots of XY60, respectively.The corresponding numbers for ZM175 were 613, 1401, and 1301.The most significantly enriched Gene Ontology(GO) terms and KEGG pathways were associated with polyunsaturated fatty acid(PUFA) metabolism in both new and old leaves from XY60.They were associated with photosynthesis and energy metabolism in ZM175.The most significantly enriched KEGG pathway in roots of both varieties was "glucosinolate biosynthesis".In addition, jasmonic acid(JA) concentration in XY60 was higher than in ZM175, although it increased significantly in both varieties following salt treatment.Trends in relative expression levels of AOS, MYC2, and JAZ revealed by qRT-PCR were concordant with those from RNA-Seq.Our results suggest that PUFAs may contribute to salt tolerance in common wheat by enhancing the photosynthetic system and JA-related pathways.
        Xiaoyan 60(XY60) is a new wheat variety bred in the laboratory of Zhensheng Li.After salt treatment, seedlings of XY60 maintain green leaves and produce longer roots than the high yielding cultivar Zhongmai 175(ZM175).To explain these different phenotypes we carried out an RNA-Seq analysis using 12 samples from three tissues of both varieties subjected to salt and control treatments.By comparing data from the salt treated plants with the control, 703, 979, and 1197 differentially expressed genes(DEGs) were detected in new leaves, old leaves, and roots of XY60, respectively.The corresponding numbers for ZM175 were 613, 1401, and 1301.The most significantly enriched Gene Ontology(GO) terms and KEGG pathways were associated with polyunsaturated fatty acid(PUFA) metabolism in both new and old leaves from XY60.They were associated with photosynthesis and energy metabolism in ZM175.The most significantly enriched KEGG pathway in roots of both varieties was "glucosinolate biosynthesis".In addition, jasmonic acid(JA) concentration in XY60 was higher than in ZM175, although it increased significantly in both varieties following salt treatment.Trends in relative expression levels of AOS, MYC2, and JAZ revealed by qRT-PCR were concordant with those from RNA-Seq.Our results suggest that PUFAs may contribute to salt tolerance in common wheat by enhancing the photosynthetic system and JA-related pathways.
引文
[1]M.A.Asif,R.K.Schilling,J.Tilbrook,C.Brien,K.Dowling,H.Rabie,L.Short,C.Trittermann,A.Garcia,E.G.BarrettLennard,B.Berger,D.E.Mather,M.Gilliham,D.Fleury,M.Tester,S.J.Roy,A.S.Pearson,Mapping of novel salt tolerance QTL in an Excalibur×Kukri doubled haploid wheat population,Theor.Appl.Genet.(2018)2179-2196.
    [2]T.J.Flowers,A.R.Yeo,Breeding for salinity resistance in crop plants:where next?Aust.J.Plant Physiol.22(1995)875-884.
    [3]M.Tester,R.Davenport,Na+tolerance and Na+transport in higher plants,Ann.Bot.91(2003)503-527.
    [4]R.Munns,M.Tester,Mechanisms of salinity tolerance,Annu.Rev.Plant Biol.59(2008)651-681.
    [5]U.Deinlein,A.B.Stephan,T.Horie,W.Luo,G.Xu,J.I.Schroeder,Plant salt-tolerance mechanisms,Trends Plant Sci.19(2014)371-379.
    [6]K.Apel,H.Hirt,Reactive oxygen species:metabolism,oxidative stress,and signal transduction,Annu.Rev.Plant Biol.55(2004)373-399.
    [7]C.H.Foyer,G.Noctor,Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context,Plant Cell Environ.28(2005)1056-1071.
    [8]W.Xu,H.Lv,M.Zhao,Y.Li,Y.Qi,Z.Peng,G.Xia,M.Wang,Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line,Sci.Rep.6(2016),32384..
    [9]R.Munns,Comparative physiology of salt and water stress,Plant Cell Environ.25(2002)239-250.
    [10]J.K.Zhu,Regulation of ion homeostasis under salt stress,Curr.Opin.Plant Biol.6(2003)441-445.
    [11]J.K.Zhu,Salt and drought stress signal transduction in plants,Annu.Rev.Plant Biol.53(2002)247-273.
    [12]S.J.Roy,S.Negrao,M.Tester,Salt resistant crop plants,Curr.Opin.Biotechnol.26(2014)115-124.
    [13]D.P.Schachtman,J.I.Schroeder,Structure and transport mechanism of a high-affinity potassium uptake transporter from higher-plants,Nature 370(1994)655-658.
    [14]F.Rubio,W.Gassmann,J.I.Schroeder,Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance,Science 270(1995)1660-1663.
    [15]E.Blumwald,R.J.Poole,Na+/H+antiport in isolated tonoplast vesicles from storage tissue of Beta-vulgaris,Plant Physiol.78(1985)163-167.
    [16]M.P.Apse,G.S.Aharon,W.A.Snedden,E.Blumwald,Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis,Science 285(1999)1256-1258.
    [17]R.A.Gaxiola,J.S.Li,S.Undurraga,L.M.Dang,G.J.Allen,S.L.Alper,G.R.Fink,Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump,Proc.Natl.Acad.Sci.U.S.A.98(2001)11444-11449.
    [18]A.C.Harmon,M.Gribskov,J.F.Harper,CDPKs-a kinase for every Ca2+signal?Trends Plant Sci.5(2000)154-159.
    [19]S.Weinl,J.Kudla,The CBL-CIPK Ca2+-decoding signaling network:function and perspectives,New Phytol.184(2009)517-528.
    [20]M.Boudsocq,J.Sheen,CDPKs in immune and stress signaling,Trends Plant Sci.18(2013)30-40.
    [21]A.Laohavisit,S.L.Richards,L.Shabala,C.Chen,R.D.D.R.Colaco,S.M.Swarbreck,E.Shaw,A.Dark,S.Shabala,Z.Shang,J.M.Davies,Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein Annexin1,Plant Physiol.163(2013)253-262.
    [22]O.Yang,O.V.Popova,U.Suethoff,I.Lueking,K.J.Dietz,D.Golldack,The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance,Gene 436(2009)45-55.
    [23]Y.Jiang,M.K.Deyholos,Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses,Plant Mol.Biol.69(2009)91-105.
    [24]M.H.Cui,K.S.Yoo,S.Hyoung,N.Ha Thi Kim,Y.Y.Kim,H.J.Kim,S.H.Ok,S.D.Yoo,J.S.Shin,An Arabidopsis R2R3-MYBtranscription factor,AtMYB20,negatively regulates type 2Cserine/threonine protein phosphatases to enhance salt tolerance,FEBS Lett.587(2013)1773-1778.
    [25]Y.Jiang,B.Yang,M.K.Deyholos,Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress,Mol.Gen.Genomics.282(2009)503-516.
    [26]L.S.P.Tran,K.Nakashima,Y.Sakuma,S.D.Simpson,Y.Fujita,K.Maruyama,M.Fujita,M.Seki,K.Shinozaki,K.Yamaguchi-Shinozaki,Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter,Plant Cell 16(2004)2481-2498.
    [27]M.M.F.Mansour,K.H.A.Salama,H.Y.H.Allam,Role of the plasma membrane in saline conditions:lipids and proteins,Bot.Rev.81(2015)416-451.
    [28]C.Wasternack,S.Song,Jasmonates:biosynthesis,metabolism,and signaling by proteins activating and repressing transcription,J.Exp.Bot.68(2017)1303-1321.
    [29]H.Walia,C.Wilson,P.Condamine,X.Liu,A.M.Ismail,T.J.Close,Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress,Plant Cell Environ.30(2007)410-421.
    [30]C.Wasternack,Jasmonates:an update on biosynthesis,signal transduction and action in plant stress response,growth and development,Ann.Bot.100(2007)681-697.
    [31]K.Kazan,Diverse roles of jasmonates and ethylene in abiotic stress tolerance,Trends Plant Sci.20(2015)219-229.
    [32]H.Ding,J.Lai,Q.Wu,S.Zhang,L.Chen,Y.Dai,C.Wang,J.Du,S.Xiao,C.Yang,Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response,Plant Sci.244(2016)1-7.
    [33]C.E.Valenzuela,O.Acevedo-Acevedo,G.S.Miranda,P.Vergara-Barros,L.Holuigue,C.R.Figueroa,P.M.Figueroa,Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root,J.Exp.Bot.67(2016)4209-4220.
    [34]Y.Chen,Y.Wang,J.Huang,C.Zheng,C.Cai,Q.Wang,C.A.Wu,Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway,Plant Sci.261(2017)1-9.
    [35]P.Ahmad,S.Rasool,A.Gul,S.A.Sheikh,N.A.Akram,M.Ashraf,A.M.Kazi,S.Gucel,Jasmonates:multifunctional roles in stress tolerance,Front.Plant Sci.7(2016)813.
    [36]Z.Wang,M.Gerstein,M.Snyder,RNA-Seq:a revolutionary tool for transcriptomics,Nat.Rev.Genet.10(2009)57-63.
    [37]H.C.Xiong,H.J.Guo,Y.D.Xie,L.S.Zhao,J.Y.Gu,S.R.Zhao,J.H.Li,L.X.Liu,RNA-Seq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflightinduced wheat mutant,Sci.Rep.7(2017)2731.
    [38]B.Wu,Y.N.Hu,P.J.Huo,Q.Zhang,X.Chen,Z.W.Zhang,Transcriptome analysis of hexaploid hulless oat in response to salinity stress,PLoS One 12(2017),e171451..
    [39]C.Meng,T.Y.Quan,Z.Y.Li,K.L.Cui,L.Yan,Y.Liang,J.L.Dai,G.M.Xia,S.W.Liu,Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat,BMC Genomics18(2017)24-37.
    [40]Q.Xie,J.Niu,X.Xu,L.Xu,Y.Zhang,B.Fan,X.Liang,L.Zhang,S.Yin,L.Han,De novo assembly of the Japanese lawngrass(Zoysia japonica Steud.)root transcriptome and identification of candidate unigenes related to early responses under salt stress,Front.Plant Sci.6(2015)610.
    [41]C.Trapnell,B.A.Williams,G.Pertea,A.Mortazavi,G.Kwan,M.J.Van Baren,S.L.Salzberg,B.J.Wold,L.Pachter,Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation,Nat.Biotechnol.28(2010)511-515.
    [42]J.H.Fu,J.F.Chu,X.H.Sun,J.D.Wang,C.Y.Yan,Simple,rapid,and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution,Anal.Sci.28(2012)1081-1087.
    [43]R.Li,C.Yu,Y.Li,T.W.Lam,S.M.Yiu,K.Kristiansen,J.Wang,SOAP2:an improved ultrafast tool for short read alignment,Bioinformatics 25(2009)1966-1967.
    [44]M.Kanehisa,S.Goto,KEGG:Kyoto encyclopedia of genes and genomes,Nucleic Acids Res.28(2000)27-30.
    [45]M.Kanehisa,Y.Sato,M.Kawashima,M.Furumichi,M.Tanabe,KEGG as a reference resource for gene and protein annotation,Nucleic Acids Res.44(2016)D457-D462.
    [46]M.Kanehisa,M.Furumichi,M.Tanabe,Y.Sato,K.Morishima,KEGG:new perspectives on genomes,pathways,diseases and drugs,Nucleic Acids Res.45(2017)D353-D361.
    [47]E.Goyal,S.K.Amit,R.S.Singh,A.K.Mahato,S.Chand,K.Kanika,Transcriptome profiling of the salt-stress response in Triticum aestivum cv.Kharchia Local,Sci.Rep.6(2016),27752..
    [48]P.Zhao,P.Liu,G.Yuan,J.Jia,X.Li,D.Qi,S.Chen,T.Ma,G.Liu,L.Cheng,New insights on drought stress response by global investigation of gene expression changes in sheepgrass(Leymus chinensis),Front.Plant Sci.7(2016)954-971.
    [49]M.Ziemann,A.Kamboj,R.M.Hove,S.Loveridge,A.El-Osta,M.Bhave,Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq,Acta Physiol.Plant.35(2013)1915-1924.
    [50]C.Liu,S.Li,M.C.Wang,G.M.Xia,A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line,Plant Mol.Biol.78(2012)159-169.
    [51]L.Zheng,Y.Meng,J.Ma,X.Zhao,T.Cheng,J.Ji,E.Chang,C.Meng,N.Deng,L.Chen,S.Shi,Z.Jiang,Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa,Front.Plant Sci.6(2015)678.
    [52]Y.M.Zhang,Z.S.Liu,A.Khan,Q.Lin,Y.Han,P.Mu,Y.G.Liu,H.S.Zhang,L.Y.Li,X.H.Meng,Z.F.Ni,M.M.Xin,Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat(Triticum aestivum L.),Sci.Rep.6(2016)21476-21485.
    [53]F.Takahashi,J.Tilbrook,C.Trittermann,B.Berger,S.J.Roy,M.Seki,K.Shinozaki,M.Tester,Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress,PLoS One 10(2015),e0133322..
    [54]M.Ashraf,P.J.C.Harris,Photosynthesis under stressful environments:an overview,Photosynthetica 51(2013)163-190.
    [55]I.M.Moller,P.E.Jensen,A.Hansson,Oxidative modifications to cellular components in plants,Annu.Rev.Plant Biol.58(2007)459-481.
    [56]G.M.Xia,F.N.Xiang,A.F.Zhou,H.A.Wang,H.M.Chen,Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevishi,Theor.Appl.Genet.107(2003)299-305.
    [57]S.I.Allakhverdiev,Y.Nishiyama,I.Suzuki,Y.Tasaka,N.Murata,Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress,Proc.Natl.Acad.Sci.U.S.A.96(1999)5862-5867.
    [58]S.I.Allakhverdiev,M.Kinoshita,M.Inaba,I.Suzuki,N.Murata,Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus,Plant Physiol.125(2001)1842-1853.
    [59]N.Sui,M.Li,K.Li,J.Song,B.S.Wang,Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L.enhances protection of photosystem II under high salinity,Photosynthetica 48(2010)623-629.
    [60]J.T.Zhang,H.Liu,J.Sun,B.Li,Q.Zhu,S.L.Chen,H.X.Zhang,Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth,PLoS One 7(2012)e30355.
    [61]F.Zhao,P.Qin,Protective effects of exogenous fatty acids on root tonoplast function against salt stress in barley seedlings,Environ.Exp.Bot.53(2005)215-223.
    [62]H.Weber,Fatty acid-derived signals in plants,Trends Plant Sci.7(2002)217-224.
    [63]R.Liechti,E.E.Farmer,Jasmonate biochemical pathway,Sci.Signal.2006(2006)1-4.
    [64]H.S.Seo,J.T.Song,J.J.Cheong,Y.H.Lee,Y.W.Lee,I.Hwang,J.S.Lee,Y.D.Choi,Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonate-regulated plant responses,Proc.Natl.Acad.Sci.U.S.A.98(2001)4788-4793.
    [65]N.C.Avanci,D.D.Luche,G.H.Goldman,M.H.Goldman,Jasmonates are phytohormones with multiple functions,including plant defense and reproduction,Genet.Mol.Res.9(2010)484-505.
    [66]T.D.Tsonev,G.N.Lazova,Z.G.Stoinova,L.P.Popova,Apossible role for jasmonic acid in adaptation of barley seedlings to salinity stress,J.Plant Growth Regul.17(1998)153-159.
    [67]Z.B.Qiu,J.L.Guo,A.J.Zhu,L.Zhang,M.M.Zhang,Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress,Ecotoxicol.Environ.Saf.104(2014)202-208.
    [68]R.H.Gao,K.Duan,G.M.Guo,Z.Z.Du,Z.W.Chen,L.Li,T.He,R.J.Lu,J.H.Huang,Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage,Int.J.Genomics 2013(2013)1-19.
    [69]R.Radhakrishnan,I.J.Lee,Regulation of salicylic acid,jasmonic acid and fatty acids in cucumber(Cucumis sativus L.)by spermidine promotes plant growth against salt stress,Acta Physiol.Plant.35(2013)3315-3322.
    [70]H.Ellouzi,K.Ben Hamed,I.Hernandez,J.Cela,M.Muller,C.Magne,C.Abdelly,S.Munne-Bosch,A comparative study of the early osmotic,ionic,redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity,Planta 240(2014)1299-1317.
    [71]H.Wu,H.Y.Ye,R.F.Yao,T.Zhang,L.Z.Xiong,OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice,Plant Sci.232(2015)1-12.
    [72]H.Zhang,Q.Zhang,H.Zhai,Y.Li,X.F.Wang,Q.C.Liu,S.Z.He,Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress,Sci.Rep.7(2017)40819.
    [73]J.Zhao,L.C.Davis,R.Verpoorte,Elicitor signal transduction leading to production of plant secondary metabolites,Biotechnol.Adv.23(2005)283-333.
    [74]L.Pauwels,D.Inzé,A.Goossens,Jasmonate-inducible gene:what does it mean?Trends Plant Sci.14(2009)87-91.
    [75]N.De Geyter,A.Gholami,S.Goormachtig,A.Goossens,Transcriptional machineries in jasmonate-elicited plant secondary metabolism,Trends Plant Sci.17(2012)349-359.
    [76]F.Liu,H.Jiang,S.Ye,W.P.Chen,W.Liang,Y.Xu,B.Sun,J.Sun,Q.Wang,J.D.Cohen,C.Li,The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition,defense gene expression and indole glucosinolate biosynthesis,Cell Res.20(2010)539-552.
    [77]M.Francisco,B.Joseph,H.Caligagan,B.Li,J.A.Corwin,C.Lin,R.Kerwin,M.Burow,D.J.Kliebenstein,The defense metabolite,allyl glucosinolate,modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway,Front.Plant Sci.7(2016)774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700