Applicability of Kinetic Models for In Situ Combustion Processes with Different Oil Types
详细信息   
摘要
The in situ combustion (ISC) process is of interest as an enhanced oil recovery method because it is an alternative to traditional steam-based processes for heavy oil and bitumen recovery. ISC is a technique applicable outside the window of reservoir conditions deemed appropriate for steam injection (such as deeper and thinner reservoirs). The process involves complex chemical reactions and physical recovery mechanisms, and predicting the likelihood of successful ISC in field applications remains challenging. This paper describes a numerical investigation of the capability of different ISC kinetic models to predict the combustion behaviors of different types of oils (light oil, heavy oil, and bitumen). Three kinetic models (of Coats, Crookston, and Belgrave) were selected from literature and compared using data from four published combustion-tube experiments. The comparison procedure is as follows: (1) validate the numerical modeling of each kinetic model by matching the selected experimental results or duplicating the numerical results found in published literature; (2) adjust fluid viscosities and densities to match the fluid properties of each experiment;and (3) use each validated kinetic model to predict the performance of the other experiments without further tuning the kinetic parameters. The knowledge derived from the experiments provides guidance for choosing the appropriate kinetic model when no other data are available and for the preliminary design and screening study of a potential ISC project.