Use of solar energy for biodiesel production and use of biodiesel waste as a green reaction solvent
详细信息   
摘要
Due to the depletion of fossil fuel energy sources, new alternative energy sources are becoming prevalent in our society. Biodiesel has been recognized as an attractive replacement for depleting energy sources since it is produced mainly from vegetable oils and animal fats, is a renewable resource, and is non-toxic. The synthesis of biodiesel involves heating a triglyceride with methanol (or ethanol) under strongly basic conditions. Since fossil fuels are used for electrical energy in the United States, the amount of electricity required to heat this reaction requires the use of non-renewable resources. An effective means for minimizing the amount of electricity needed to drive chemical reactions to completion is proposed through the use of solar parabolic reflectors. In this study, a technique was developed to incorporate recently proposed solar reflectors developed from satellite dishes into the synthetic procedure for biodiesel. Through the use of our technique, the generation of carbon dioxide waste during biodiesel production has been eliminated. Another area of environmental concern in biodiesel production is the generation of waste by-products (glycerol). A technique has been developed that incorporates the use of recovered biodiesel waste glycerol as the solvent system for Wolff-Kishner reduction reactions. The reduction of isobutyryl chloride has been performed successfully using biodiesel waste glycerol as the solvent system and solar irradiation as the heat source for the chemical reaction. Graphical Abstract (I) Solar biodiesel synthesis. (II) Solar Wolff-Kishner reduction reaction using recovered biodiesel waste as the reaction solvent. (I) Solar biodiesel synthesis. (II) Solar Wolff-Kishner reduction reaction using recovered biodiesel waste as the reaction solvent.