颗粒形状对断层摩擦强度影响的数值试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Experiments on the Effects of Particle Shape on Frictional Strength of Faults
  • 作者:任树林 ; 曾亚武 ; 赵凯
  • 英文作者:REN Shulin;ZENG Yawu;ZHAO Kai;School of Civil Engineering, Wuhan University;
  • 关键词:颗粒流 ; 断层破碎带 ; 摩擦强度 ; 形状系数 ; 残余摩擦系数
  • 英文关键词:particle flow;;fault fracture zone;;frictional strength;;shape coefficient;;residual friction coefficient
  • 中文刊名:FSJS
  • 英文刊名:Journal of Water Resources and Architectural Engineering
  • 机构:武汉大学土木建筑工程学院;
  • 出版日期:2019-06-15
  • 出版单位:水利与建筑工程学报
  • 年:2019
  • 期:v.17;No.85
  • 基金:国家自然科学基金项目(41772308)
  • 语种:中文;
  • 页:FSJS201903007
  • 页数:7
  • CN:03
  • ISSN:61-1404/TV
  • 分类号:45-50+74
摘要
为了研究断层破碎带颗粒形状对断层摩擦强度的影响,采用二维颗粒流程序,建立以不同形状颗粒为基本单元的断层破碎带数值试验模型,并采用形状系数对颗粒形状进行定量描述,研究了在不同法向应力和颗粒级配条件下形状系数对摩擦强度的影响。研究结果表明,异形颗粒间的咬合自锁作用大于圆形颗粒,致使异形颗粒填充的断层破碎带摩擦强度高于圆形颗粒填充的断层破碎带摩擦强度;断层破碎带残余摩擦系数与填充颗粒的形状系数之间有较好的线性关系。
        In order to quantify the influences of particle properties of fault fracture zone on the frictional strength of faults, a numerical model of fault fracture zone based on irregular particles was established by using PFC2D. The shape coefficient is used to quantitatively describe the shape of the irregular particles. Effects of shape coefficient on frictional strength under different normal stress and particle size distributions is discussed. The results show that the interlocking effect of irregular particles is larger than that of circular particles, which results in the frictional strength of irregular particle assemblages being higher than that of circular assemblage; And there is a good linear relationship between the residual friction coefficient and the shape coefficient.
引文
[1] 黄福明.断层力学概论[M].北京:地震出版社,2013:2-82.
    [2] Guo Y G,Morgan J K.Influence of normal stress and grain shape on granular friction:Results of discrete element simulations[J].Journal of Geophysical Research,2004,109(B12):305.
    [3] Summers R,Byerlee J.A note on the effect of fault gouge composition on the stability of frictional sliding[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1977,14(3):155-160.
    [4] Marone C,Scholz C H.The depth of seismic faulting and the upper transition from stable to unstable slip regimes[J].Geophys.res.lett,1988,15(6):621-624.
    [5] 何昌荣,Verberne B A,Spiers C J.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示[J].岩石力学与工程学报,2011,30(1):113-131.
    [6] Mair K,Frye K M,Marone C.Influence of grain characteristics on the friction of granular shear zones[J].Journal of Geophysical Research Solid Earth,2002,107(B10):ECV-1-ECV 4-9.
    [7] Anthony J L,Marone C.Influence of particle characteristics on granular friction[J].Journal of Geophysical Research Solid Earth,2005,110(B8).
    [8] Morgan J K,Boettcher M S.Numerical simulations of granular shear zones using the distinct element method:1.Shear zone kinematics and the micromechanics of localization[J].Journal of Geophysical Research Solid Earth,1999,104(B2):2703-2719.
    [9] Morgan J K.Numerical simulations of granular shear zones using the distinct element method 2.Effects of particle size distribution and interparticle friction on mechanical behavior[J].Journal of Geophysical Research Solid Earth,1999,104(B2):2721-2732.
    [10] Guo Y,Morgan J K.Fault gouge evolution and its dependence on normal stress and rock strength—results of discrete element simulations:Gouge zone micromechanics[J].Journal of Geophysical Research Solid Earth,2008,113(B8).
    [11] Guo Y,Morgan J K.Fault gouge evolution and its dependence on normal stress and rock strength—results of discrete element simulations:Gouge zone properties[J].Journal of Geophysical Research Solid Earth,2007,112(B10403).
    [12] 杜欣,曾亚武,高睿,等.用离散元方法研究颗粒外形对摩擦机理的影响[J].西南交通大学学报,2012,47(2):252-257.
    [13] 孔亮,彭仁.颗粒形状对类砂土力学性质影响的颗粒流模拟[J].岩石力学与工程学报,2011,30(10):2112-2119.
    [14] Cundall P A,Strack O D L.A discrete numerical model for granular assemblies[J].Geotechnique,1979,29(1):47-65.
    [15] 张坤勇,李威,罗兴军,等.基于PFC2D的砂土原生各向异性微观机理数值试验[J].岩土工程学报,2017,39(3):518-524.
    [16] 周健,史旦达,贾敏才,等.砂土单调剪切力学性状的颗粒流模拟[J].同济大学学报(自然科学版),2007,35(10):1180-1180.
    [17] 史旦达.单调与循环加荷条件下砂土力学性质细观模拟[D].上海:同济大学,2007.
    [18] 张辉,于龙,王博,等.砂土中埋设管线竖向抗拔特性研究[J].水利与建筑工程学报,2015,13(5):156-160.
    [19] 张羽中,舒赣平.颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J].岩土工程学报,2009,31(8):1281-1286.
    [20] 赵凯,曾亚武,曾超.基于颗粒流法含软弱结构面岩质边坡稳定性分析[J].科学技术与工程,2018,18(1):97-102.
    [21] 曾超,曾亚武,赵凯.节理接触面积和厚度对应力波传播特性影响的颗粒流数值模拟[J].水利与建筑工程学报,2018,16(1):134-139.
    [22] Frye K M,Marone C.The effect of particle dimensionality on granular friction in laboratory shear zones[J].Geophysical Research Letters,2002,29(19):22-1-22-4.
    [23] Knuth M,Marone C.Friction of sheared granular layers:Role of particle dimensionality,surface roughness,and material properties[J].Geochemistry Geophysics Geosystems,2007,8(3).