减阻工况下壁面周期扰动对湍流边界层多尺度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE EFFECT OF PERIODIC PERTURBATION ON MULTI SCALES IN A TURBULENT BOUNDARY LAYER FLOW UNDER DRAG REDUCTION
  • 作者:王帅杰 ; 崔晓通 ; 白建侠 ; 唐湛棋 ; 姜楠
  • 英文作者:Wang Shuaijie;Cui Xiaotong;Bai Jianxia;Tang Zhanqi;Jiang Nan;Department of Mechanics, School of Mechanical Engineering, Tianjin University;Department of Mathematics, Tianjin University Renai College;Tianjin Key Laboratory of Modern Engineering Mechanics;
  • 关键词:湍流边界层 ; 主动控制 ; 压电振子 ; 多尺度 ; 减阻
  • 英文关键词:turbulent boundary layer;;active control;;piezoelectric oscillator;;multi scales;;drag reduction
  • 中文刊名:LXXB
  • 英文刊名:Chinese Journal of Theoretical and Applied Mechanics
  • 机构:天津大学机械工程学院力学系;天津大学仁爱学院数学教学部;天津市现代工程力学重点实验室;
  • 出版日期:2019-02-18 14:14
  • 出版单位:力学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(11732010,11572221,11872272,U1633109,11802195);; 国家重点研发计划(2018YFC0705300)资助项目
  • 语种:中文;
  • 页:LXXB201903010
  • 页数:8
  • CN:03
  • ISSN:11-2062/O3
  • 分类号:143-150
摘要
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160 Hz),使用单丝边界层探针对压电振子自由端下游2 mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.
        This study reports the drag reduction of a turbulent boundary layer flow under the active control by a pair of wall-mounted piezoelectric oscillators with different working frequency and amplitude. Under the maximum local skin drag reduction case of 80 V and 160 Hz, a miniature boundary layer hot-wire probe of single sensor was used to measure velocity signals at the streamwise location 2 mm downstream of the oscillators. The time series of streamwise velocity signals at different wall normal positions were obtained. By comparing the turbulent fluctuations at different scales in the perturbed cases and canonical turbulent boundary layer flow, it was found that the perturbation produced by piezoelectric oscillators have an effect on the near-wall region, which attenuates the large-scale intensity and enhances the small-scale turbulence. Meanwhile, the outer layer is insensitive to the oscillator perturbation. Furthermore, conditional average of small-scale fluctuations shows that the impact of piezoelectric oscillators on small-scale fluctuations is not uniform in the condition of the large scales. The small-scale amplitude is increased more obviously as the large-scale fluctuations are positive than that the large-scale fluctuations are negative. It indicates that the current periodic perturbation dominantly modifies the high skin friction events by breaking the large-scale high-speed sweeping fluids into small-scale structures,which results in the local skin drag reduction.
引文
1 Robinson SK.Coherent motions in the turbulent boundary layer.Annual Review of Fluid Mechanics,1991,23(1):601-639
    2 Adrian RJ.Hairpin vortex organization in wall turbulence.Physics of Fluids,2007,19(4):041301
    3许春晓.壁湍流相干结构和减阻控制机理.力学进展,2015,45(3):111-139(Xu Chunxiao.Coherent structures and drag reduction mechanism in wall turbulence.Advances in Mechanics,2015,45(3):111-139(in Chinese))
    4 Kim KC,Adrian RJ.Very large-scale motion in the outer layer.Physics of Fluids,1999,11(2):417-422
    5 Tomkins CD,Adrian RJ.Spanwise structure and scale growth in turbulent boundary layers.Journal of Fluid Mechanics,2003,490:37-74
    6 Hutchins N,Marusic I.Evidence of very long meandering features in the logarithmic region of turbulent boundary layers.Journal of Fluid Mechanics,2007,579:1-28
    7 Tang ZQ,Jiang N,Schroder A,et al.Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow.Acta Mechanica Sinica,2012,28(3):572-582
    8 Hutchins N,Marusic I.Large-scale influences in near-wall turbulence.Philosophical Transactions of the Royal Society A,2007,365(1852):647-664
    9 Mathis R,Hutchins N,Marusic I.Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers.Journal of Fluid Mechanics,2009,628:311-337
    10 Marusic I,Mathis R,Hutchins N.Predictive model for wall-bounded turbulent flow.Science,2010,329(5988):193-196
    11 Ganapathisubramani B,Hutchins N,Monty JP,et al.Amplitude and frequency modulation in wall turbulence.Journal of Fluid Mechanics,2012,712:61-91
    12 Guala M,Metzger M,McKeon BJ.Interactions within the turbulent boundary layer at high Reynolds number.Journal of Fluid Mechanics,2012,666:573-604
    13 Hutchins N,Monty JP,Ganapathisubramani B,et al.Threedimensional conditional structure of a high-Reynolds-number turbulent boundary layer.Journal of Fluid Mechanics,2011,673:255-285
    14 Marusic I,Talluru KM,Hutchins N.Controlling the large-scale motions in a turbulent boundary layer//Zhou Y,Liu Yang,Huang LX,et al eds,Fluid-Structure-Sound Interactions and Control.Heidelberg:Springer publishing Company,2014:17-26
    15 Kasagi N,Suzuki Y,Fukagata K.Micro electromechanical systemsbased feedback control of turbulence for skin friction reduction.Annual Review of Fluid Mechanics,2009,41:231-251
    16 Kim J.Physics and control of wall turbulence for drag reduction.Philosophical Transactions of the Royal Society A,2011,369(1904):1396-1411
    17 Gad-El-Hak M.Flow Control:Passive,Active,and Reactive Flow Management.Cambridge:Cambridge University Press,2000
    18 Quadrio M,Ricco P.Critical assessment of turbulent drag reduction through spanwise wall oscillations.Journal of Fluid Mechanics,2004,521:251-271
    19 Skote M.Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity.Physics of Fluids,2011,23(8):061703
    20 Jacobson SA,Reynolds WC.Active control of streamwise vortices and streaks in boundary layers.Journal of Fluid Mechanics,1998,360:179-211
    21 Bai HL,Zhou Y,Zhang WG,et al.Active control of turbulent boundary layer based on local surface perturbation.Journal of Fluid Mechanics,2014,750,316-354
    22张浩,郑小波,姜楠.基于单个压电振子的湍流边界层主动控制.力学学报,2016,48(3):536-544(Zhang Hao,Zheng Xiaobo,Jiang Nan.Active control of turbulent boundary layer based on a single piezoelectric oscillator.Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):536-544(in Chinese))
    23 Zheng XB,Jiang N,Zhang H.Predetermined control of turbulent boundary layer with a piezoelectric oscillator.Chinese Physics B,2016,25(1):014703
    24 Qiao ZX,Zhou Y,Wu Z.Turbulent boundary layer under the control of different schemes.Philosophical Transactions of the Royal Society A,2017,473(2202):20170038
    25 Bai JX,Jiang N,Zheng XB,et al.2018.Active control of wallbounded turbulence for drag reduction with piezoelectric oscillators.Chinese Physics B,2018,27(7):074701
    26 Zheng XB,Jiang N.Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer.Chinese Physics B,2015,24(6):064702
    27郭爱东,姜楠.湍流多尺度相干结构复涡黏模型的实验研究.力学学报,2010,42(2):159-168(Guo Aidong,Jiang Nan.Experimental research on complex eddy viscosity modeling of multi-scale coherent structures in wall turbulence.Chinese Journal of Theoretical and Applied Mechanics,2010,42(2):159-168(in Chinese))
    28 Tang ZQ,Jiang N,Zheng XB,et al.Bursting process of largeand smallscale structures in turbulent boundary layer perturbed by a cylinder roughness element.Experiments in Fluids,2016,57:79
    29 Tang ZQ,Jiang N.Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall mounted cylindrical element.Physics of Fluids,2018,30(5):055103
    30 Tian HP,Zhang JX,Jiang N,et al.Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow.Experimental Thermal and Fluid Science,2015,69:27-37
    31管新蕾,王维,姜楠.高聚物减阻溶液对壁湍流输运过程的影响.物理学报,2015,64(9):397-405(Guan Xin Lei,Wang Wei,Jiang Nan.Influence of polymer additives on the transport process in drag reducing turbulent flow.Acta Physica Sinica,2015,64(9):397-405(in Chinese))
    32苏健,田海平,姜楠.逆向涡对超疏水壁面减阻影响TRPIV实验研究.力学学报,2016,48(5):1033-1039(Su Jian,Tian Haiping,Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces.Chinese Journal of Theoretical and Applied Mechanics,2016,48(5):1033-1039(in Chinese))
    33王鑫,李山,唐湛棋等.沟槽对湍流边界层中展向涡影响的实验研究.实验流体力学,2018,32(1):55-63(Wang Xin,Li Shan,Tang Zhanqi,et al.An experimental study on riblet-induced spanwise vortices in turbulent boundary layers.Journal of Experiments in Fluid Mechanics,2018,32(1):55-63(in Chinese))
    34 Tang ZQ,Jiang N.Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance.Science China,2012,55(1):118-124
    35 Feng LH,Wang JJ,Pan C.Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control.Physics of Fluids,2011,23:014106
    36 Farge M.Wavelet transforms and their application to turbulence.Annual Review of Fluid Mechanics.1992,24:395-457
    37 Balakumar BJ,Adrian RJ.Large-and very-large-scale motions in channel and boundary-layer flows.Philosophical Transactions of the Royal Society A,2007,365(1852):665-681
    38 Baars WJ,Talluru KM,Hutchins N,et al.Wavelet analysis of wall turbulence to study largescale modulation of small scales.Experiment in Fluids,2015,56(10):188