木质纤维素衍生平台化学品制备液态烷烃的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the catalytic conversion of lignocellulosic derived platform chemicals into liquid alkanes
  • 作者:石宁 ; 唐文勇 ; 唐石云 ; 葛武杰 ; 刘云花 ; 黄伦昌
  • 英文作者:SHI Ning;TANG Wenyong;TANG Shiyun;GE Wujie;LIU Yunhua;HUANG Lunchang;School of Chemical Engineering, Guizhou Institute of Technology;College of Information Engineering, Guizhou Institute of Technology;
  • 关键词:生物质 ; 长链烷烃 ; 平台化学品 ; 羟醛缩合 ; 烷基化 ; 加氢脱氧 ; 液体燃料
  • 英文关键词:biomass;;long chain alkanes;;platform compounds;;aldol condensation;;alkylation;;hydrodeoxygenation;;liquid fuels
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:贵州理工学院化学工程学院;贵州理工学院信息工程学院;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:贵州理工学院学术新苗培养及探索创新项目(黔科合平台人才[2017]5789-08);; 贵州理工学院高层次人才启动项目
  • 语种:中文;
  • 页:HGJZ201907010
  • 页数:14
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:90-103
摘要
液态烷烃C5+是汽油、柴油、航空燃油等当前社会的运输燃料的主要成分。本文综述了利用木质纤维素衍生平台化学品制备液体燃料的研究进展,着重总结了生物质衍生平台化学品通过碳链增长得到长链含氧化合物,然后经过加氢脱氧(HDO)得到C_(7+)液体烷烃的技术研究进展。木质纤维素衍生平台化学品包括山梨醇、糠醛、5-羟甲基糠醛(HMF)、环戊酮、甲基呋喃、酚类、丙酮、丁醇、乙醇、乙酰丙酸、γ-戊内酯等。其中,糠醛、5-羟甲基糠醛和环戊酮在碱性催化剂作用下能与其他羰基化合物发生羟醛缩合反应实现碳链增长;甲基呋喃、苯类及苯酚类衍生物可以在强酸催化作用下通过烷基化/羟烷基化反应实现碳链增长;丙酮能与乙醇、丁醇发生α-烷基化反应实现碳链增长;乙酰丙酸可以转化为戊酸、丁烯或当归内酯,再分别通过酮基化反应、烯烃齐聚反应和加成反应实现碳链增长。诸多利用生物质衍生物化学品制备长链烷烃的路径中,利用5-羟甲基糠醛和甲基呋喃制备长链烷烃的技术路线存在路径过长、原料不易获取的问题;利用环戊酮和苯酚类物质能够得到高密度长链环烷烃,是一条有竞争力的路线;糠醛和乙酰丙酸易于从生物质中大规模制取,且利用糠醛和乙酰丙酸制备长链烷烃的反应路径短,较易实现工业应用。
        Liquid alkanes C_(5+) are the main components of transportation fuels such as gasoline, diesel and jet fuel. This review focused on the research progress in the preparation of liquid fuels from lignocellulosic derived platform chemicals, with emphasis on the development of the synthesis of C_(7+) liquid alkanes by hydrodeoxygenation(HDO) of the long chain oxygenated chemicals formed by carbonchain growth of biomass derived platform chemicals. The lignocellulosic derived platform chemicals include sorbitol, furfural, 5-hydroxymethylfurfural(HMF), cyclopentanone, methylfuran, phenols, acetone,butanol,ethanol,levulinicacid,γ-valerolactoneandsoon.Amongthem,furfural/5-hydroxymethylfurfural/cyclopentanone could form C—C bond with other carbonyl compound through aldol condensation reaction with the aid of alkaline catalyst; methyl furan/benzene/phenol derivatives form C—C bond by alkylation/hydroxyalkylation under the catalysis of strong acidic acid; acetone could react with ethanol and butanol through α-alkylation reaction of with to achieve carbon chain growth; while levulinic acid can be transformed to pentanoic acid; butane or angelica lactone, which could undergo ketonization, olefin oligomerization or polymerization to achieve simultaneous C—C coupling. Among many ways to prepare long-chain alkanes from biomass derivative chemicals, the technical route of preparing long-chain alkanes from 5-hydroxymethyl furfural and methyl furan is too long and the raw materials are not easy to obtain; using cyclopentanone and phenol to obtain high-density long-chain alkanes is a competitive route; furfural and acetylpropionic acid are easy to regulate from substances. The process of preparing long-chain alkanes from furfural and levulinic acid is short and easy to realize industrial application.
引文
[1] DE S, SAHA B, LUQUE R. Hydrodeoxygenation processes:advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels[J]. Bioresoure Technology, 2015, 178:108-118.
    [2] BOHRE A, DUTTA S, SAHA B, et al. Upgrading furfurals to drop-in biofuels:an overview[J]. ACS Sustainable Chemistry&Engineering,2015, 3:1263-1277.
    [3] HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J].Catalysis Today, 2006, 111(1/2):119-132.
    [4] CHHEDA J N, HUBER G W, DUMESIC J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie:International Edition, 2007, 46(38):7164-7183.
    [5] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900):417-421.
    [6] HAN J, SEN S M, ALONSO D M, et al. A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels[J]. Green Chemistry, 2014, 16:653-661.
    [7] BOZELL J J. Connecting biomass and petroleum processing with a chemical bridge[J]. Science, 2010, 329(5991):522-523.
    [8] DUMESIC J A, HUBER G W, CHHEDA J N, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727):1446-1450.
    [9]石宁,刘琪英,王铁军,等.一步催化转化纤维素制备化学品的研究进展[J].新能源进展, 2014, 2(4):245-253.SHI N, LIU Q Y, WANG T J, et al. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advances in New and Renewable Energy, 2014, 2(4):245-253.
    [10] YAN K, WU G S, LAFLEUR T, et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable&Sustainable Energy Reviews, 2014, 38:663-676.
    [11] WEST R M, LIU Z Y, PETER M, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system[J]. Journal of Molecular Catalysis A:Chemical, 2008,296(1/2):18-27.
    [12] FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie:International Edition, 2006, 45(31):5161-5163.
    [13] SHROTRI A, KOBAYASHI H, FUKUOKA A. Cellulose depolymerization over heterogeneous catalysts[J]. Accounts of Chemical Research, 2018, 51(3):761-768.
    [14] ZHANG J, LI J B, WU S B, et al. Advances in the catalytic production and utilization of sorbitol[J]. Industrial&Engineering Chemistry Research, 2013, 52(34):11799-11815.
    [15] DE BEECK B O, DUSSELIER M, GEBOERS J, et al. Direct catalytic conversion of cellulose to liquid straight-chain alkanes[J]. Energy&Environmental Science, 2015, 8(1):230-240.
    [16]陈伦刚,刘勇,张兴华,等.纤维素催化转化制备C5/C6烷烃燃料的反应与催化体系的研究进展[J].林产化学与工业, 2017, 37(2):22-34.CHEN L G, LIU Y, ZHANG X H, et al. Progress on reaction and catalyst for production of C5/C6 alkane fuels from cellulose by catalytic conversion[J]. Chemistry and Industry of Forest Products,2017, 37(2):22-34.
    [17] HUBER G W, CORTRIGHT R D, DUMESIC J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J].Angewandte Chemie:International Edition, 2004, 43(12):1549-1551.
    [18] WEST R M, TUCKER M H, BRADEN D J, et al. Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports[J]. Catalysis Communications,2009, 10(13):1743-1746.
    [19] LI N, TOMPSETT G A, HUBER G W. Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5and C6carbohydrates over Pt/zirconium phosphate catalysts[J].ChemSusChem, 2010, 3(10):1154-1157.
    [20] ZHANG Q, JIANG T, LI B, et al. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41[J]. ChemCatChem, 2012, 4(8):1084-1087.
    [21] ZHANG Q, WANG T, XU Y, et al. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5catalyst in water[J]. Energy Conversion and Management, 2014, 77:262-268.
    [22] VILCOCQ L, CABIAC A, ESPECEL C, et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system[J]. Journal of Catalysis, 2014, 320:16-25.
    [23] LI N, HUBER G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3:identification of reaction intermediates[J]. Journal of Catalysis, 2010, 270(1):48-59.
    [24] CHEN K, TAMURA M, YUAN Z, et al. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the IrReOx/SiO2catalyst combined with H-ZSM-5[J]. ChemSusChem,2013, 6(4):613-621.
    [25] LIU S, TAMURA M, NAKAGAWA Y, et al. One-pot conversion of cellulose into n-hexane over the Ir-ReOx SiO2catalyst combined with HZSM-5[J]. ACS Sustainable Chemistry&Engineering, 2014, 2(7):1819–1827.
    [26] MURATA K, LIU Y, INABA M, et al. Hydrocracking of biomassderived materials into alkanes in the presence of platinum-based catalyst and hydrogen[J]. Catalysis Letters, 2010, 140:8-13.
    [27] CLIMENT M J, CORMA A, IBORRA S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J].Green Chemistry, 2014, 16(2):516-547.
    [28] NAKAGAWA Y, LIU S, TAMURA M, et al. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes[J]. ChemSusChem, 2015, 8(7):1114-1132.
    [29]谢嘉维,张香文,谢君健,等.由生物质合成高密度喷气燃料[J].化学进展, 2018, 30(9):1424-1433.XIE J W, ZHANG X W, XIE J J, et al. Synthesis of high-density jet fuels from biomass[J]. Progress in Chemistry, 2018, 30(9):1424-1433.
    [30]闫少康,孙绍晖,马春松,等.生物质基含氧化合物化学催化法制备长链烷烃的研究进展[J].化工进展, 2016, 35(5):1377-1386.YAN S K, SUN S H, MA C S, et al. Advances on chemocatalytic transformation of biomass-derived oxygenated compounds into longchain hydrocarbons[J]. Chemical Industry and Engineering Progress,2016, 35(5):1377-1386.
    [31] MAMMAN A S, LEE J M, KIM Y C, et al. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuels Bioproducts&Biorefining,2008, 2(5):438-454.
    [32] ROSATELLA A A, SIMEONOV S P, FRADE R F M, et al. 5-Hydroxymethylfurfural(HMF)as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chemistry,2011, 13(4):754-793.
    [33] SAHA B, ABU-OMAR M M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry,2014, 16(1):24-38.
    [34] DUTTA S, PAL S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels:combined solventnanocatalysis approach for biorefinary[J]. Biomass&Bioenergy, 2014,62:182-197.
    [35] KUCHEROV F A, ROMASHOV L V, GALKIN K I, et al. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks[J]. ACS Sustainable Chemistry&Engineering, 2018, 6(7):8064-8092.
    [36] WEST R M, LIU Z Y, PETER M, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates[J].ChemSusChem, 2008, 1(5):417-424.
    [37] XING R, SUBRAHMANYAM A V, OLCAY H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11):1933-1946.
    [38] FABA L, DíAZ E, ORDó?EZ S. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides[J]. Applied Catalysis B:Environmental, 2012, 113/114:201–211.
    [39] SADABA I, OJEDA M, MARISCAL R, et al. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):638-648.
    [40] FABA L, DíAZ E, ORDó?EZ S. Performance of bifunctional Pd/Mx Ny O(M=Mg, Ca; N=Zr, Al)catalysts for aldolization–hydrogenation of furfural–acetone mixtures[J]. Catalysis Today, 2011,164(1):451–456.
    [41] FABA L, DIAZ E, ORDó?EZ S. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis[J]. ChemSusChem, 2014, 7(10):2816-2820.
    [42] FABA L, DIAZ E, ORDó?EZ S. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons[J]. ChemSusChem,2013, 6(3):463-473.
    [43] BARRETT C J, CHHEDA J N, HUBER G W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J]. Applied Catalysis B:Environmental, 2006, 66(1/2):111-118.
    [44] XU W J, LIU X H, REN J W, et al. A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation[J]. Catalysis Communications, 2010, 11(8):721-726.
    [45] XIA Q N, CUAN Q, LIU X H, et al. Pd/NbOPO4multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J]. Angewandte Chemie:International Edition, 2014, 53(37):9755-9760.
    [46] YANG J F, LI N, LI S S, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions[J]. Green Chemistry, 2014, 16(12):4879-4884.
    [47] YANG J F, LI N, LI G Y, et al. Solvent-free synthesis of C10and C11branched alkanes from furfural and methyl isobutyl ketone[J].ChemSusChem, 2013, 6(7):1149-1152.
    [48] PHOLJAROEN B, LI N, YANG J F, et al. Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone[J].Industrial&Engineering Chemistry Research, 2014, 53(35):13618-13625.
    [49] LIANG G, WANG A, ZHAO X, et al. Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO[J]. Green Chemistry, 2016, 18:3430-3438.
    [50] XU J L, LI L, LI G Y, et al. Synthesis of renewable C8–C10alkanes with angelica lactone and furfural from carbohydrates[J]. ACS Sustainable Chemistry&Engineering, 2018, 6(5):6126-6134.
    [51]马隆龙,石宁,王铁军,等.一种利用糠醛类化合物与环酮制备C10~C18长链环烷烃的方法:CN201410226059.2[P]. 2014-09-17.MA L L, SHI N, WANG T J, et al. One method for preparing C10-C18long-chain cycloalkanes from furfural compounds and cycloketones:CN201410226059.2[P]. 2014-09-17.
    [52] LIU Q, ZHANG C, SHI N, et al. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones[J].RSC Advances, 2018, 8(25):13686-13696.
    [53] HRONEC M, FULAJTAROVA K. Selective transformation of furfural to cyclopentanone[J]. Catalysis Communications, 2012, 24:100-104.
    [54] HRONEC M, FULAJTAROVA K, LIPTAJ T. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone[J]. Applied Catalysis A:General, 2012, 437:104-111.
    [55] HRONEC M, FULAJTAROVA K, MICUSIK M. Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone[J].Applied Catalysis A:General, 2013, 468:426-431.
    [56] YANG J F, LI N, LI G Y, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chemical Communications, 2014, 50(20):2572-2574.
    [57] YANG J, LI S, LI N, et al. Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal[J]. Industrial&Engineering Chemistry Research, 2015, 54(47):11825-11837.
    [58] WANG W, LI N, LI G, et al. Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose[J]. ACS Sustainable Chemistry&Engineering, 2017, 5:1812-1817.
    [59] CORMA A, DE LA TORRE O, RENZ M. High-quality diesel from hexose-and pentose-derived biomass platform molecules[J].ChemSusChem, 2011, 4(11):1574-1577.
    [60] CORMA A, DE LA TORRE O, RENZ M, et al. Production of highquality diesel from biomass waste products[J]. Angewandte Chemie:International Edition, 2011, 50(10):2375-2378.
    [61] CORMA A, DE LA TORRE O, RENZ M. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process:catalysts and process variables[J]. Energy&Environmental Science,2012, 5(4):6328-6344.
    [62] LI S S, LI N, LI G Y, et al. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose[J]. Catalysis Today,2014, 234:91-99.
    [63] LI G Y, LI N, WANG X K, et al. Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose[J]. Energy&Fuels, 2014, 28(8):5112-5118.
    [64] LI G Y, LI N, LI S S, et al. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan[J]. Chemical Communications,2013, 49(51):5727-5729.
    [65] LI G Y, LI N, WANG Z Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. ChemSusChem,2012, 5(10):1958-1966.
    [66] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel with the2-methylfuran, butanal and acetone derived from lignocellulose[J].Bioresource Technology, 2013, 134:66-72.
    [67] WANG W, LI N, LI S S, et al. Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates[J]. Green Chem., 2016, 18:1218-1223.
    [68] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβunder mild conditions[J]. Green Chemistry, 2014, 16(2):594-599.
    [69] DENG Q, HAN P, XU J, et al. Highly controllable and selective hydroxyalkylation alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel[J]. Chemical Engineering Science,2015, 138:239-243.
    [70] LI S S, LI N, LI G Y, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B:Environmental, 2015, 170-171:124–134.
    [71] ZHANG X, DENG Q, HAN P, et al. Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2‐methylfuran and ketone to high‐density biofuel[J]. AIChE Journal, 2017, 63(2):680-688.
    [72] ZHAO C, CAMAIONI D M, LERCHER J A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes[J]. Journal of Catalysis, 2012, 288 92-103.
    [73] LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21):11559-11624.
    [74] CHENG F, BREWER C E. Producing jet fuel from biomass lignin:Potential pathways to alkyl-benzenes and cycloalkanes[J]. Renewable and Sustainable Energy Reviews, 2017, 72:673-722.
    [75] ZHOU X Y, RAUCHFUSS T B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent[J]. ChemSusChem, 2013, 6(2):383-388.
    [76] ARIAS K S, CLIMENT M J, CORMA A, et al. Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream[J]. Energy&Environmental Science, 2015, 8:317-331.
    [77] NIE G K, ZHANG X W, HAN P J, et al. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization[J]. Chemical Engineering Science, 2017, 158:64–69.
    [78] ANBARASAN P, BAER Z C, SREEKUMAR S, et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J].Nature, 2012, 491(7423):235-239.
    [79] XU G, LI Q, FENG J, et al. Direct alpha-alkylation of ketones with alcohols in water[J]. ChemSusChem, 2014, 7(1):105-109.
    [80] WANG Y, PENG M, ZHANG J, et al. Selective production of phaseseparable product from a mixture of biomass-derived aqueous oxygenates[J]. Nature Communications, 2018, 9(1):5183.
    [81] KANG S, FU J, ZHANG G. From lignocellulosic biomass to levulinic acid:a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94:340-362.
    [82]丁爽,葛庆峰,祝新利.金属氧化物催化生物质衍生羧酸酮基化研究进展[J].化学学报, 2017, 75:439-447.DING S, GE Q F, ZHU X L. Research progress in ketonization of biomass-derived carboxylic acids over metal oxides[J]. Acta Chimica Sinica, 2017, 75:439-447.
    [83] GAERTNER C A, SERRANO-RUIZ J C, BRADEN D J, et al.Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion[J]. Journal of Catalysis, 2009, 266(1):71-78.
    [84] SERRANO-RUIZ J C, WANG D, DUMESIC J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry, 2010, 12(4):574-577.
    [85] SERRANO-RUIZ J C, BRADEN D J, WEST R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J].Applied Catalysis B:Environmental, 2010, 100(1/2):184-189.
    [86] ALONSO D M, BOND J Q, SERRANO-RUIZ J C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomassderived C9alkenes[J]. Green Chem., 2010, 12:992-999.
    [87] BOND J Q, ALONSO D M, WANG D, et al. Integrated catalytic conversion ofγ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969):1110-1114.
    [88] HARVEY B G, QUINTANA R L. Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene[J]. Energy&Environmental Science,2010, 3:352-357.
    [89] LIMA C G S, MONTEIRO J L, DE MELO LIMA T, et al. Angelica lactones:from biomass-derived platform chemicals to value-added products[J]. ChemSusChem, 2018, 11(1):25-47.
    [90] MASCAL M, DUTTA S, GANDARIAS I. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock:simple, highyield synthesis of branched C7-C10gasoline-like hydrocarbons[J].Angewandte Chemie:International Edition, 2014, 53(7):1854-1857.
    [91] XIN J, ZHANG S, YAN D, et al. Formation of C-C bonds for the production of bio-alkanes under mild conditions[J]. Green Chemistry,2014, 16:3589-3595.
    [92] AYODELE O O, DAWODU F A, YAN D, et al. Catalytic synthesis of renewable hydrocarbons via hydrodeoxygenation of angelica lactone ditrimers[J]. Fuel, 2018, 221:311-319.
    [93] AYODELE O O, DAWODU F A, YAN D, et al. Hydrodeoxygenation of angelica lactone dimers and trimers over silica-alumina supported nickel catalyst[J]. Renewable Energy, 2016, 86:943-948.