交互能源:实现电力能源系统平衡的有效机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transactive Energy:an Effective Mechanism for Balancing Electric Energy System
  • 作者:胡俊杰 ; 王坤宇 ; 艾欣 ; 韩雪 ; 杨光亚 ; 薛禹胜
  • 英文作者:HU Junjie;WANG Kunyu;AI Xin;HAN Xue;YANG Guangya;XUE Yusheng;State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources (North China Electric Power University);Energy Research Institute NDRC;Technical University of Denmark;State Grid Electric Power Research Institute/NARI Group Corporation;
  • 关键词:交互能源 ; 交互能源机制 ; 分布式调度 ; 电力市场 ; 产消者 ; 分布式能源 ; 能源互联网
  • 英文关键词:transactive energy;;transactive energy mechanism;;distributed dispatch;;electricity market;;prosumer;;distributed energy resources;;energy internet
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:新能源电力系统国家重点实验室(华北电力大学);国家发改委能源研究所;丹麦技术大学;国网电力科学研究院/南瑞集团公司;
  • 出版日期:2019-02-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.615
  • 基金:国家自然科学基金项目(51877078);; 国家重点研发计划项目(2016YFB0900500);; 中央高校基本科研业务费专项资金资助(2018MS012)~~
  • 语种:中文;
  • 页:ZGDC201904002
  • 页数:14
  • CN:04
  • ISSN:11-2107/TM
  • 分类号:15-28
摘要
风电、光伏等间歇性可再生能源的大规模引入,以及电动汽车、热泵等新型可控负荷的不断应用,将给电力系统的安全运行带来很大的挑战。在传输网层面,系统的功率平衡需要考虑新的调频资源和控制方法,而在配电网层面,分布式能源(包括可再生能源和新型负荷)的大量接入会引起网络的拥塞、电压和其他电能质量问题。为了提高分布式能源的接入比例,优化分布式能源就地利用率,保证电网的安全运行,系统需要控制和协调大规模分布式能源的有功或者无功出力。从控制策略上说,单纯的以电网安全运行为目标进行的集中式控制,因忽视社会整体效益而很难奏效。为此,将介绍一种兼具市场特性和控制功能的机制:交互能源。对交互能源机制的基本概念和特征进行阐述,并对基于交互能源机制的示范项目及系统应用的发展概况进行总结。最后,提出了交互能源机制的若干关键支撑技术。
        Large-scales of distributed energy resources(DERs) including renewable generations such as wind and photovoltaic generation, electric vehicles will bring operational challenges to power system operation. On the transmission system level, the transmission system operator needs new balancing methods and balancing resources. On the distribution system level, the connected DERs may cause grid congestion problems. To accommodate more DERs in the system,especially at local level, the output of DERs should be coordinated to mitigate the problems. The coordination method needs to take the interests of various actors into account, thus,this paper reviewed a promising coordination mechanism:transactive energy. In this paper, we will first introduce basic concepts and characteristics of transactive energy. Then, a review of existing research and demonstration projects in this area will be presented. In the end, we will describe the key technologies for transactive energy mechanism.
引文
[1]严艺芬,吴文宣,张逸,等.考虑区域能源供应商利益的主动配电网间歇性分布式电源优化配置[J].电网技术,2017,41(3):752-758.Yan Yifen,Wu Wenxuan,Zhang Yi,et al.Optimal allocation of intermittent distributed generation in active distribution network considering benefit of regional energy supplier[J].Power System Technology,2017,41(3):752-758(in Chinese).
    [2]徐宪东,贾宏杰,靳小龙,等.区域综合能源系统电/气/热混合潮流算法研究[J].中国电机工程学报,2015,35(14):3634-3642.Xu Xiandong,Jia Hongjie,Jin Xiaolong,et al.Study on hybrid heat-gas-power flow algorithm for integrated community energy system[J].Proceedings of the CSEE,2015,35(14):3634-3642(in Chinese).
    [3]任艺,周明,李庚银.考虑用户需求响应的售电公司购售电决策双层模型[J].电力系统自动化,2017,41(14):30-36.Ren Yi,Zhou Ming,Li Gengyin.Bi-level model of electricity procurement and sale strategies for electricity retailers considering users'demand response[J].Automation of Electric Power Systems,2017,41(14):30-36(in Chinese).
    [4]顾伟,任佳依,高君,等.含分布式电源和可调负荷的售电公司优化调度模型[J].电力系统自动化,2017,41(14):37-44.Gu Wei,Ren Jiayi,Gao Jun,et al.Optimal dispatching model of electricity retailers considering distributed generator and adjustable load[J].Automation of Electric Power Systems,2017,41(14):37-44(in Chinese).
    [5]张晨,韩新阳,白翠粉,等.基于合作博弈的电力市场模式下售电商购电策略模型[J].中国电力,2017,50(6):177-184.Zhang Chen,Han Xinyang,Bai Cuifen,et al.Optimal dispatching model of electricity retailers considering distributed generator and adjustable load[J].Electric Power,2017,50(6):177-184(in Chinese).
    [6]刘吉臻,李明扬,房方,等.虚拟发电厂研究综述[J].中国电机工程学报,2014,34(29):5103-5111.Liu Jizhen,Li Mingyang,Fang Fang,et al.Review on virtual power plants[J].Proceedings of the CSEE,2014,34(29):5103-5111(in Chinese).
    [7]艾欣,周树鹏,赵阅群.含虚拟发电厂的电力系统优化运行与竞价策略研究[J].中国电机工程学报,2016,36(23):6351-6362.Ai Xin,Zhou Shupeng,Zhao Yuequn.Research on optimal operation and bidding strategy of power system with virtual power plants[J].Proceedings of the CSEE,2016,36(23):6351-6362(in Chinese).
    [8]夏榆杭,刘俊勇,冯超,等.计及需求响应的虚拟发电厂优化调度模型[J].电网技术,2016,40(06):1666-1674.Xia Yuhang,Liu Junyong,Feng Chao,et al.Optimal scheduling model of virtual power plant considering demand response[J].Power System Technology,2016:1666-1674(in Chinese).
    [9]国家能源局,国家发展改革委.关于开展分布式发电市场化交易试点的通知[EB/OL].[2017-10-31].http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm NEA,NDRC.Notice on launching a pilot schemeto trade distributed electric power generation[EB/OL].[2017-10-31].http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm(in Chinese).
    [10]Han X,Heussen K,Gehrke O,et al.Taxonomy for evaluation of distributed control strategies for distributed energy resources[J].IEEE Transactions on Smart Grid,2018,9(5):5185-5195.
    [11]Denholm P,Connell M O,Brinkman G,et al.Overgeneration from solar energy in california:a field guide to the duck chart[EB/OL].[2015-11].https://www.nrel.gov/docs/fy16osti/65023.pdf.
    [12]马玲玲,杨军,付聪,等.电动汽车充放电对电网影响研究综述[J].电力系统保护与控制,2013,41(3):140-148.Ma Lingling,Yang Jun,Fu Cong,et al.Review on impact of electric car charging and discharging on power grid[J].Power System Protection and Control,2013,41(3):140-148(in Chinese).
    [13]Hu J,You S,Lind M,et al.Coordinated charging of electric vehicles for congestion prevention in the distribution grid[J].IEEE Transactions on Smart Grid,2014,5(2):703-711.
    [14]Chen S,Liu C.From demand response to transactive energy:state of the art[J].Journal of Modern Power Systems and Clean Energy,2017,5(1):10-19.
    [15]陈启鑫,王克道,陈思捷,等.面向分布式主体的可交易能源系统:体系架构、机制设计与关键技术[J].电力系统自动化,2018,42(3):1-7.Chen Qixin,Wang Kedao,Chen Sijie,et al.Transactive energy system for distributed agents:architecture,mechanism design and key technologies[J].Automation of Electric Power Systems,2018,42(3):1-7(in Chinese).
    [16]The G A C.GridWise transactive energy framework version 1.0[EB/OL].[2015-1].http://www.gridwiseac.org/pdfs/te_framework_report_pnnl-22946.pdf.
    [17]Kok J K,Warmer C J,Kamphuis I G.PowerMatcher:multiagent control in the electricity infrastructure[C]//Proceedings of the 4th international joint conference on Autonomous agents and multiagent systems.ACM,2005:75-82.
    [18]Subbarao K,Fuller J C,Kalsi K,et al.Transactive control and coordination of distributed assets for ancillary services[R].Pacific Northwest National Laboratory,Richland,WA(US),Environmental Molecular Sciences Laboratory(EMSL),2013.
    [19]Katipamula S,Chassin D P,Hatley D D,et al.Transactive controls:A market-based gridwise controls for building systems PNNL-15921[R].Pacific Northwest National Laboratory,Richland,WA(US),2006.
    [20]Atamturk N,Zafar M.Transactive energy:a surreal vision or a necessary and feasible solution to grid problems[R].California Public Utilities Commission Policy&Planning Division,CA(US),2014.
    [21]Kok K,Widergren S.A society of devices:integrating intelligent distributed resources with transactive energy[J].IEEE Power and Energy Magazine,2016,14(3):34-45.
    [22]Weckx S,D'Hulst R,Driesen J,et al.Primary and secondary frequency support by a multi-agent demand control system[J].IEEE Transactions on Power Systems,2015,30(3):1394-1404.
    [23]Kiani Bejestani A,Annaswamy A,Samad T.Ahierarchical transactive control architecture for renewables integration in smart grids:analytical modeling and stability[J].IEEE Transactions on Smart Grid,2014,5(4):2054-2065.
    [24]Hu J,Yang G,Bindner H W,et al.Application of network-constrained transactive control to electric vehicle charging for secure grid operation[J].IEEE Transactions on Sustainable Energy,2017,8(2):505-515.
    [25]张粒子,郑华,程瑜.区域电力市场电价机制[M].北京:中国电力出版社,2004:214-224.Zhang Lizi,Zheng Hua,Cheng Yu.Regional electricity market price mechanism[M].Beijing:China Electric Power Press,2004:214-224(in Chinese).
    [26]Pacific N N L.Pacific Northwest GridWise?testbed demonstration projects part I-Olympic Peninsula Project[EB/OL].[2007-09].https://www.smartgrid.gov/files/Pacific_Northwest_GridWise_Testbed_Demonstration_Pr ojects_Pa_200702.pdf.
    [27]Pacific N N L.AEP Ohio gridSMART demonstration project real-time pricing demonstration analysis[EB/OL].[2014-02].https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23192.pdf.
    [28]EXERGY.Electric power technical whitepaper:building a robust value mechanism to facilitate transactive energy[EB/OL].[2017-12-14].https://exergy.energy/wp-content/uploads/2017/12/Exergy-Whitepaper-v8.pdf.
    [29]PowerMatching C.Living and doing business in the energy world of tomorrow[EB/OL].[2015-04].http://www.powermatchingcity.nl/data/docs/PowerMatching%20City_brochure_final_UK_29-04-2015_lowres.pdf.
    [30]Kok K,Roossien B,MacDougall P,et al.Dynamic pricing by scalable energy management systems-field experiences and simulation results using powermatcher[C]//2012 IEEE Power and Energy Society General Meeting,2012:1-8.
    [31]Forfia D,Knight M,Melton R.The view from the top of the mountain:Building a community of practice with the GridWise transactive energy framework[J].IEEE Power and Energy Magazine,2016,14(3):25-33.
    [32]Ipakchi A.Demand side and distributed resource management-A transactive solution[C]//2011 IEEEPower and Energy Society General Meeting,San Diego,USA:IEEE,2011:1-8.
    [33]Li S,Zhang W,Lian J,et al.Market-based coordination of thermostatically controlled loads-part I:a mechanism design formulation[J].IEEE Transactions on Power Systems,2016,31(2):1170-1178.
    [34]Li S,Zhang W,Lian J,et al.Market-based coordination of thermostatically controlled loads-part II:unknown parameters and case studies[J].IEEE Transactions on Power Systems,2016,31(2):1179-1187.
    [35]Hao H,Corbin C D,Kalsi K,et al.Transactive control of commercial buildings for demand response[J].IEEETransactions on Power Systems,2017,32(1):774-783.
    [36]Ma Z,Callaway D S,Hiskens I A,et al.Decentralized charging control of large populations of plug-in electric vehicles[J].IEEE Transactions on Control Systems Technology,2013,21(1):67-78.
    [37]Gan L,Topcu U,Low S H,et al.Optimal decentralized protocol for electric vehicle charging[J].IEEETransactions on Power Systems,2013,28(2):940-951.
    [38]Gatsis N,Giannakis G B.Residential load control:Distributed scheduling and convergence with lost AMImessages[J].IEEE Transactions on Smart Grid,2012,3(2):770-786.
    [39]Papadaskalopoulos D,Strbac G.Decentralized participation of flexible demand in electricity marketspart I:market mechanism[J].IEEE Transactions on Power Systems,2013,28(4):3658-3666.
    [40]Papadaskalopoulos D,Strbac G,Mancarella P,et al.Decentralized participation of flexible demand in electricity markets-part II:application with electric vehicles and heat pump systems[J].IEEE Transactions on Power Systems,2013,28(4):3667-3674.
    [41]Vandael S,Claessens B,Hommelberg M,et al.A scalable three-step approach for demand side management of plug-in hybrid vehicles[J].IEEE Transactions on Smart Grid,2013,4(2):720-728.
    [42]De Craemer K,Vandael S,Claessens B,et al.An event-driven dual coordination mechanism for demand side management of PHEVs[J].IEEE Transactions on Smart Grid,2014,5(2):751-760.
    [43]PJM.Energy&ancillary services market operations[EB/OL].[2017-07-03].http://www.pjm.com/-/media/documents/manuals/m11.ashx
    [44]Nord P.Rules and regulations[EB/OL].[2017-07-03].https://www.nordpoolgroup.com/TAS/Rules-andregulations
    [45]Energy M C.Market rules[EB/OL].[2017-10].https://www.emcsg.com/marketrules.
    [46]蒲天骄,刘威,陈乃仕,等.基于一致性算法的主动配电网分布式优化调度[J].中国电机工程学报,2017,37(6):1579-1590.Pu Tianjiao,Liu Wei,Chen Naishi,et al.Distributed optimal dispatching of active distribution network based on consensus algorithm[J].Proceedings of the CSEE,2017,37(6):1579-1589(in Chinese).
    [47]Safdarian A,Fotuhi-Firuzabad M,Lehtonen M.Adistributed algorithm for managing residential demand response in smart grids[J].IEEE Transactions on Industrial Informatics,2014,10(4):2385-2393.
    [48]Safdarian A,Fotuhi-Firuzabad M,Lehtonen M.Optimal residential load management in smart grids:a decentralized framework[J].IEEE Transactions on Smart Grid,2016,7(4):1836-1845.
    [49]王程,刘念.基于交替方向乘子法的互联微电网系统分布式优化调度[J].电网技术,2016,40(9):2675-2681.Wang Cheng,Liu Nian.Distributed optimal dispatching of interconnected microgrid system based on alternating direction method of multipliers[J].Power System Technology,2016,40(9):2675-2681(in Chinese).
    [50]平健,陈思捷,张宁,等.基于智能合约的配电网去中心化交易机制[J].中国电机工程学报,2017,37(13):3682-3690.Ping Jian,Chen Sijie,Zhang Ning,et al.Decentralized transactive mechanism in distribution network based on smart contract[J].Proceedings of the CSEE,2017,37(13):3682-3690(in Chinese).
    [51]李彬,卢超,曹望璋,等.基于区块链技术的自动需求响应系统应用初探[J].中国电机工程学报,2017,37(13):3691-3702.Li Bin,Lu Chao,Cao Wangzhang,et al.A preliminary study of block chain based automated demand response system[J].Proceedings of the CSEE,2017,37(13):3691-3702(in Chinese).
    [52]张宁,王毅,康重庆,等.能源互联网中的区块链技术:研究框架与典型应用初探[J].中国电机工程学报,2016,36(15):4011-4023.Zhang Ning,Wang Yi,Kang Chongqing,et al.Blockchain technique in the energy internet:preliminary research framework and typical applications[J].Proceedings of the CSEE,2016,36(15):4011-4023(in Chinese).
    [53]杨晓东,张有兵,卢俊杰,等.基于区块链技术的能源局域网储能系统自动需求响应[J].中国电机工程学报,2017,37(13):3703-3716.Yang Xiaodong,Zhang Youbing,Lu Junjie,et al.Blockchain-based automated demand response method for energy storage system in an energy local network[J].Proceedings of the CSEE,2017,37(13):3703-3716(in Chinese).
    [54]Pierre Pinson,Thomas Baroche,Fabio Moret,等.以用户为中心的新兴电力市场模式[J].供用电,2017,34(12):27-31.Pierre Pinson,Thomas Baroche,Fabio Moret,et al.The emergence of consumer-centric electricity markets[J].Distribution&Utilization,2017,34(12):27-31(in Chinese).
    [55]Zhang C,Wu J,Long C,et al.Review of existing peer-to-peer energy trading projects[J].Energy Procedia,2017,105:2563-2568.
    [56]Mengelkamp E,G?rttner J,Rock K,et al.Designing microgrid energy markets:A case study:The Brooklyn Microgrid[J].Applied Energy,2018,210:870-880.
    [57]张俊,高文忠,张应晨,等.运行于区块链上的智能分布式电力能源系统:需求,概念,方法以及展望[J].自动化学报,2017,43(9):1544-1554.Zhang Jun,Gao Wenzhong,Zhang Yingchen,et al.Blockchain based intelligent distributed electrical energy systems:needs,concepts,approaches and vision[J].Acta Automatica Sinica,2016,43(9):1544-1554(in Chinese).
    [58]谢青洋,应黎明,祝勇刚.基于经济机制设计理论的电力市场竞争机制设计[J].中国电机工程学报,2014,34(10):1709-1716.Xie Qingyang,Ying Liming,Zhu Yonggang.Competitive power market mechanism design based on the designing economic mechanisms theory[J].Proceedings of the CSEE,2014,34(10):1709-1716(in Chinese).
    [59]田国强.经济机制理论:信息效率与激励机制设计[J].经济学,2003,2(2):271-308.Tian Guoqiang.Economic mechanism theory:informational efficiency and incentive mechanism design[J].China Economic,2003,2(2):271-308(in Chinese).
    [60]Muller F L,Szabo J,Sundstr?m O,et al.Aggregation and disaggregation of energetic flexibility from distributed energy resources[J].IEEE Transactions on Smart Grid,2017.
    [61]Hao H,Sanandaji B M,Poolla K,et al.Aggregate flexibility of thermostatically controlled loads[J].IEEETransactions on Power Systems,2015,30(1):189-198.
    [62]Hao H,Somani A,Lian J,et al.Generalized aggregation and coordination of residential loads in a smart community[C]//2015 IEEE International Conference on Smart Grid Communications.IEEE,2015:67-72.
    [63]Hughes J T,Dominguez-Garcia A D,Poolla K.Identification of virtual battery models for flexible loads[J].IEEE Transactions on Power Systems,2016,31(6):4660-4669.
    [64]Hao H,Wu D,Lian J,et al.Optimal coordination of building loads and energy storage for power grid and end user services[J].IEEE Transactions on Smart Grid,2018,9(5):4335-4345.
    [65]艾欣,赵阅群,周树鹏.空调负荷直接负荷控制虚拟储能特性研究[J].中国电机工程学报,2016,36(6):1596-1603.Ai Xin,Zhao Yuequn,Zhou Shupeng.Study on virtual energy storage features of air conditioning load direct load control[J].Proceedings of the CSEE,2016,36(6):1596-1603(in Chinese).
    [66]靳小龙,穆云飞,贾宏杰,等.融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J].中国电机工程学报,2017,37(2):581-591.Jin Xiaolong,Mu Yunfei,Jia Hongjie.Optimal scheduling method for a combined cooling,heating and power building microgrid considering virtual storage system at demand side[J].Proceedings of the CSEE,2017,37(2):581-591(in Chinese).
    [67]Coffrin C,Van Hentenryck P.A linear-programming approximation of ac power flows[J].Informs Journal on Computing,2014,26(4):718-734.
    [68]Molzahn D K,Lesieutre B C,Demarco C L.Investigation of non-zero duality gap solutions to a semidefinite relaxation of the optimal power flow problem[C]//47th Hawaii International Conference on System Sciences.IEEE,2014:2325-2334.
    [69]Lavaei J,Low S H.Zero duality gap in optimal power flow problem[J].IEEE Transactions on Power Systems,2012,27(1):92-107.
    [70]刘一兵,吴文传,张伯明,等.基于混合整数二阶锥规划的三相有源配电网无功优化[J].电力系统自动化,2014,38(15):58-64.Liu Yibing,Wu Wenchuan,Zhang Boming,et al.Reactive power optimization for three-phase distribution networks with distributed generators based on mixed integer second-order cone programming[J].Automation of Electric Power Systems,2014,38(15):58-64(in Chinese).
    [71]刘一兵,吴文传,张伯明,等.基于混合整数二阶锥规划的主动配电网有功-无功协调多时段优化运行[J].中国电机工程学报,2014,34(16):2575-2583.Liu Yibing,Wu Wenchuan,Zhang Boming,et al.A mixed integer second-order cone programming based active and reactive power coordinated multi-period optimization for active distribution network[J].Proceedings of the CSEE,2014,34(16):2575-2583(in Chinese).
    [72]高红均,刘俊勇,沈晓东,等.主动配电网最优潮流研究及其应用实例[J].中国电机工程学报,2017,37(6):1634-1645.Gao Hongjun,Liu Junyong,Shen Xiaodong,et al.Optimal power flow research in active distribution network and its application examples[J].Proceedings of the CSEE,2017,37(6):1634-1644(in Chinese).
    [73]Molzahn D K,Hiskens I A.Sparsity-exploiting moment-based relaxations of the optimal power flow problem[J].IEEE Transactions on Power Systems,2015,30(6):3168-3180.
    [74]Molzahn D K,Hiskens I A.Moment-based relaxation of the optimal power flow problem[C]//Power Systems Computation Conference.IEEE,2014:1-7.
    [75]Savier J S,Das D.Energy loss allocation in radial distribution systems:a comparison of practical algorithms[J].IEEE Transactions on Power Delivery,24(1):260-267.
    [76]Conejo A J,Arroyo J M,Alguacil N,et al.Transmission loss allocation:a comparison of different practical algorithms[J].IEEE Transactions on Power Systems,2002,17(3):571-576.
    [77]汤奕,韩啸,吴英俊,等.考虑通信系统影响的电力系统综合脆弱性评估[J].中国电机工程学报,2015,35(23):6066-6074.Tang Yi,Han Xiao,Wu Yingjun,et al.Electric power system vulnerability assessment considering the influence of communication system[J].Proceedings of the CSEE,2015,35(23):6066-6074(in Chinese).
    [78]McParland C.OpenADR open source toolkit:developing open source software for the smart grid[C]//Power and Energy Society General Meeting,IEEE,2011:1-7.
    [79]USFE.Usef Energy-universal smart energy framework[EB/OL].[2017].https://www.usef.energy/.
    [80]PowerMatcherSuite.The energy flexibility platform&interface-the powermatcher suite[EB/OL].[2017].http://flexiblepower.github.io/technology/efpi/.
    [81]李田,苏盛,杨洪明,等.电力信息物理系统的攻击行为与安全防护[J].电力系统自动化,2017,41(22):162-167.Li Tian,Su Sheng,Yang Hongming,et al.Attacks and cyber security defense in cyber-physical power system[J].Automation of Electric Power Systems,2017,41(22):162-167(in Chinese).
    [82]李存斌,李小鹏,田世明,等.能源互联网电力信息深度融合风险传递:挑战与展望[J].电力系统自动化,2017,41(11):17-25.Li Cunbin,Li Xiaopeng,Tian Shiming,et al.Challenges and prospects of risk transmission in deep fusion of electric power and information for energy internet[J].Automation of Electric Power Systems,2017,41(11):17-25(in Chinese).
    [83]汤奕,韩啸,吴英俊,等.考虑通信系统影响的电力系统综合脆弱性评估[J].中国电机工程学报,2015,35(23):6066-6074.Tang Yi,Han Xiao,Wu Yingjun,et al.Electric power system vulnerability assessment considering the influence of communication system[J].Proceedings of the CSEE,2015,35(23):6066-6074(in Chinese).
    [84]李培恺,曹勇,辛焕海,等.配电网信息物理系统协同控制架构探讨[J].电力自动化设备,2017,37(12):2-7.Li Peikai,Cao Yong,Xin Huanhai,et al.Discussion on cooperative control architecture of cyber-physical distribution network system[J].Electric Power Automation Equipment,2017,37(12):2-7(in Chinese).
    *Transactive Energy Definition:A system of economic and control mechanisms that allows the dynamic balance of supply and demand across the entire electrical infrastructure using value as a key operational parameter.