玫瑰黄链霉菌NKZ-259发酵培养基的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Fermentation Medium for Streptomyces roseoflavus NKZ-259
  • 作者:麻金金 ; 葛蓓孛 ; 施李鸣 ; 刘炳花 ; 韦秋合 ; 张克诚
  • 英文作者:MA Jin-jin;GE Bei-bei;SHI Li-ming;LIU Bing-hua;WEI Qiu-he;ZHANG Ke-cheng;Key Laboratory of Integrated Pest Management in Crops of Ministry of Agriculture/Institute of Plant Protection,Chinese Academy of Agriculture Science;
  • 关键词:吲哚-3-乙酸 ; 发酵培养基 ; 响应面法
  • 英文关键词:indole-3-acetic acid(IAA);;fermentation medium;;response surface methodology
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:中国农业科学院植物保护研究所农业部作物有害生物综合治理重点实验室;
  • 出版日期:2018-11-05 11:51
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.319
  • 基金:国家重点研发专项(2017YD0201301,2017YFD0800705)
  • 语种:中文;
  • 页:SWJT201902013
  • 页数:8
  • CN:02
  • ISSN:11-2396/Q
  • 分类号:91-98
摘要
玫瑰黄链霉菌NKZ-259是一株生防菌株,其次级代谢能产生植物生长调节类物质吲哚乙酸(IAA)。为了进一步提高菌株代谢产生IAA的含量,本试验对该菌株的发酵培养基进行了优化。利用单因子试验确定发酵培养基中最适的6种营养成分为葡萄糖、可溶性淀粉、蛋白胨、硝酸钾、磷酸氢二钾和L-色氨酸;通过Plackett-Burman设计筛选出影响菌株发酵产生IAA的主要因素为L-色氨酸、葡萄糖和磷酸氢二钾;采用中心组合试验(CCD)及响应面法分析各因素的交互作用。最终确定菌株代谢产生IAA的最优发酵培养基为:L-色氨酸2.24 g/L,葡萄糖20.7 g/L,磷酸氢二钾0.5 g/L,可溶性淀粉10 g/L,蛋白胨3 g/L,硝酸钾4.5g/L;使用优化后的发酵培养基菌株代谢产生IAA的含量为45.377 4μg/mL,比原始发酵培养基IAA的含量提高了3倍。
        Streptomyces roseoflavus NKZ-259 is a biocontrol strain and plant growth regulator indole-3-acetic acid(IAA)is produced in the process of secondary metabolism. The fermentation medium was optimized in this study in order to increase the content of IAA produced by a strain. The 6 optimal nutrients of fermentation medium were determined by single factor experiment,and they were glucose,soluble starch,peptone,potassium nitrate,dipotassium hydrogen phosphate,and L-tryptophan,respectively. Plackett-Burman design method was applied to screen major factors affecting the fermentation production of IAA,which was L-tryptophan,glucose,and dipotassium hydrogen phosphate. Central combination design(CCD)and response surface methodology were used to analyze the interactions of all factors. Finally,the optimized fermentation medium was composed as follow :L-tryptophan 2.24 g/L,glucose 20.7 g/L,dipotassium hydrogen phosphate 0.5 g/L,soluble starch 10 g/L,peptone 3 g/L,potassium nitrate 4.5 g/L. The concentration of IAA reached 45.377 4 μg/mL after the medium optimized,which was increased 3 times compared to the original fermentation medium.
引文
[1]杨秀荣,刘亦学,刘水芳,等.植物生长调节剂及其研究与应用[J].天津农业科学, 2007(1):23-25.
    [2]徐长宝,任晓亮,朱桂玲.打破柿树种子休眠和促进发芽的方法[J].林业科技开发, 2009, 23(2):109-112.
    [3]宋文,肖景义,赵莹,等.植物激素萘乙酸在果树生产中的应用[J].特种经济动植物, 2012, 15(12):48-49.
    [4]Mao X, Tang L, Tan T, et al. Determination of plant growth regulators in pears by microwave-assisted extraction and liquid chromatography with electrospray ionization mass spectrometry.[J]. Journal of Separation Science, 2014, 37(11):1352-8.
    [5]史晓梅,金芬,黄玉婷,等.水果中常用植物生长调节剂的研究进展[J].食品工业科技, 2012, 33(4):417-422+426.
    [6]张兴,马志卿,冯俊涛,等.植物源农药研究进展[J].中国生物防治学报, 2015, 31(5):685-698.
    [7]Goudjal Y, Zamoum M, Sabaou N, et al. Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings[J]. Biocontrol Science&Technology, 2016, 26(12):1691-1705.
    [8]Narayana K J, Peddikotla P, Krishna P S J, et al. Indole-3-acetic acid production by Streptomyces albidoflavus[J]. Journal of Biological Research-Thessaloniki, 2009, 11:49-55.
    [9]Abd-Alla MH, El-Sayed ESA, Rasmey AHM. Indole-3-acetic acid(IAA)production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt[J]. Journal of Biology&Earth Sciences, 2013(3):182-193.
    [10]Shi LM, Thin TN, Ge BB, et al. Antifungal and plant growthpromoting activities of Streptomyces roseoflavus strain NKZ-259[J]. Biological Control, 2018, 125:57-64.
    [11]Lin L, Xu X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants[J]. Current Microbiology, 2013, 67(2):209-217.
    [12]尤桂春,武竞超,林文忠. IAA不同浓度处理对柠檬枝条扦插生根的影响[J].东南园艺, 2016, 4(1):8-9.
    [13]王非,王金侠,李强,等. GA_3和IAA处理对4种铁线莲种子萌发的影响[J].草业科学, 2014, 31(4):672-676.
    [14]Aminullah, Zada K, Jamal M, et al. Effect of indole acetic acid(IAA)on yield and yield contributing parameters of soybean[J]. Pakistan Journal of Biological Sciences, 2000, 3(5):856-857.
    [15]郭敬华.玫瑰黄链霉菌Men-myco-93-63发酵液防治黄瓜白粉病的效果及作用机理初探[D].保定:河北农业大学, 2007.
    [16]葛蓓孛,王家旺,刘彦彦,等.武夷菌素高产基因工程菌发酵培养基的优化[J].中国生物防治学报, 2016, 32(5):642-649.
    [17]张东艳,刘晔,吴越,等.花生根际产IAA菌的筛选鉴定及其效应研究[J].中国油料作物学报, 2016, 38(1):104-110.
    [18]Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J].Applied&Environmental Microbiology, 1995, 61(2):793-6.
    [19]吴翔,甘炳成,黄忠乾,等.一株产IAA菌株的筛选、鉴定及培养条件优化[J].四川农业大学学报, 2014, 32(4):432-435+461.
    [20]王占一,金美花,王玉海,等. Plackett-Burman和Central Composite Design试验设计法优化石榴皮中熊果酸的SFECO_2萃取工艺[J].中药材, 2015, 38(3):610-614.
    [21]宋浩,纪兆林,陈夕军,等.地衣芽孢杆菌W10菌株发酵培养基优化[J].扬州大学学报:农业与生命科学版, 2015, 36(1):87-91.
    [22]钟小廷.产细菌素蜡样芽孢杆菌的筛选、鉴定及培养基优化[D].成都:西华大学, 2014.
    [23]刘志祥,曾超珍.响应面法在发酵培养基优化中的应用[J].北方园艺, 2009(2):127-129.
    [24]Wang L, Zhang M, Li Y, et al. Application of response surface methodology to optimize the production of antimicrobial metabolites by Micromonospora Y15[J]. Biotechnology&Biotechnological Equipment, 2017:1-10.
    [25]李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索, 2015, 34(8):41-45.
    [26]Li C, Bai J, Cai Z, et al. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology[J]. Journal of Biotechnology, 2002, 93(1):27-34.
    [27]韩兴,刘亚南,甄丹妹,等.玫瑰黄链霉菌Men-myco-93-63产抗生素发酵培养基的优化[J].江苏农业科学, 2017, 45(10):100-103.
    [28]Passari AK, Mishra VK, Gupta VK, et al. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants[J].PLoS One, 2015, 10(9):1-18.
    [29]刘伟.利用地衣芽孢杆菌发酵生产细胞分裂素[D].武汉:华中农业大学, 2005.