卫星水汽图像和位势涡度场在一次变性台风暴雨过程中的解译应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of satellite water vapor imagery and potential vorticity analysis on a neutercane-related torrential rain
  • 作者:吴志彦 ; 李宏江 ; 赵海军 ; 丛春华 ; 姚丽娜
  • 英文作者:WU Zhi-yan;LI Hong-jiang;ZHAO Hai-jun;CONG Chun-hua;YAO Li-na;Weihai Meteorological Service;Linyi Meteorological Service;Shandong Province Meteorological Observatory;Changzhou Meteorological Service;
  • 关键词:水汽图像 ; 位涡 ; 高空急流 ; 台风 ; 暴雨 ; 解译
  • 英文关键词:Water vapor imagery;;Potential vorticity;;Upper-level jet;;Typhoon;;Torrential rain;;Interpreting
  • 中文刊名:LNQX
  • 英文刊名:Journal of Meteorology and Environment
  • 机构:威海市气象局;临沂市气象局;山东省气象台;常州市气象局;
  • 出版日期:2018-06-15
  • 出版单位:气象与环境学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(41175092);; 山东省自然科学基金(ZR2013DQ009);; 环渤海协同创新项目(QYXM201612);; 山东省气象局青年科研基金(2016SDQN17)共同资助
  • 语种:中文;
  • 页:LNQX201803001
  • 页数:8
  • CN:03
  • ISSN:21-1531/P
  • 分类号:3-10
摘要
利用FY-2E卫星水汽图像、常规气象观测资料和ERA-Interim再分析资料,将高层动力场和水汽图像结合,对山东半岛一次台风和冷空气相关的大暴雨过程进行了解译分析。结果表明:台风北上过程中,槽后冷空气入侵台风环流,涡旋云系与斜压叶状云相结合,低层出现锋生。在卫星水汽图像上,台风的非对称结构表现为涡旋北侧加强的湿上升运动和南侧入侵的干闯入,具有高位涡特征的水汽暗区是活跃的动力干带。高空急流带位于短波槽前叶状云向极一侧边界附近的湿上升区一侧,急流的增强与水汽图像上明暗边界的锐化有关,暴雨区位于动力干带前方的湿上升区和高空急流入口区的右侧。强降水发生时,动力干带引起的高层位涡扰动造成正涡度柱的强烈下伸,与台风主体环流的正涡度柱在暴雨区上空形成相互贯通的涡旋系统。位涡异常区前侧的上升运动与台风环流本身的上升运动叠加,有利于加强对流层暖湿气流的抬升。卫星水汽图像体现了高层天气尺度动力强迫的特征,指示重要动力过程的发展。将卫星水汽图像和高层位涡场结合进行解译,有助于从水汽图像上判别高空动力特征的演变,为台风暴雨监测提供参考信息。
        Using the water vapor imagery,conventional meteorological observations and ERA-Interim reanalysis data,a torrential rain event related to typhoon and the cold air in Shandong Peninsula was studied by analyzing the water vapor imagery and dynamical fields.Results reveal that as the typhoon moving northward, the cold air of the westerly trough intrudes the typhoon circulation, the vortex cloud system combines with the baroclinic leaf-shaped cloud,and it results in a frontogenesis at lower level.The water vapor imagery shows that the asymmetric structure of typhoon is characterized by a moist ascent in the north and dry intrusion in the south of the vortex system.The dark areas with high potential vorticity in the water vapor imagery indicate the active dynamic dry bands.The axis of maximum winds is near the poleward side of the leaf boundary and along the moist side.The strengthening of the upper-level jet is associated with the sharpening of the dark/light boundary.The heavy rain area lies in rear of the jet on the right and moist ascent area ahead of the dynamic dry band.During the heavy rain process, the disturbance of upper-level PV( Positive Vorticity) caused by the dynamic dry bands results in the stretching downward of cyclonic vorticity.The column of cyclonic vorticity associated with the dynamic dry band couples with the positive vorticity column of typhoon and forms a vortex system over the area of torrential rain.The combination of ascending motion ahead of the PV anomaly and ascending motion of the typhoon circulation could have been a favorable factor to the strengthening of the moist ascending motion in the troposphere.The water vapor imagery reflects the synoptic scale forcing in the upper-level and indicates the development of important dynamical processes.A joint interpretation of water vapor imagery and upper-level potential vorticity fields can potentially provide dynamical insight into the imagery interpretation, thus provide valuable information for operational monitoring of neutercane-related torrential rain.
引文
[1]许健民,方宗义.《卫星水汽图像和位势涡度场在天气分析和预报中的应用》导读[J].气象,2008,34(5):3-8.
    [2]Bader M J,Forbes G S,Grant J R,等.卫星与雷达图象在天气预报中的应用[M]//卢乃锰,冉茂农,刘健,等译.北京:科学出版社,1998:12-82.
    [3]Weldon R B,Holmes S J.Water vapor imagery:interpretation and applications to w eather analysis and forecasting[M].Washington D.C.:Department of Commerce,1991:57-213.
    [4]杨军.气象卫星及其应用(下)[M].北京:气象出版社,2012:525-540.
    [5]Mansfield D A.The use of potential vorticity as an operational forecast tool[J].M eteorology Application,1996,3(3):195-210.
    [6]Santurette P,Georgiev C.Weather analysis and forecasting-applying satellite w ater vapor imagery and potential vorticity analysis(2nd ed.)[M].Burlington:Academic Press,2005:27-83.
    [7]蒋建莹,汪悦国.卫星水汽图像上两次暴雨过程的干、湿特征对比分析[J].气象,2014,40(6):706-714.
    [8]Hoskins B J,Mcintyre M E,Robertson A W.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society,1985,111(470):877-946.
    [9]寿绍文.位涡理论及其应用[J].气象,2010,36(3):9-18.
    [10]Schubert W H,Alworth B T.Evolution of potential vorticity in tropical cyclones[J].Quarterly Journal of the Royal M eteorological Society,1987,113(475):147-162.
    [11]M9ller J D,Smith R K.The development of potential vorticity in a hurricane-like vortex[J].Quarterly Journal of the Royal M eteorological Society,1994,120(519):1255-1265.
    [12]Molinari J,Skubis S,Vollaro D,et al.Potential vorticity analysis of tropical cyclone intensification[J].Journal of Atmospheric Sciences,1998,55(16):2632-2644.
    [13]Agusti-Panareda A,Thorncroft C D,Craig G C,et al.The extratropical transition of hurricane Irene(1999):a potential-vorticity perspective[J].Quarterly Journal of the Royal M eteorological Society,2004,130(598):1047-1074.
    [14]侯定臣,庄小兰,黄燕波.9012号台风暴雨过程的位涡分析[J].南京气象学院学报,1997,20(1):64-70.
    [15]于玉斌,姚秀萍.对华北一次特大台风暴雨过程的位涡诊断分析[J].高原气象,2000,19(1):111-120.
    [16]赵宇,吴增茂,刘诗军,等.由变性台风环流引发的山东特大暴雨天气的位涡场分析[J].热带气象学报,2005,21(1):33-43.
    [17]黄亿,寿绍文,傅灵艳.对一次台风暴雨的位涡与湿位涡诊断分析[J].气象,2009,35(1):65-73.
    [18]史得道,易笑园,孙密娜,等.影响天津地区两次北上热带气旋过程对比分析[J].气象与环境学报,2016,32(3):19-27.
    [19]邵颖斌,沈新勇,刘佳,等.台风“鲇鱼”路径突变前后等熵位涡非对称结构的对比分析[J].热带气象学报,2014,30(2):261-269.
    [20]黎惠金,黄明策,覃昌柳.台风“尤特”的等熵位涡分析[J].高原气象,2016,35(3):777-787.
    [21]丛春华,吴炜,孙莎莎.1949—2012年影响山东地区热带气旋的特征[J].气象与环境学报,2016,32(5):67-73.
    [22]姚学祥.天气预报技术与方法[M].北京:气象出版社,2011:102-103.
    [23]曹丽霞,赵亮,徐怀刚,等.2007年7月9—10日江淮大暴雨的水汽图像解译研究[J].气象,2013,39(5):608-615.
    [24]姚秀萍,吴国雄,赵兵科,等.与梅雨锋上低涡降水相伴的干侵入研究[J].中国科学D辑:地球科学,2007,37(3):417-428.
    [25]刘开宇,李丽,张云瑾,等.卫星水汽图像和位势涡度场在强对流天气分析中的应用[J].云南大学学报:自然科学版,2009,31(S2):434-437.
    [26]金巍,俞小鼎,曲姝霖,等.辽宁地区一次大暴雨过程干侵入和卫星云图演变特征[J].气象与环境学报,2015,31(6):51-58.
    [27]王瑾,柯宗建,江吉喜.“麦莎”台风暴雨落区非对称分布的诊断分析[J].热带气象学报,2007,23(6):563-568.
    [28]史得道,易笑园,刘彬贤.台风“达维”不对称结构特征分析[J].气象与环境学报,2014,30(3):10-17.
    [29]吴志彦,李宏江,石燕清,等.山东半岛一次台风暴雨过程的冷空气侵入特征分析[J].暴雨灾害,2016,35(1):61-68.
    [30]刘建文,郭虎,李耀东,等.天气分析预报物理量计算基础[M].北京:气象出版社,2005:226-235.
    [31]周小刚,王秀明,陶祖钰.“等熵思维”到“等熵位涡思维”回顾与讨论[J].气象,2014,40(5):521-529.