透视中国不同强度桑拿天日数的时空分异特征(1961-2017年)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal Differentiation of Sauna Days with Different Intensities in China from 1961 to 2017
  • 作者:孔锋
  • 英文作者:KONG Feng;School of Public Policy and Management,Tsinghua University;Center for Crisis Management Research,Tsinghua University;Center for Social Risk Assessment in China,Tsinghua University;
  • 关键词:桑拿天气 ; 高温热浪 ; 空间格局 ; 年代际变化 ; 气候变化 ; 区域分异
  • 英文关键词:sauna weather;;high temperature and heat wave;;spatial pattern;;interdecadal variation;;climate change;;regional differentiation
  • 中文刊名:ZHXU
  • 英文刊名:Journal of Catastrophology
  • 机构:清华大学公共管理学院;清华大学应急管理研究基地;清华大学中国社会风险评估研究中心;
  • 出版日期:2019-07-08
  • 出版单位:灾害学
  • 年:2019
  • 期:v.34;No.133
  • 基金:国家自然科学基金(41801064);; 中国气象局气象软科学自主项目(2019ZZXM07);; 中国博士后科学基金资助项目(2019T120114;2019M650756);; 中亚大气科学研究基金(CAAS201804)
  • 语种:中文;
  • 页:ZHXU201903017
  • 页数:8
  • CN:03
  • ISSN:61-1097/P
  • 分类号:88-95
摘要
高温高湿超长待机的桑拿天气已成为当前城市居民生产生活面临的主要气象灾害风险之一。基于1961-2017年中国545个气象观测站点的日值最高气温和相对湿度数据,采用中国气象局中央气象台对桑拿天的定义,从气候态、变化趋势和波动特征三方面研究了中国不同强度桑拿天日数时空演变特征。结果表明:①1961-2017年中国气候态不同强度桑拿天日数呈东南高-西北低的空间分异格局,且不同年代同一强度的桑拿天日数空间分异格局相差较小,与整个研究时段对应强度的桑拿天日数空间分异格局具有良好的一致性。随着强度增加,中国桑拿天日数逐步减少。②1961-2017年中国不同强度桑拿天日数以胡焕庸线为界,呈东南增减镶嵌并以减少趋势为主,西北变化不大的空间分异格局。1991-2017年中国不同强度桑拿天日数变化趋势相比1961-1990年明显增加。③1961-2017年中国不同强度桑拿天日数以胡焕庸线为界,呈东南波动大-西北波动小的空间分异格局。且桑拿天和强桑拿天日数波动特征呈现出明显的三块式分布特征。1961-1990年和1991-2017年中国不同强度桑拿天日数波动特征与整个研究时段具有良好的一致性。1990年前后的波动差异特征主要集中在胡焕庸线附近及其东南地区,且波动差异以增大为主,表明1991-2017年中国东南不同强度桑拿天日数变异增加。
        Sauna weather with high temperature,high humidity and long standby time has become one of the main meteorological hazards faced by urban residents. Based on the daily maximum temperature and relative humidity datasets of 545 meteorological observation stations in China from 1961 to 2017,the spatial-temporal evolution characteristics of sauna days with different intensities in China were studied from three aspects: climatic state,trend and fluctuation characteristics,using the standard of sauna days defined by the Central Meteorological Observatory of China Meteorological Administration. The results showed that: Firstly,the spatial pattern of sauna days with different intensities in China was high in southeast China and low in northwest China from 1961 to 2017,and the spatial pattern of sauna days with the same intensity in different research period had little difference,which was in good agreement with the spatial pattern of sauna days with corresponding intensities in the whole research period.With the increase of intensity,the sauna days in China decreases gradually. Secondly,the trend of sauna days with different intensities in China was bounded by Hu Huanyong Line from 1961 to 2017,showing a pattern of increasing or decreasing mosaic in the southeast China and mainly decreasing trend,while the spatial differentiation pattern in the northwest China changed little. The sauna days trend with different intensities in China increased significantly1991-2017 compared with 1961-1990. Thirdly,the fluctuation of sauna days with different intensities in China was bounded by Hu Huanyong Line,showing a spatial pattern of large fluctuation in the southeast China and small fluctuation in the northwest China. And the fluctuation of sauna days and heavy sauna days showed obvious threeblock distribution characteristics. The fluctuation characteristics of sauna days with different intensities in China from 1961 to 1990 and 1991 to 2017 were in good agreement with the whole research period. The fluctuation difference before and after 1990 mainly concentrated in the vicinity of Hu Huanyong Line and its southeast area,and the fluctuation differences increased mainly,indicating that the variation of sauna days with different intensities in the southeast China increased from 1991 to 2017.
引文
[1] IPCC AR5. Intergovernmental Panel on Climate Change 2013 Fifth Assessment Report(AR5)[R]. London:Cambridge University Press,Cambridge,UK,2013.
    [2] IPCC SREX. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation[R]. London:Cambridge University Press,Cambridge,UK,2012.
    [3] IPCC SR1. 5. Global Warming of 1. 5℃:an IPCC special report on the impacts of global warming of 1. 5℃above pre-industrial levels and related global greenhouse gas emission pathways,in the context of strengthening the global response to the threat of climate change,sustainable development,and efforts to eradicate poverty[R]. London:Cambridge University Press,Cambridge,UK,2018.
    [4] DONG B,SUTTON R,SHAFFREY L,et al. The 2015 European heat wave[J]. Bulletin of the American Meteorological Society,2016,97(12):57-62.
    [5] YOU Q,JIANG Z,KONG L,et al. A comparison of heat wave climatologies and trends in China based on multiple definitions[J]. Climate Dynamics,2017,48(11):3975-3989.
    [6] CAPUTI N,KANGAS M,DENHAM A,et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot[J]. Ecology&Evolution,2016,6(11):3583-3593.
    [7] WU Z,ZHANG P,CHEN H,et al. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?[J]. Climate Dynamics,2016,46(11):1-13.
    [8] KIM D W,DEO R C,CHUNG J H,et al. Projection of heat wave mortality related to climate change in Korea[J]. Natural Hazards,2016,80(1):623-637.
    [9] WEI H,KAN H D,KOVATS S. The impact of the 2003 heat wave on mortality in Shanghai,China[J]. Science of the Total Environment,2010,408(11):2418-2420.
    [10] PENG J B. An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities[J]. Atmospheric&Oceanic Science Letters,2014,7(4):286-290.
    [11] CHEN K,HUANG L,ZHOU L,et al. Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing,China[J]. Scientific Reports,2015,5:10816.
    [12]孔锋,吕丽莉,方建,等.中国不同时段气候变暖速率的时空分异研究(1961-2014)[J].北京师范大学学报(自然科学版),2017,53(04):426-435.
    [13]孔锋.全球气候变暖停滞争论下的中国气候变暖诊断分析[C]//中国气象学会.第35届中国气象学会年会S7东亚气候、极端气候事件变异机理及气候预测.中国气象学会:中国气象学会,2018:11.
    [14]傅帅,蒋勇,张小泉,等.近64年长沙市高温热浪事件统计分析[J].气象科技,2016,44(6):991-997.
    [15]王喜元,闫业超,岳书平,等. 1961-2010年长江流域高温热浪时空变化特征[J].云南大学学报(自然科学版),2016,38(4):602-609.
    [16]祁新华,程煜,李达谋,等.西方高温热浪研究述评[J].生态学报,2016,36(9):2773-2778.
    [17]罗晓玲,杜尧东,郑璟.广东高温热浪致人体健康风险区划[J].气候变化研究进展,2016,12(2):139-146.
    [18]祁新华,程煜,郑雪梅,等.国内高温热浪研究进展及其人文转向[J].亚热带资源与环境学报,2017,12(1):26-31.
    [19]贾佳,胡泽勇.中国不同等级高温热浪的时空分布特征及趋势[J].地球科学进展,2017,32(5):546-559.
    [20]何苗,徐永明,李宁,等.基于遥感的北京城市高温热浪风险评估[J].生态环境学报,2017,26(4):635-642.
    [21]张曦,黎鑫.湖南省夏季高温热浪时空分布特征及其成因[J].气候与环境研究,2017,22(6):747-756.
    [22]郑雪梅,王怡,吴小影,等.近20年福建省沿海与内陆城市高温热浪脆弱性比较[J].地理科学进展,2016,35(10):1197-1205.