岩溶地下河系统中有机氯的分布特征与来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics and Source Identification of Organochlorine Pesticides in the Karst Groundwater System
  • 作者:张媚 ; 孙玉川 ; 谢正兰 ; 余琴 ; 徐昕
  • 英文作者:ZHANG Mei;SUN Yu-chuan;XIE Zheng-lan;YU Qin;XU Xin;Key Laboratory of Eco-Environments in Three Gorges Reservoir Region,Ministry of Education,School of Geographical Sciences,Southwest University;Key Laboratory of Karst Dynamics,Ministry of Land and Resources,Institute of Karst Geology,Chinese Academy of Geological Sciences;
  • 关键词:有机氯农药 ; 地下河 ; 来源 ; 分布 ; 重庆
  • 英文关键词:organic chlorine pesticide;;underground river;;source;;distribution;;Chongqing
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学地理科学学院三峡库区生态环境教育部重点实验室;中国地质科学院岩溶地质研究所国土资源部岩溶动力学重点实验室;
  • 出版日期:2016-09-01 16:44
  • 出版单位:环境科学
  • 年:2016
  • 期:v.37
  • 基金:中央高校基本科研业务费专项(XDJK2013B021);; 西南大学博士基金项目(SWU110258);; 应对全球气候变化地质调查综合研究项目(12120113006700);; 重庆市科委院士专项(cstc2013jcyjys20001)
  • 语种:中文;
  • 页:HJKZ201609014
  • 页数:9
  • CN:09
  • ISSN:11-1895/X
  • 分类号:123-131
摘要
选取重庆老龙洞、青木关岩溶地下河为研究对象,采用气相色谱仪-微池电子捕获检测器(GC-μECD)分析两条地下河水体中21种有机氯农药(OCPs)的浓度.结果表明,南山地下河中六六六(HCHs)和艾氏剂类化合物(ALDs)是主要检出物,青木关地下河中HCHs和甲氧滴滴涕是主要检出物.南山、青木关地下河中均未检出o,p'-DDE、p,p'-DDE、o,p'-DDD,同时,青木关地下河还未检出o,p'-DDT、狄氏剂,其余OCPs在两条地下河中检出率高达100%.青木关地下河中OCPs浓度范围为145~278 ng·L-1之间,平均值为213 ng·L-1;南山老龙洞地下河中OCPs浓度介于17.7~40.8 ng·L-1之间,平均值为32.7ng·L-1.两条地下河中各OCPs组分表现为地下河出口大于入口.通过对OCPs污染来源分析,发现两地下河流域滴滴涕(DDTs)主要来自于历史上工业DDTs输入,氯丹主要来自于大气沉降.六六六(HCHs)主要来源是林丹的输入,南山地下河属于历史污染,青木关地下河上游的甘家槽有新的HCHs输入.与国内外其他各水体相比,南山地下河水体中HCHs、DDTs浓度处于低水平;青木关下河处于中等偏高水平.结合中外用水卫生标准,发现南山地下河和青木关地下河未超过饮水安全标准.青木关应禁止农田施用有机氯农药,保护地下河生态环境.
        Chongqing Laolongdong and Qingmuguan karst underground rivers were selected as the research objects,and 21 kinds of OCPs in those two underground rivers were analyzed by gas chromatography( GC-μECD). The results showed that,o,p'-DDE,p,p'-DDE,o,p'-DDD were not detected in Nanshan and Qingmuguan underground rivers; o,p'-DDT and dieldrin were not detected in Qingmugang; but the detection rate of the rest of the OCPs in those two underground rivers was as high as 100%. HCHs and ALDs were the most dominant compounds in Laolongdong underground river,whereas HCHs and methoxychlor were the most dominant compounds in Qingmuguan. The concentration range of total OCPs in Qingmuguan was 145-278 ng·L-1with a mean value of 213ng·L-1. The concentration range of total OCPs in Laolongdong was 17. 7-40. 8 ng·L-1with a mean value of 32. 7 ng·L-1. The OCPs component showed an increasing trend from the entrance to the exit of those two underground rivers. By analyzing the source of OCPs pollution,DDTs in the two underground river basin came from the historical industrial DDTs input; chlordane mainly came from atmospheric deposition. HCHs was the main source of Lin Dan' s input,Nanshan underground river was historical pollution,whereas there was a new HCHs input from Ganjiachao in Qingmuguan upstream. Compared with the water bodies at home and abroad,the concentrations of HCHs and DDTs in Nanshan underground river water were at low level,whereas those in Qingmuguan were at medium to high level. Comparing with the hygienic standard of foreign water,it could be observed that Nanshan underground river and Qingmuguan underground river were not able to meet the standard of drinking water safety standard. For the sake of protecting the ecological environment of the underground river,land application of organic chlorine pesticide should be banned in Qingmuguan.
引文
[1]李江,徐特秀.水中34种有机氯农药和氯苯类化合物测定的固相萃取-气相色谱-质谱分析法[J].污染防治技术,2015,28(3):56-61.
    [2]郑晓燕,刘咸德,刘文杰,等.卧龙自然保护区土壤中有机氯农药的浓度水平及来源分析[J].科学通报,2009,54(1):33-40.
    [3]杨梅,张俊鹏,蒲俊兵,等.重庆典型岩溶区地下河水体有机氯农药污染初步研究[J].中国岩溶,2009,28(2):144-148.
    [4]Jones K C,De Voogt P.Persistent organic pollutants(POPs):state of the science[J].Environmental Pollution,1999,100(1-3):209-221.
    [5]朱英月,刘全永,李贺,等.辽东与山东岛土壤中有机氯农药残留特征研究[J].土壤学报,2015,52(4):888-901.
    [6]Tao S,Liu W X,Li Y,et al.Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain,China[J].Environmental Science&Technology,2008,42(22):8395-8400.
    [7]Zabik J M,Seiber J N.Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains[J].Journal of Environmental Quality,1993,22(1):80-90.
    [8]Jantunen L M,Helm P A,Kylin H,et al.Hexachlorocyclohexanes(HCHs)in the Canadian Archipelago.2.air-water gas exchange ofα-andγ-HCH[J].Environmental Science&Technology,2007,42(2):465-470.
    [9]Yuan D X,Zhu D H,Weng J T.Karst of China[M].Beijing:Geological Publishing House,1993.
    [10]袁道先,蔡桂鸿.岩溶环境学[M].重庆出版社,1988.10-15.
    [11]Willett K L,Ulrich E M,Hites R A.Differential toxicity and environmental fates of hexachlorocyclohexane isomers[J].Environmental Science&Technology,1998,32(15):2197-2207.
    [12]王英辉,祁士华,李杰,等.广西岩溶洞穴大气中有机氯农药分布与传输[J].环境科学,2010,31(3):586-590.
    [13]唐访良,张明,徐建芬,等.钱塘江(杭州段)水中有机氯农药残留污染特征及健康风险评价[J].环境科学学报,2015,35(11):3595-3603.
    [14]孙剑辉,王国良,张干,等.黄河中下游表层沉积物中有机氯农药含量及分布[J].环境科学,2007,28(6):1332-1337.
    [15]窦磊,杨国义.珠江三角洲地区土壤有机氯农药分布特征及风险评价[J].环境科学,2015,36(8):2954-2963.
    [16]Zhou R B,Zhu L Z,Chen Y Y.Levels and source of organochlorine pesticides in surface waters of Qiantang River,China[J].Environmental Monitoring and Assessment,2008,136(1-3):277-287.
    [17]Ran D,Lu J J,Yao X R,et al.Distribution and risk assessment of organochlorine pesticides(OCPs)in soils of typical agricultural regions in Xinjiang[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(3):225-229.
    [18]Castelo-Grande T,Augusto P A,Barbosa D.Removal of pesticides from soil by supercritical extraction—a preliminary study[J].Chemical Engineering Journal,2005,111(2-3):167-171.
    [19]Mattina M J I,Iannucci-Berger W,Dykas L.Chlordane uptake and its translocation in food crops[J].Journal of Agricultural and Food Chemistry,2000,48(5):1909-1915.
    [20]周密,李晓明.北京郊区地表水质状况及有机氯农药残留特征[J].水土保持学报,2016,30(1):337-344.
    [21]Pesando D,Robert S,Huitorel P,et al.Effects of methoxychlor,dieldrin and lindane on sea urchin fertilization and early development[J].Aquatic Toxicology,2004,66(3):225-239.
    [22]Brunninger B M,Mano D M S,Scheunert I,et al.Mobility of the organochlorine compound dicofol in soil promoted by Pseudomonas fluorescens[J].Ecotoxicology and Environmental Safety,1999,44(2):154-159.
    [23]徐建明,蒋新,刘凡,等.中国土壤化学的研究与展望[J].土壤学报,2008,45(5):817-829.
    [24]贺秋芳,杨平恒,袁文昊,等.微生物与化学示踪岩溶地下水补给源和途径[J].水文地质工程地质,2009,36(3):33-38.
    [25]GB 5749-2006,生活饮用水卫生标准[S].
    [26]World Health Organization.Guidelines for drinking-water quality:recommendations[M].Geneva:World Health Organization,2004.
    [27]GB 3907-1997,海水水质标准[S].
    [28]GB 11607-1989,渔业水质标准[S].
    [29]万译文,康天放,周忠亮,等.北京官厅水库水体中挥发性有机物健康风险评价[J].环境科学研究,2009,22(2):150-154.
    [30]李娟娟,陈家玮,刘晨,等.北京郊区土壤中DDT(滴滴涕)残留调查及评价[J].地质通报,2008,27(2):252-256.
    [31]Mahmood A,Malik R N,Li J,et al.Levels,distribution pattern and ecological risk assessment of organochlorines pesticides(OCPs)in water and sediments from two tributaries of the Chenab River,Pakistan[J].Ecotoxicology,2014,23(9):1713-1721.
    [32]韦丽丽,郭芳,王健哲,等.柳州岩溶地下河水体有机氯农药分布特征[J].中国岩溶,2011,30(1):16-21.
    [33]张俊鹏,祁士华,姚慧丽.广西岩溶地下河水体中有机氯农药浓度分布特征研究[J].环境污染与防治,2011,33(4):54-57.
    [34]胡英,祁士华,兰兰,等.岩溶地下河中HCHs和DDTs的分布特征与健康风险评价[J].中国环境科学,2010,30(6):802-807.
    [35]Masih A,Lal J K,Patel D K.Contamination and exposure profiles of persistent organic pollutants(PAHs and OCPs)in groundwater at a Terai Belt of North India[J].Water Quality,Exposure and Health,2014,6(4):187-198.
    [36]Turgut C.The contamination with organochlorine pesticides and heavy metals in surface water in Küük Menderes River in Turkey,2000-2002[J].Environment International,2003,29(1):29-32.