pH调控对淘米水厌氧发酵的挥发性脂肪酸组成及奇偶数比率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pH regulation on the constitution and odd/even number proportion of VFAs in rice wash
  • 作者:贺诗雅 ; 方茜 ; 肖英豪 ; 黄周玥
  • 英文作者:HE Shiya;FANG Qian;XIAO Yinghao;HUANG Zhouyue;College of Civil Engineering,Guangzhou University;
  • 关键词:淘米水 ; pH ; 挥发性脂肪酸 ; 奇偶数比率
  • 英文关键词:rice wash;;pH;;VFAs;;odd/even number proportion
  • 中文刊名:HJWR
  • 英文刊名:Environmental Pollution & Control
  • 机构:广州大学土木工程学院;
  • 出版日期:2018-03-15
  • 出版单位:环境污染与防治
  • 年:2018
  • 期:v.40;No.304
  • 基金:国家自然科学基金资助项目(No.21207023);; 广州市科技计划项目(No.201510010111);; 广东省自然科学基金资助项目(No.2017A030313273)
  • 语种:中文;
  • 页:HJWR201803018
  • 页数:6
  • CN:03
  • ISSN:33-1084/X
  • 分类号:80-85
摘要
为了分析餐厨类固体废物的厌氧发酵性质,以淘米水为对象研究了其厌氧发酵过程,并通过调控pH观察厌氧发酵过程中挥发性脂肪酸(VFAs)组成及奇偶数比率的变化。结果表明:不调控pH时,偶数VFAs占主导地位,在VFAs达到峰值时,偶数VFAs为2 057.0mg/L;当pH为4.0、5.0时,丁酸含量最高;当pH为6.0、7.0时,乙酸含量最高;当pH为8.0时,丙酸含量最高。调控pH对VFAs奇偶数比率有明显影响。
        In order to study the characteristics of food waste in anaerobic fermentation,the rice wash was studied as a research object,and the constitution as well as odd/even number proportion of volatile fatty acids(VFAs)was observed by regulating pH.The results showed that the even VFAs of rice wash dominated,which was 2 057.0 mg/L when VFAs reached its peak without pH regulation.When pH was 4.0 or 5.0,butyric acid had the highest content;when pH was 6.0 or 7.0,acetic acid had the highest content;when pH was 8.0,propionic acid had the highest content.The regulation of pH had a significant influence on the odd/even number proportion of VFAs.
引文
[1]王权,宫常修,蒋建国,等.NaCl对餐厨垃圾厌氧发酵产VFA浓度及组分的影响[J].中国环境科学,2014,34(12):3127-3132.
    [2]ZHANG Y M,WANG X C,CHENG Z,et al.Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment[J].Chemosphere,2016,144:689-696.
    [3]KIM H,KIM J,SHIN S G,et al.Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source[J].Bioresource Technology,2016,207:440-445.
    [4]ZHANG W L,ZHANG L,LI A M.The positive effects of waste leachate addition on methane fermentation from food waste in batch trials[J].Water Science and Technology,2015,72(3):429-436.
    [5]ADEKUNLE K F,OKOLIE J A.A review of biochemical process of anaerobic digestion[J].Advances in Bioscience&Biotechnology,2015,6(3):205-212.
    [6]DAHIYA S,SARKAR O,SWAMY Y V,et al.Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J].Bioresource Technology,2015,182:103-113.
    [7]GAMEIRO T,LOPES M,MARINHO R,et al.Hydrolytic-acidogenic fermentation of organic solid waste for volatile fatty acids production at different solids concentrations and alkalinity addition[J].Water,Air,and Soil Pollution,2016,227(10):391.
    [8]VAN AARLE I M,PERIMENIS A,LIMA RAMOS J A,et al.Mixed inoculum origin and lignocellulosic substrate type both influence the production of volatile fatty acids during acidogenic fermentation[J].Biochemical Engineering Journal,2015,103:242-249.
    [9]ZHENG M X,ZHENG M Y,WU Y Y,et al.Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes[J].Biotechnology and Bioprocess Engineering,2015,20(2):298-303.
    [10]LI X,CHEN Y,ZHAO S,et al.Lactic acid accumulation from sludge and food waste to improve the yield of propionic acidenriched VFA[J].Biochemical Engineering Journal,2014,84:28-35.
    [11]AMULYA K,JUKURI S,MOHAN S V.Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy:process integration for up-scaling[J].Bioresource Technology,2015,188:231-239.
    [12]ARIUNBAATAR J,PANICO A,ESPOSITO G,et al.Pretreatment methods to enhance anaerobic digestion of organic solid waste[J].Applied Energy,2014,123(3):143-156.
    [13]YU L,MA J,ZHAO Q,et al.Enhance volatile fatty acid(VFA)and bio-methane productivity by pretreatment of lawn grass[J].Bioresource Technology,2014,162:243-249.
    [14]MODESTRA J A,NAVANEETH B,MOHAN S V.Bio-electrocatalytic reduction of CO2:enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis[J].Journal of CO2 Utilization,2015,10(11):78-87.
    [15]ZHANG M M,WU H Y,CHEN H.Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge[J].Process Safety and Environmental Protection,2014,92(2):171-178.
    [16]FRISON N,KATSOU E,MALAMIS S,et al.Development of a novel process integrating the treatment of sludge reject water and the production of polyhydroxyalkanoates(PHAs)[J].Environmental Science&Technology,2015,49(18):10877-10885.
    [17]SURIYAMONGKOL P,WESELAKE R,NARINE S,et al.Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-a review[J].Biotechnology Advances,2007,25(2):148-175.
    [18]OLIVEIRA F C,DIAS M L,CASTILHO L R,et al.Characterization of poly(3-hydroxybutyrate)produced by Cupriavidus necator in solid-state fermentation[J].Bioresource Technology,2007,98(3):633-638.
    [19]AKIYAMA M,TAIMA Y,DOI Y.Production of poly(3-hydroxyalkanoates)by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids[J].Applied Microbiology and Biotechnology,1992,37(6):698-701.
    [20]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版,2002:216-219.
    [21]张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J].环境科学学报,2005,25(5):665-669.
    [22]张玉静,蒋建国,王佳明.pH值对餐厨垃圾厌氧发酵产挥发性脂肪酸的影响[J].中国环境科学,2013,33(4):680-684.
    [23]BABEL S,FUKUSHI K,SITANRASSAMEE B.Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester[J].Water Research,2004,38(9):2416-2422.