孕早期预测子痫前期、胎儿生长受限相关因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章孕早期血清指标与子痫前期、FGR的关系研究
     目的:探讨ADAM12-S、PAPP-A、PP13、β-hCG与子痫前期、FGR的关系,并选出候选指标,以备建立孕早期筛查子痫前期、FGR的多参数模型。
     方法:选取2008年12月至2010年9月在圣路易斯华盛顿大学Barnes-Jewish医院产科门诊于孕11-14周就诊的307例单胎妊娠孕妇作系统研究。询问病史,测量并计算BMI。抽取静脉血,利用时间分辨荧光免疫分析法检测解整合素样金属蛋白酶12-S(ADAM12-S)、胎盘蛋白13(PP13)、妊娠相关血浆蛋白A(PAPP-A)、β-人绒毛膜促性腺激素(β-hCG),并进行子宫动脉多普勒和胎盘四维能量多普勒检测。对参与研究的孕妇进行随访,记录妊娠并发症、分娩孕周、新生儿出生体重等信息。随访孕妇中27例发生子痫前期,12例发生FGR,148例为正常妊娠。120例发生其它妊娠并发症的病例、4例发生胎儿畸形的病例予以排除。对在Barnes-Jewish医院分娩的孕妇,收集其胎盘进行体视学分析。将子痫前期和FGR病例作为研究组,正常妊娠作为对照组对其血清、超声、胎盘体视学测值进行总结研究。ADAM12-S、PP13、PAPP-A、β-hCG测值转换为MoM(中位数倍数)。采用Wilcoxon秩和检验比较分析研究组与对照组各项血清指标的MoM值。
     结果:子痫前期组PP13MoM显著低于对照组(p<0.05), FGR组PAPP-AMoM显著低于对照组(p<0.05)。研究组ADAM12-S、β-hCGMoM与对照组无显著差异(p>0.05)。
     结论:孕早期PP13、PAPP-A降低分别与子痫前期、FGR相关,可能成为孕早期预测子痫前期、FGR的指标。
     第二章孕早期超声指标测定及与血清指标、临床危险因素联合筛查子痫前期、FGR研究
     目的:探讨孕早期四维能量多普勒及子宫动脉多普勒指标与子痫前期、FGR的关系,并将临床危险因素、血清、超声指标结合建立孕早期筛查子痫前期、FGR的多参数模型。
     方法:利用彩色多普勒测量子宫动脉搏动指数(P1)、阻力指数(R1)、舒张早期切迹,利用四维能量多普勒测量胎盘体积和血管指数(包括血管化指数(vascularization index,VI)、血流指数(flow index,FI)、血管化-血流指数(vascularization-flow index,VFI)。胎盘商(PQ)=胎盘体积/头臀长(CRL)。PI、RI、PQ、VI、FI、VFI测值转化为MoM。采用Wilcoxon秩和检验比较分析研究组与对照组各项超声指标的MoM值。利用直线回归分析各项超声指标之间及超声指标与血清指标之间的相关性。利用Logistic回归分析建立孕早期筛查子痫前期、FGR的多参数模型。回归模型的筛查效能用受试者工作特征曲线下面积(AUC)、灵敏度、假阳性率(FPR)表示。
     结果:1、子痫前期组FIMoM显著低于对照组(p<0.05)。研究组PIMoM、RIMoM、舒张早期切迹、VIMoM、VFIMoM、PQMoM与对照组无显著差异(p>0.05)。2、所有血清指标均存在相互关联。超声指标之间、超声指标与血清指标之间的关联性较小。3、临床危险因素、血清、超声单项指标预测子痫前期、FGR时,对预测子痫前期有显著贡献的临床危险因素为BMI、初产妇和既往子痫前期病史,对预测FGR有显著作用的为吸烟和慢性高血压。PAPP-A预测FGR的灵敏度(33.3%)高于临床危险因素预测FGR的灵敏度(30.1%),PP13、FI预测子痫前期的灵敏度分别为3.8%及7.7%,低于临床危险因素预测子痫前期的灵敏度(47.7%)。4、将临床危险因素、血清和超声指标联合预测子痫前期或FGR时,对预测子痫前期有显著贡献的为BMI、初产妇和既往子痫前期病史,AUC为0.885(95%C10.803-0.926),FPR为5%时的灵敏度为47.7%,FPR为10%时的灵敏度为67.7%。对预测FGR有显著作用的为慢性高血压及PAPP-A,AUC为0.806(95%CI0.736-0.864),FPR为5%时的灵敏度为25%,FPR为10%时的灵敏度为50%。
     结论:孕早期PAPP-A可用于预测FGR,且灵敏度高于临床危险因素,可与临床危险因素联用预测FGR。孕早期PP13、FI预测子痫前期的灵敏度低,不能增进临床危险因素预测子痫前期的效能。
     第三章子痫前期、FGR孕晚期胎盘体视学变化及其与孕早期血清、超声指标的关系
     目的:探讨子痫前期、FGR患者孕晚期胎盘体视学变化是否与孕早期血清、超声指标相关。
     方法:收集子痫前期13例、FGR7例、正常妊娠20例胎盘进行体视学分析。用排水法测量胎盘体积并随机取样5处,组织块经福尔马林固定后行苏木精—伊红染色。对染色后的切片进行体视学分析,计算胎盘绒毛和绒毛毛细血管的体积、表面积、长度。利用t检验和方差分析进行统计学分析。
     结果:FGR组和子痫前期组胎盘体积、末梢绒毛体积、表面积较对照组显著降低(p<0.05)。胎盘体视学测值与超声指标、ADAM12-S、PP13、β-hCG均无显著性联系。PAPP-A与末梢绒毛体积关联的p值为0.05。胎盘体视学异常组PAPP-A(MoM)(0.7±0.5)低于对照组(1.1±0.5)(p=0.03)。
     结论:孕早期PAPP-A降低影响胎盘末梢绒毛体积,可能是导致FGR发生的原因。
Chapter1The relationship of first trimester serum markers with preeclampsia and fetal growth restriction
     Object:To evaluate the association of ADAM12-S, PAPP-A, PP13, P-hCG with preeclampsia and fetal growth restriction(FGR), and select candidate markers for a multi-parameter model to predict preeclampsia and fetal growth restrction.
     Method:This is a systematical study of307singleton pregnancies who attended Medical Center of Washington University in St. Louis for routine assessment at11-14weeks of gestation from2008to2010. Medical history was recorded and body mass index (BMI) calculated. Venous blood was drawn. A disintegrin and metalloprotease12-S (ADAM12-S), placental protein13(PP13), pregnancy-associated plasma protein A (PAPP-A) and3-human chorionic gonadotrophin (P-hCG) concentration were measured by a time-resolved fluorescent immunoassay. Color Doppler and4-dimensional (4-D) power Doppler assessement were also applied. All the women included were followed up and pregnancy complications, gestational weeks of delivery, infant birthweight were recorded. There were27preclampsia,12FGR and148pregnancies.124pregnancies with other complications or fetal abnormality were excluded. Preclampsia and FGR cases were used as study group while normal pregnancy as control group. The results of serum analyte, sonographic and stereological assessment were summarized. Placentas were collected for stereological analysis from women who delivered in Barnes-Jewish Hospital. Multiples of the median (MoM) were calculated from the concentration of ADAM12-S、 PP13、PAPP-A、 β-hCG. Comparisons of serum analytes MoM between pregnancy outcomes were performed using Wilcoxon rank-sum test.
     Result:PP13MoM was significantly lower for preeclampsia (p<0.05). PAPP-A MoM was significantly reduced for FGR (p<0.05). ADAM12-S MoM, β-hCG MoM was not significantly different between any adverse outcome and control.
     Conclusion:First trimester reduced PP13, PAPP-A were associated with preeclampisa and FGR, respectively, and may become candidates to predict preclampsia and FGR in first trimester.
     Chapter2The assessement of first trimester sonographic markers and its combination with serum analytes and clinical risk factors in predicting preeclmapsia and fetal growth restriciton
     Object:To investigate the relationship of first trimester sonographic markers with preeclampsia and FGR, and combining serum analytes, sonographic makers and clinical risk factors to predict preeclampsia and FGR.
     Method:Uterine artery pulsatility index (PI), resistance indices (RI) and notching were measured by color Doppler. Placental volume, vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were obtained from4-dimensional (4-D) power Doppler. The placental quotient (PQ) was calculated by dividing placental volume by crown rump length (CRL). Multiples of the median (MoM) were calculated from the parameters. MoMs between pregnancy outcomes were compared using Wilcoxon rank-sum test. Regression analysis was then used to determine the significance of association between markers. Multivariable Logistic analysis was applied to establish moedel to predict preeclampsia and FGR. The performance of screening was demonstrated by area under receiver operating characteristic curves (AUC), sensitivity and false positive rates (FPR).
     Result:1. FI MoM was significantly lower for preeclampsia compared to control (p<0.05). None of PIMoM, RIMoM, notching, VIMoM, VFIMoM, or PQMoM was significantly different between any adverse outcome and control (p>0.05).2. All serum markers were significantly correlated with each other. Sonographic markers were less correlated with each other. Maternal serum markers also correlated less with sonographic markers.3. When clinical risk factors, serum and songographic markers were used alone in prediction, BMI, nulliparity, previous preeclampisa showed significant contribution to the prediction of preeclampsia, while smoking, hypertension showed significant contribution to the prediciton of FGR. The sensitivity of PAPP-A to predict FGR(33.3%) was higer than that of clinical risk factors(30.1%), while the sensitivity of PP13,FI to predict preeclampsia(3.8%and7.7%respectively) was lower than that of clinical risk factors(47.7%).4. When clinical risk factors, serum and sonographic markers were combined to predict preeclampsia and FGR, there were significant contribution from BMI, nulliparity and previous preeclampsia in the prediction of preeclampsia. The AUC yielded by the ROC of the model was0.885(95%CI,0.803-0.926). At a5%FPR, the sensitivity was47.7%. At a10%FPR, the sensitivity was67.7%. In the prediction of FGR, there were significant contributions from hypertension and PAPP-A. The AUC yielded by the ROC of the model was0.806(95%CI,0.736-0.864). At a5%FPR, the sensitivity was25%. At a10%FPR, the sensitivity was50%.
     Conclusion:First trimester PAPP-A contribute to the prediction of FGR. The sensitivity of PAPP-A to predict preeclampsia is higher than clinical risk factors and can be combined with clinical risk factors to predict FGR. PP13、FI and ADAM12-S failed to show their contribution to the screening model because of their low sensitivities.
     Chapter3Placenta stereological change in preeclampsia and fetal growth restriction and its association with first-trimester serum analytes and sonographic evaluation
     Objective:To test whether placenta stereological change is associated with first-trimester serum analytes and sonographic evaluation in preeclampsia and FGR.
     Method:Placentas were collected from13preeclampsia,7FGR and20uncomplicated pregnancies. The volume of each placenta was tested by water replacement and random samples taken from5sites, and fixed in formalin within1hour of delivery. Hematoxylin&Eosin stained slides were analyzed by stereology to quantify linear dimensions, surface areas and volumes of placental villi and villi vessels. Paired t-test and Analysis of Variance (ANOVA) were used for comparison.
     Results:The volume of placenta and volume and surface areas of terminal villi were significantly smaller in placentas from pregnancies complicated by FGR and preeclampsia (p<0.05). Placental stereology was not related with sonographic markers, ADAM12-S, PP13or P-hCG. The statistic significance of the relationship between PAPP-A and volume of terminal villi was0.05. Compared with the control group, the PAPP-A (MoM) was lower in the pregnancies with abnormal placenta stereology (1.1±0.5versus0.7±0.5, p=0.03).
     Conclusion:The reduction of first-trimester PAPP-A levels affects volume of terminal villi, which might result in FGR.
引文
[1]Ness, R.B. and B.M. Sibai, Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol,2006.195(1):p.40-9.
    [2]Zhong, Y., M. Tuuli, and A.O. Odibo, First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat Diagn,2010.30(4):p.293-308.
    [3]乐杰等,妇产科学.2008.第七版.
    [4]Kuzmina, I.Y., GI. Hubina-Vakulik, and GJ. Burton, Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia. Eur J Obstet Gynecol Reprod Biol,2005.120(2):p.139-45.
    [5]Lawrence, J.B., et al., The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A,1999. 96(6):p.3149-53.
    [6]Overgaard, M.T., et al., Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor. J Biol Chem, 2000.275(40):p.31128-33.
    [7]Audibert, F., et al., Prediction of preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry. Fetal Diagn Ther,2005.20(1):p.48-53.
    [8]Makrydimas, G, et al., ADAM12-s in coelomic fluid and maternal serum in early pregnancy. Prenat Diagn,2006.26(13):p.1197-200.
    [9]Shi, Z., et al., ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem,2000.275(24):p. 18574-80.
    [10]Bale, L.K. and C.A. Conover, Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A. J Endocrinol,2005. 186(2):p.325-31.
    [11]Chafetz, I., et al., First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol,2007. 197(1):p.35 e1-7.
    [12]Spencer, K., N.J. Cowans, and A. Stamatopoulou, ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenatal Diagnosis,2008.28(3): p.212-216.
    [13]Laigaard, J., et al., Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia. Obstet Gynecol,2005.106(1):p.144-9.
    [14]Poon, L.C., et al., First-trimester maternal serum a disintegrin and metalloprotease 12 (ADAM12) and adverse pregnancy outcome. Obstet Gynecol,2008.112(5):p.1082-90.
    [15]Akolekar, R., et al., Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia. Prenat Diagn,2009.
    [16]Cowans, N.J., K. Spencer, and H. Meiri, First-trimester maternal placental protein 13 levels in pregnancies resulting in adverse outcomes. Prenat Diagn, 2008.28(2):p.121-5.
    [17]Gynecologists., A.C.o.O.a., Diagnosis and management of preeclampsia and eclampsia. ACOG practice bulletin,2002.33.
    [18]Alexander, GR., et al., A United States national reference for fetal growth. Obstet Gynecol,1996.87(2):p.163-8.
    [19]Poon, L.C., et al., First-trimester prediction of hypertensive disorders in pregnancy. Hypertension,2009.53(5):p.812-8.
    [20]Ray, J.G, et al., Cardiovascular health after maternal placental syndromes (CHAMPS):population-based retrospective cohort study. Lancet,2005. 366(9499):p.1797-803.
    [21]Barker, D.J., Adult consequences of fetal growth restriction. Clin Obstet Gynecol,2006.49(2):p.270-83.
    [22]Gluckman, P.D., et al., Effect of in utero and early-life conditions on adult health and disease. N Engl J Med,2008.359(1):p.61-73.
    [23]Bureau, U.C., Population Estimates,2004.
    [24]Rey, E. and A. Couturier, The prognosis of pregnancy in women with chronic hypertension. Am J Obstet Gynecol,1994.171(2):p.410-6.
    [25]Goldenberg, R.L. and S.P. Cliver, Small for gestational age and intrauterine growth restriction:definitions and standards. Clin Obstet Gynecol,1997. 40(4):p.704-14.
    [26]Moroni, G, et al., Pregnancy in lupus nephritis. Am J Kidney Dis,2002.40(4): p.713-20.
    [27]Sibai, B.M., et al., Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol,1995.172(2 Pt 1):p.642-8.
    [28]Sibai, B.M., et al., Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med,1998.339(10):p.667-71.
    [29]Lin, J. and P. August, Genetic thrombophilias and preeclampsia:a meta-analysis. Obstet Gynecol,2005.105(1):p.182-92.
    [30]Huppertz, B., Placental origins of preeclampsia:challenging the current hypothesis. Hypertension,2008.51(4):p.970-5.
    [31]Poon, L.C.Y., et al., First-trimester maternal serum pregnancy-associated plasma protein-A and pre-eclampsia. Ultrasound in Obstetrics & Gynecology, 2009.33(1):p.23-33.
    [32]Kutteh, W.H., R. Wester, and C.C. Kutteh, Multiples of the median:an alternative method for reporting antiphospholipid antibodies in women with recurrent pregnancy loss. Obstet Gynecol,1994.84(5):p.811-5.
    [33]Parvin, C.A., D.L. Gray, and G Kessler, Influence of assay method differences on multiple of the median distributions:maternal serum alpha-fetoprotein as an example. Clin Chem,1991.37(5):p.637-42.
    [34]Reynolds T, N.B., Dunstan F., Use of MoMs in medical statistics. Lancet,1993. 341(8836):p.59.
    [35]蒋涛,吕.,张晓娟,孙云,徐倩君,许争,孕早期产前筛查孕妇血清ADAM12-S中位数倍数校正方法的建立 临床检验杂志,2011.29(1):p.3.
    [36]Visegrady, B., et al., Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectin-13). Protein Eng,2001.14(11):p. 875-80.
    [37]Than, N.G., et al., Prediction of preeclampsia-a workshop report. Placenta, 2008.29 Suppl A:p. S83-5.
    [38]Khalil, A., et al., First trimester maternal serum placental protein 13 for the prediction of pre-eclampsia in women with a priori high risk. Prenat Diagn, 2009.29(8):p.781-9.
    [39]Cowan, N., et al., First Trimester Serum Testing by Placental Protein 13 (PP13) to Predict Pre-eclampsia Among Patients with A-Priori High Risk for Preeclampsia. Hypertension in Pregnancy,2008.27(4):p.470-470.
    [40]Huppertz, B., et al., Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther,2008.24(3):p.230-6.
    [41]Gonen, R., et al., Placental protein 13 as an early marker for pre-eclampsia:a prospective longitudinal study. BJOG,2008.115(12):p.1465-72.
    [42]Spencer, K., et al., First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound in Obstetrics & Gynecology,2007.29(2):p. 128-134.
    [43]Than, N.G., et al., Functional analyses of placental protein 13/galectin-13. Eur J Biochem,2004.271(6):p.1065-78.
    [44]Gebhardt, S., N. Bruiners, and R. Hillermann, A novel exonic variant (221delT) in the LGALS13 gene encoding placental protein 13 (PP13) is associated with preterm labour in a low risk population. Journal of Reproductive Immunology, 2009.82(2):p.166-73.
    [45]Lin, T.M., et al., Three pregnancy-associated human plasma proteins: purification, monospecific antisera and immunological identification. Int Arch Allergy Appl Immunol,1974.47(1):p.35-53.
    [46]Han, V.K., et al., The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab,1996.81(7):p.2680-93.
    [47]Pihl, K., et al., First trimester maternal serum PAPP-A, beta-hCG and ADAM12 in prediction of small-for-gestational-age fetuses. Prenat Diagn, 2008.28(12):p.1131-5.
    [48]Spencer, K., N.J. Cowans, and K.H. Nicolaides, Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn, 2008.28(1):p.7-10.
    [49]Breeze, A.C. and C.C. Lees, Prediction and perinatal outcomes of fetal growth restriction. Semin Fetal Neonatal Med,2007.12(5):p.383-97.
    [50]Garite, T.J., R. Clark, and J.A. Thorp, Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol, 2004.191(2):p.481-7.
    [51]von Dadelszen, P., L.A. Magee, and J.M. Roberts, Subclassification of preeclampsia. Hypertens Pregnancy,2003.22(2):p.143-8.
    [52]Prefumo, F., N.J. Sebire, and B. Thilaganathan, Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery Doppler indices. Hum Reprod,2004.19(1):p.206-9.
    [53]Caniggia, I., et al., Oxygen and placental development during the first trimester:implications for the pathophysiology of pre-eclampsia. Placenta, 2000.21 Suppl A:p. S25-30.
    [54]Melchiorre, K., et al., First-trimester uterine artery Doppler indices in the prediction of small-for-gestational age pregnancy and intrauterine growth restriction. Ultrasound Obstet Gynecol,2009.33(5):p.524-9.
    [55]Vainio, M., et al., Bilateral notching of uterine arteries at 12--14 weeks of gestation for prediction of hypertensive disorders of pregnancy. Acta Obstet Gynecol Scand,2005.84(11):p.1062-7.
    [56]Gomez, O., et al., Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome. Ultrasound Obstet Gynecol,2006.28(6):p.802-8.
    [57]Dar, P., et al., First-trimester 3-dimensional power Doppler of the uteroplacental circulation space:a potential screening method for preeclampsia. Am J Obstet Gynecol,2010.203(3):p.238 e1-7.
    [58]Baumann, M.U., et al., Soluble endoglin and inhibin a serum levels are elevated in women with subsequent late-onset pre-eclampsia. Placenta,2008. 29(8):p.A81-A81.
    [59]Zalud, I. and S. Shaha, Three-dimensional sonography of the placental and uterine spiral vasculature:influence of maternal age and parity. J Clin Ultrasound,2008.36(7):p.391-6.
    [60]Nowak, P.M., et al., Comparison of placental volume in early pregnancy using multiplanar and VOCAL methods. Placenta,2008.29(3):p.241-5.
    [61]Rizzo, G., et al., First trimester uterine Doppler and three-dimensional ultrasound placental volume calculation in predicting pre-eclampsia. European Journal of Obstetrics Gynecology and Reproductive Biology,2008. 138(2):p.147-151.
    [62]Hafner, E., et al., First trimester placental and myometrial blood perfusion measured by 3D power Doppler in normal and unfavourable outcome pregnancies. Placenta,2010.31(9):p.756-63.
    [63]Noguchi, J., et al., Placental vascular sonobiopsy using three-dimensional power Doppler ultrasound in normal and growth restricted fetuses. Placenta, 2009.30(5):p.391-7.
    [64]Alcazar, J.L., Three-dimensional power Doppler derived vascular indices: what are we measuring and how are we doing it? Ultrasound in Obstetrics & Gynecology,2008.32(4):p.485-487.
    [65]薛敏,陈小敏,王双双等,正常胎盘内绒毛血管树的三维能量多普勒超声成像与病理的对照研究.临床超声医学杂志,2006.8(7):p.397-398.
    [66]Sibai, B., G Dekker, and M. Kupferminc, Pre-eclampsia. Lancet,2005. 365(9461):p.785-799.
    [67]Stepan, H., Angiogenic factors and pre-eclampsia:an early marker is needed. Clinical Science,2009.116(3-4):p.231-232.
    [68]Chitty, L., Prenatal screening for chromosome abnormalities. Br Med Bull, 1998.54(4):p.839-56.
    [69]Mayhew, T.M., Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta,2002.23(10):p.742-50.
    [70]Egbor, M., et al., Pre-eclampsia and fetal growth restriction:how morphometrically different is the placenta? Placenta,2006.27(6-7):p.727-34.
    [71]Mayhew, T.M., Taking tissue samples from the placenta:an illustration of principles and strategies. Placenta,2008.29(1):p.1-14.
    [72]Wyatt, S.M., et al., The correlation between sampling site and gene expression in the term human placenta. Placenta,2005.26(5):p.372-9.
    [73]Paciencia, M., et al., [Acute-placental dysfunction by villous-maturation defect and late-fetal mortality]. J Gynecol Obstet Biol Reprod (Paris),2008.37(6):p. 602-7.
    [74]Poon, L.C., et al., Hypertensive disorders in pregnancy:screening by biophysical and biochemical markers at 11-13 weeks. Ultrasound Obstet Gynecol,2010.35(6):p.662-70.
    [75]Huster, K.M., et al., Reproducibility of placental volume and vasculature indices obtained by 3-dimensional power Doppler sonography. J Ultrasound Med,2010.29(6):p.911-6.
    [1]McIntire, D.D., et al., Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med,1999.340(16):p.1234-8.
    [2]Ray, J.G., et al., Cardiovascular health after maternal placental syndromes (CHAMPS):population-based retrospective cohort study. Lancet, 2005.366(9499):p.1797-803.
    [3]Barker, D. J., Adult consequences of fetal growth restriction. Clin Obstet Gynecol,2006.49(2):p.270-83.
    [4]Gluckman, P.D., et al., Effect of in utero and early-life conditions on adult health and disease. N Engl J Med,2008.359(1):p.61-73.
    [5]Kaufmann, P., S. Black, and B. Huppertz, Endovascular trophoblast invasion:implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod,2003.69(1):p.1-7.
    [6]Caniggia, I., et al., Oxygen and placental development during the first trimester:implications for the pathophysiology ofpre-eclampsia. Placenta, 2000.21 Suppl A:p. S25-30.
    [7]Thomas, R.L. and K.J. Blakemore, Evaluation of elevations in maternal serum alpha-fetoprotein:a review. Obstet Gynecol Surv,1990.45(5): p.269-83.
    [8]Redman, C. W., Current topic:pre-eclampsia and the placenta. Placenta,1991.12(4):p.301-8.
    [9]Costa, S.L., et al., Screening for placental insufficiency in high-risk pregnancies:is earlier better? Placenta,2008.29(12):p.1034-40.
    [10]Hung, T.H., et al., Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro:a potential mediator of the inflammatory response in preeclampsia. Am J Pathol,2004.164(3):p.1049-61.
    [11]Tjoa, M.L., et al., Circulating cell-free fetal messenger RNA levels after fetoscopic interventions of complicated pregnancies. Am J Obstet Gynecol,2006.195(1):p.230-5.
    [12]Cindrova-Davies, T., et al., Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress:effects of antioxidant vitamins. Am J Pathol,2007.170(5):p.1511-20.
    [13]Roberts, J.M., et al., Preeclampsia:an endothelial cell disorder. Am J Obstet Gynecol,1989.161(5):p.1200-4.
    [14]Redman, C.W., Platelets and the beginnings of preeclampsia. N Engl J Med,1990.323(7):p.478-80.
    [15]Bosio, P.M., et al., Plasma P-selectin is elevated in the first trimester in women who subsequently develop pre-eclampsia. BJOG,2001.108(7):p. 709-15.
    [16]Moldenhauer, J.S., et al., The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol,2003.189(4):p.1173-7.
    [17]Egbor, M., et al., Morphometric placental villous and vascular abnormalities in early-and late-onset pre-eclampsia with and without fetal growth restriction. BJOG,2006.113(5):p.580-9.
    [18]Melchiorre, K., et al., First-trimester uterine artery Doppler indices in term and preterm pre-eclampsia. Ultrasound in Obstetrics & Gynecology, 2008.32(2):p.133-137.
    [19]Ness, R.B. and J.M. Roberts, Heterogeneous causes constituting the single syndrome of preeclampsia:a hypothesis and its implications. Am J Obstet Gynecol,1996.175(5):p.1365-70.
    [20]Redman, C., Placental debris, oxidative stress and pre-eclampsia. Placenta,2000.21:p.597-602.
    [21]Yu, C.K.H., et al., Prediction of pre-eclampsia by uterine artery Doppler imaging:relationship to gestational age at delivery and small-for-gestational age. Ultrasound in Obstetrics & Gynecology,2008. 31(3):p.310-313.
    [22]Farag, K., I. Hassan, and W.L. Ledger, Prediction of preeclampsia: can it be achieved? Obstet Gynecol Surv,2004.59(6):p.464-82; quiz 485.
    [23]Antsaklis, A., et al., The effect of gestational age and placental location on the prediction of pre-eclampsia by uterine artery Doppler velocimetry in low-risk nulliparous women. Ultrasound Obstet Gynecol,2000. 16(7):p.635-9.
    [24]Dugoff, L., et al., First trimester uterine artery Doppler abnormalities predict subsequent intrauterine growth restriction. Am J Obstet Gynecol,2005.193(3 Pt 2):p.1208-12.
    [25]Spencer, C.A., et al., Low levels of maternal serum PAPP-A in early pregnancy and the risk of adverse outcomes. Prenat Diagn,2008.28(11):p. 1029-36.
    [26]Conde-Agudelo, A., J. Villar, and M. Lindheimer, World Health Organization systematic review of screening tests for preeclampsia. Obstet Gynecol,2004.104(6):p.1367-91.
    [27]von Dadelszen, P., L.A. Magee, and J.M. Roberts, Subclassification of preeclampsia. Hypertens Pregnancy,2003.22(2):p.143-8.
    [28]Toal, M., et al., Determinants of adverse perinatal outcome in high-risk women with abnormal uterine artery Doppler images. Am J Obstet Gynecol,2008.198(3):p.330 e1-7.
    [29]Prefumo, F., N.J. Sebire, and B. Thilaganathan, Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery Doppler indices. Hum Reprod,2004.19(1):p. 206-9.
    [30]Gomez, O., et al., Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome. Ultrasound Obstet Gynecol,2006.28(6):p.802-8.
    [31]Hollis, B., et al., Reproducibility and repeatability of transabdominal uterine artery Doppler velocimetry between 10 and 14 weeks of gestation. Ultrasound Obstet Gynecol,2001.18(6):p.593-7.
    [32]Melchiorre, K., et al., First-trimester uterine artery Doppler indices in term and preterm pre-eclampsia. Ultrasound Obstet Gynecol,2008.32(2):p. 133-7.
    [33]Pilalis, A., et al., Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler and PAPP-A at 11-14 weeks' gestation. Ultrasound in Obstetrics & Gynecology,2007.29(2):p.135-140.
    [34]Crispi, F., et al., Predictive value of angiogenic factors and uterine artery Doppler for early-versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol,2008.31(3):p.303-9.
    [35]Vainio, M., et al., Bilateral notching of uterine arteries at 12--14 weeks of gestation for prediction of hypertensive disorders of pregnancy. Acta Obstet Gynecol Scand,2005.84(11):p.1062-7.
    [36]Plasencia, W., et al., Uterine artery Doppler at 11+0 to 13+6 weeks and 21+0 to 24+6 weeks in the prediction of pre-eclampsia. Ultrasound in Obstetrics & Gynecology,2008.32(2):p.138-146.
    [37]Martin, A.M., et al., Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11-14 weeks of gestation. Ultrasound Obstet Gynecol,2001.18(6):p.583-6.
    [38]Parra, M., et al., Screening test for preeclampsia through assessment of uteroplacental blood flow and biochemical markers of oxidative stress and endothelial dysfunction. Am J Obstet Gynecol,2005.193(4):p.1486-91.
    [39]Gomez, O., et al., Uterine artery Doppler at 11-14 weeks of gestation to screen for hypertensive disorders and associated complications in an unselected population. Ultrasound Obstet Gynecol,2005.26(5):p.490-4.
    [40]Pilalis, A., et al., Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler and PAPP-A at 11-14 weeks'gestation. Ultrasound Obstet Gynecol,2007.29(2):p.135-40.
    [41]Konje, J.C., et al.,3-dimensional colour power angiography for staging human placental development. Lancet,2003.362(9391):p.1199-201.
    [42]Hafner, E., et al., Comparison between three-dimensional placental volume at 12 weeks and uterine artery impedance/notching at 22 weeks in screening for pregnancy-induced hypertension, pre-eclampsia and fetal growth restriction in a low-risk population. Ultrasound Obstet Gynecol,2006.27(6): p.652-7.
    [43]Rizzo, G., et al., First trimester uterine Doppler and three-dimensional ultrasound placental volume calculation in predicting pre-eclampsia. European Journal of Obstetrics Gynecology and Reproductive Biology,2008.138(2):p.147-151.
    [44]Merce, L.T., M.J. Barco, and S. Bau, Reproducibility of the study of placental vascularization by three-dimensional power Doppler. J Perinat Med, 2004.32(3):p.228-33.
    [45]Matijevic, R. and A. Kurjak, The assessment of placental blood vessels by three-dimensional power Doppler ultrasound. J Perinat Med,2002. 30(1):p.26-32.
    [46]Alcazar, J.L., Three-dimensional power Doppler derived vascular indices:what are we measuring and how are we doing it? Ultrasound in Obstetrics & Gynecology,2008.32(4):p.485-487.
    [47]Cnossen, J.S., et al., Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction:a systematic review and bivariable meta-analysis. Canadian Medical Association Journal, 2008.178(6):p.701-711.
    [48]Raine-Fenning, N.J., et al., Evaluation of the effect of machine settings on quantitative three-dimensional power Doppler angiography:an in-vitro flow phantom experiment. Ultrasound Obstet Gynecol,2008.32(4):p. 551-9.
    [49]Raine-Fenning, N.J., et al., Determining the relationship between three-dimensional power Doppler data and true blood flow characteristics:an in-vitro flow phantom experiment. Ultrasound Obstet Gynecol,2008.32(4):p. 540-50.
    [50]Raine-Fenning, N.J., et al., Methodological considerations for the correct application of quantitative three-dimensional power Doppler angiography. Ultrasound Obstet Gynecol,2008.32(1):p.115-7; author reply 117-8.
    [51]Schulten-Wijman, M.J., et al., Evaluation of volume vascularization index and flow index:a phantom study. Ultrasound Obstet Gynecol,2008. 32(4):p.560-4.
    [52]Cnossen, J.S., et al., Accuracy of mean arterial pressure and blood pressure measurements in predicting pre-eclampsia:systematic review and meta-analysis. British Medical Journal,2008.336(7653):p.1117-1120.
    [53]Morris, R.K., et al., Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age:systematic review and meta-analysis. BMC Pregnancy Childbirth,2008.8:p.33.
    [54]Audibert, F., et al., Prediction of preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry. Fetal Diagn Ther,2005.20(1):p.48-53.
    [55]Pihl, K., et al., First trimester maternal serum PAPP-A, beta-hCG and ADAM 12 in prediction of small-for-gestational-age fetuses. Prenat Diagn, 2008.28(12):p.1131-5.
    [56]Spencer, K., N.J. Cowans, and K.H. Nicolaides, Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn,2008.28(1):p.7-10.
    [57]Dugoff, L., et al., First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications:a population-based screening study (the FASTER Trial). Am J Obstet Gynecol,2004.191(4):p. 1446-51.
    [58]Spencer, K., et al., Prediction of pregnancy complications by first-trimester maternal serum PAPP-A and free beta-hCG and with second-trimester uterine artery Doppler. Prenat Diagn,2005.25(10):p. 949-53.
    [59]Vatten, L.J. and R. Skjaerven, Is pre-eclampsia more than one disease? BJOG,2004.111(4):p.298-302.
    [60]Roiz-Hernandez, J., J.C.-M.J. de, and M. Fernandez-Mejia, Human chorionic gonadotropin levels between 16 and 21 weeks of pregnancy and prediction ofpre-eclampsia. Int J Gynaecol Obstet,2006.92(2):p.101-5.
    [61]Goetzinger, K.R., et al., The efficiency of first-trimester serum analytes and maternal characteristics in predicting fetal growth disorders. Am J Obstet Gynecol,2009.201(4):p.412 e1-6.
    [62]De Leon J, S.G, Hopkins C, Noble V, Gimpel T, Myles T, Santolaya-Forgas J., Maternal serum free β-hCG levels in uncomplicated pregnancies at the 10th-15th week of gestation and the development of obstetric complications. J Reprod Med,2004.48:p.89-92.
    [63]Krantz, D., et al., Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am J Obstet Gynecol,2004.191(4):p.1452-8.
    [64]Spencer, K., et al., First-trimester biochemical markers of aneuploidy and the prediction of small-for-gestational age fetuses. Ultrasound Obstet Gynecol,2008.31(1):p.15-9.
    [65]Masse, J., et al., Pathophysiology and maternal biologic markers of preeclampsia. Endocrine,2002.19(1):p.113-25.
    [66]Bale, L.K. and C.A. Conover, Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A. J Endocrinol,2005.186(2):p.325-31.
    [67]Cowans, N.J. and K. Spencer, First-trimester AD AM12 and PAPP-A as markers for intrauterine fetal growth restriction through their roles in the insulin-like growth factor system. Prenat Diagn,2007.27(3):p.264-71.
    [68]Poon, L.C., et al., First-trimester maternal serum pregnancy-associated plasma protein-A and pre-eclampsia. Ultrasound Obstet Gynecol,2009.33(1):p.23-33.
    [69]Smith, GC, et al., Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab,2002.87(4):p. 1762-7.
    [70]Ajayi, GO., et al., Seroprevalence of Chlamdophila pneumoniae antibodies and pre-eclampsia:Is there any link. Geburtshilfe Und Frauenheilkunde,2008.68:p. S153-S153.
    [71]Shi, Z., et al., ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem,2000.275(24): p.18574-80.
    [72]Ito, N., et al., ADAMs, a disintegrin and metalloproteinases, mediate shedding of oxytocinase. Biochem Biophys Res Commun,2004.314(4):p. 1008-13.
    [73]Laigaard, J., et al., Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia. Obstet Gynecol,2005.106(1):p.144-9.
    [74]Spencer, K., N.J. Cowans, and A. Stamatopoulou, ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenatal Diagnosis, 2008.28(3):p.212-216.
    [75]Poon, L.C., et al., First-trimester maternal serum a disintegrin and metalloprotease 12 (ADAM12) and adverse pregnancy outcome. Obstet Gynecol,2008.112(5):p.1082-90.
    [76]Powers, R.W., et al., Maternal serum soluble fms-like tyrosine kinase 1 concentrations are not increased in early pregnancy and decrease more slowly postpartum in women who develop preeclampsia. Am J Obstet Gynecol, 2005.193(1):p.185-91.
    [77]Maynard, S.E., et al., Excess placental soluble fms-like tyrosine kinase 1 (sFltl) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest,2003.111(5):p.649-58.
    [78]Sugimoto, H., et al., Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem,2003.278(15):p. 12605-8.
    [79]Taylor, R.N., et al., Longitudinal serum concentrations of placental growth factor:evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol,2003.188(1):p.177-82.
    [80]Thadhani, R., et al., First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab,2004.89(2):p.770-5.
    [81]Lam, C., K.H. Lim, and S.A. Karumanchi, Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension, 2005.46(5):p.1077-85.
    [82]Akolekar, R., et al., Maternal serum placental growth factor at 11+0 to 13+6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound in Obstetrics & Gynecology,2008.32(6):p.732-739.
    [83]Teixeira, P.G, et al., Placental growth factor (PIGF) is a surrogate marker in preeclamptic hypertension. Hypertens Pregnancy,2008.27(1):p. 65-73.
    [84]Kusanovic, J.P., et al., A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med,2009.22(11):p. 1021-38.
    [85]Poon, L.C., et al., Maternal serum placental growth factor (PIGF) in small for gestational age pregnancy at 11 (+0) to 13(+6) weeks of gestation. Prenat Diagn,2008.28(12):p.1110-5.
    [86]Sawidou, M.D., et al., First trimester urinary placental growth factor and development of pre-eclampsia. Bjog-an International Journal of Obstetrics and Gynaecology,2009.116(5):p.643-647.
    [87]Signore, C., et al., Circulating soluble endoglin and placental abruption. Prenat Diagn,2008.28(9):p.852-8.
    [88]Stepan, H., et al., Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol,2008.198(2):p.175 e1-6.
    [89]Rana, S., et al., Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension,2007. 50(1):p.137-42.
    [90]Baumann, M.U., et al., First trimester soluble endoglin and soluble fins-like tyrosine kinase-1 levels for the prediction of pregnancies with subsequent pre-eclampsia. Reproductive Sciences,2008.15(2):p.211a-211a.
    [91]Chafetz, I., et al., First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol,2007. 197(1):p.35 e1-7.
    [92]Nicolaides, K.H., et al., A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol,2006.27(1):p.13-7.
    [93]Sekizawa, A., et al., PP13 mRNA expression in trophoblasts from preeclamptic placentas. Reproductive Sciences,2009.16(4):p.408-13.
    [94]Akolekar, R., et al., Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia. Prenat Diagn,2009.
    [95]Cowans, N.J., K. Spencer, and H. Meiri, First-trimester maternal placental protein 13 levels in pregnancies resulting in adverse outcomes. Prenat Diagn,2008.28(2):p.121-5.
    [96]Hsu-Lin, S., et al., A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem,1984.259(14):p.9121-6.
    [97]Halim, A., et al., Plasma P selectin (GMP-140) and glycocalicin are elevated in preeclampsia and eclampsia:their significances. Am J Obstet Gynecol,1996.174(1 Pt 1):p.272-7.
    [98]Banzola, I., et al., Performance of a panel of maternal serum markers in predicting preeclampsia at 11-15 weeks'gestation. Prenat Diagn, 2007.27(11):p.1005-10.
    [99]Spencer, K., et al., First trimester sex hormone-binding globulin and subsequent development of preeclampsia or other adverse pregnancy outcomes. Hypertens Pregnancy,2005.24(3):p.303-11.
    [100]Byrne, C.D., Does tumour necrosis factor alpha influence insulin sensitivity in skeletal muscle? Clin Sci (Lond),2000.99(4):p.329-30.
    [101]Fisher, K.A., et al., Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine (Baltimore), 1981.60(4):p.267-76.
    [102]Williams, M.A., et al., Maternal second trimester serum tumor necrosis factor-alpha-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia. Am J Epidemiol,1999.149(4):p.323-9.
    [103]Serin, I.S., et al., Predictive value of tumor necrosis factor alpha (TNF-alpha) in preeclampsia. Eur J Obstet Gynecol Reprod Biol,2002. 100(2):p.143-5.
    [104]Schipper, E.J., et al., TNF-receptor levels in preeclampsia--results of a longitudinal study in high-risk women. J Matern Fetal Neonatal Med,2005.18(5):p.283-7.
    [105]Leal, A.M., et al., First-trimester maternal serum tumor necrosis factor receptor-1 and pre-eclampsia. Ultrasound Obstet Gynecol, 2009.33(2):p.135-41.
    [106]Wolf, M., et al., First trimester insulin resistance and subsequent preeclampsia:a prospective study. J Clin Endocrinol Metab,2002. 87(4):p.1563-8.
    [107]D'Anna, R., et al., Adiponectin and insulin resistance in early-and late-onset pre-eclampsia. BJOG,2006.113(11):p.1264-9.
    [108]Harrison, G.A., et al., A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am J Hum Genet,1997.60(5):p.1158-67.
    [109]Moses, E.K., et al., A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet,2000.67(6):p.1581-5.
    [110]Soleymanlou, N., et al., Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab,2005.90(7):p.4299-308.
    [111]Farina, A., et al., Gene expression in chorionic villous samples at 11 weeks'gestation from women destined to develop preeclampsia. Prenat Diagn,2008.28(10):p.956-61.
    [112]Founds, S.A., et al., Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta, 2009.30(1):p.15-24.
    [113]Caramelli, E., et al., Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery Doppler waveform and intrauterine growth restriction--a pilot study. Prenat Diagn,2003.23(5):p. 367-71.
    [114]Alberry, M.S. and P.W. Soothill, Non-invasive prenatal diagnosis:implications for antenatal diagnosis and management of high-risk pregnancies. Semin Fetal Neonatal Med,2008.13(2):p.84-90.
    [115]Chanock, S.J., et al., Replicating genotype-phenotype associations. Nature,2007.447(7145):p.655-60.
    [116]Poon, L.C., et al., First-trimester prediction of hypertensive disorders in pregnancy. Hypertension,2009.53(5):p.812-8.
    [117]Sibai, B., G. Dekker, and M. Kupferminc, Pre-eclampsia. Lancet,2005.365(9461):p.785-799.
    [118]Pedersen NG, W.K., Scheike T, Tabor A., Fetal growth between the first and second trimesters and the risk of adverse pregnancy outcome. Ultrasound Obstet Gynecol,2008.32(2):p.147-54.
    [119]Villar, J., et al., Methodological and technical issues related to the diagnosis, screening, prevention, and treatment of pre-eclampsia and eclampsia. Int J Gynaecol Obstet,2004.85 SuppI 1:p. S28-41.
    [120]Viero, S., et al., Prognostic value ofplacental ultrasound in pregnancies complicated by absent end-diastolic flow velocity in the umbilical arteries. Placenta,2004.25(8-9):p.735-41.
    [121]Plasencia, W., et al., Uterine artery Doppler at 11+0 to 13+6 weeks and 21+0 to 24+6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol,2008.32(2):p.138-46.
    [122]Akolekar, R., et al., Maternal serum placental growth factor at 11+0 to 13+6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol,2008.32(6):p.732-9.
    [123]Spencer, K., N.J. Cowans, and A. Stamatopoulou, ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenat Diagn,2008. 28(3):p.212-6.
    [124]Spencer, K., et al., First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet Gynecol,2007.29(2):p.128-34.
    [125]Baumann, M.U., et al., First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol,2008.199(3):p.266 e1-6.