节能发电调度模式下梯级电站优化调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随我国经济社会的快速发展,资源与环境制约的矛盾日益突出。电力工业作为基础性的能源产业应该树立科学发展观,加快实施节能发电调度,对提高电力工业能源使用效率,节约能源,减少环境污染,促进能源和电力结构调整,确保电力系统安全、高效运行,实现电力工业的可持续发展具有重要的战略意义。节能发电调度办法的制定源于可持续科学发展观,节能发电调度给四川水电的发展带来新契机并应当进一步发挥梯级优化调度的作用。同时,节能发电调度也存在着一些问题有待完善。本论文主要内容包括以下几个方面:
     介绍了节能发电调度的基本原则、机组发电排序表和实施流程,节能发电调度实施将优化电力工业结构和布局,从各省的试点情况来看,节能发电调度试点成效显著。分析了节能发电调度与梯级水电站调度二者的关系,以四川电网与周边电网存在着互补性为例说明了应当加强区域资源的优化配置,并且需要加快特高压电网建设。分析了在节能发电调度实施中如何实施“三公”调度以确保电网安全稳定。
     分析了节能发电调度下的发电权交易和配套机制的形成,提出将发电权交易和梯级优化调度补偿机制相结合,重新定义了梯级优化调度效益、梯级优化调度净效益,并给出其分配顺序。同时,研究并提出了梯级优化调度补偿机制的制定准则。通过对比“竞耗上网”和“竞价上网”制度,分析了节能发电调度与电力市场机制的协调问题。构建了考虑能耗、价格、环保、补偿、安全等多种因素的梯级竞价多目标优化模型,同时给出基于满意优化理论的求解方法。
     考虑到随着水力资源的不断开发,电网结构日益复杂,水电关系必将越来越密切,本论文就梯级水电站的优化调度问题,立足于电网稳定安全,提出了先电网优化再梯级电站(水库)调度优化的调度方式。文中引入“多Agent系统”概念,将各个水电站看作一个个独立且相关联的个体,在保证地区电网或更大电力系统安全稳定运行的前提下,探讨如何分配梯级电站的上网出力,合理优化利用水力资源。通过四川南充电网梯级水电站优化调度实例验证了这一方案对实际电网的运行调度有着重要的意义。鉴于流域梯级电站群实施节能优化调度后,会引发一系列的电网安全稳定问题,本论文针对南充北部电网的运行特点,采用PSASP仿真系统对其进行电网稳定性分析,设计了一套电网安全稳定控制系统。提出了解决该类型电网稳定控制系统的结构、实现方式、原理和判据,保证了电网的安全稳定运行
     目前采用的调度模式是电网直接调度到各发电站甚至机组,与梯级调度的要求不符合,鉴于此提出构建梯级优化调度联合运行机构,并探讨了其组建方式和组成。针对当前流域多家业主“松散”的商议模式提出建立梯级优化调度联合运行群体决策支持系统。作为实施梯级优化调度的保障之一,还提出应进一步加强水情预报理论技术研究和建立水情实时监控机制。
     分析了梯级优化调度管理信息系统的组成和层次,提出结构化与原型法相结合的开发方法。重点分析了OOCHS-MIS的计算机系统、数据处理技术、数据库技术和网络技术,最后总结了OOCHS-MIS的系统特点。
With China's rapid economic and social development, resource and environmental constraints become increasingly prominent. As the basis of the energy industry, the electric power industry should establish the scientific concept of development, accelerate the implementation of energy-saving generation dispatching, which has an important strategic significance in raising energy efficiency and energy conservation, reducing environmental pollution, promoting energy and electricity restructuring, ensuring safe and efficient operation to power system, achieving the sustainable development of the electric power industry. The development of energy-saving generation dispatching approach generates from sustainable scientific development concept. It brings new opportunities to the Sichuan hydropower development and should further play the role of the optimal operation of cascade hydropower stations. At the same time, there are still some problems to be improved. This paper mainly includes the following aspects:
     The basic principles, generating unit sorting table and implementation processes of energy-saving generation dispatching are introduced. The implementation of energy-saving generation dispatching will optimize the electric power industry structure and layout. The implementation of energy-saving generation dispatching will optimize the electric power industry structure and layout. Judging from the pilot provinces, the experiments of energy-saving generation dispatching have remarkable results. The relationship between energy-saving generation dispatching and cascade hydropower stations dispatching is analyzed. The complementarities that exist between Sichuan power grid and around should be strengthened as an example to show that it should strengthen the optimal allocation of regional resources and construct extra high voltage network. In order to ensure grid security and stability, how to implement the 3-principl in energy-saving generation dispatching is analyzed.
     Based on the analysis of the formation of generation right exchange and matching mechanism, generation right exchange and the compensation mechanism of the optimal operation of cascade hydropower stations should be combined. Redefining the benefit and net benefit of optimal operation of cascade hydropower stations, the order of distribution is given. At the same time, the guidelines of compensation mechanism is studied and developed. By comparing the king consumption on-line and the bidding system, coordination of energy-saving generation dispatching and power market mechanism is analyzed. Considering energy consumption, prices, environmental protection, compensation, safety and other factors, a multi-objective optimization mathematical model of cascade hydropower stations dispatching is established and the solution method based on satisfactory optimization theory is given.
     With the continuous development of water resources, power structures become increasingly complex, relations between water and electricity will become closer and closer. Based on the grid stability and security, the optimal operation of cascade hydropower stations is studied in this paper. A mode which first optimizes the power network and then optimizes the reservoir operation is proposed. All hydropower are considered as an independent and associated individual by introducing the "Multi-Agent System" concept. Ensuring regional grid or more safe and stable operation, this paper explores how to allocate access and contribution of cascade hydropower stations and to rational optimize water resources. Optimal operation example of cascade hydropower stations in Sichuan Nanchong grid shows that this program has important significance on the real grids dispatching and operation. Because a series of network security and stability issues could be triggered after the implementation of cascade power plants of energy-saving optimal operation, a set of network security and stability control system has been designed. Aim at the operational features of Nanchong northern grid, PSASP simulation system is used to analyze the stability of power grid in this paper.
     Current model directly dispatch power to various power stations or units, which does not meet the requirements of cascade dispatching. In view of this, it is necessary to construct a joint operating body structure of optimal operation of Cascade Hydropower Stations. Ways of its formation and composition has been explored in this paper. Because of the current slack negotiation model with a number of owners, group decision support system for joint operation of optimal operation of cascade hydropower stations has been proposed. As one of the protection to implement the optimal operation of cascade hydropower stations, research on hydrological forecasting theory and technology and real-time monitoring mechanism should be further strengthened.
     The composition and level of management information system on optimal operation of cascade hydropower stations is analyzed. At the same time, the combination of structured and prototype development method is proposed. The focus of this part is on computer system, data processing technology, database technology, network technology of OOCHS-MIS, with the characteristics of OOCHS-MIS system summarized.
引文
[1]节能发电调度办法(试行)[R].四川省人民政府办公厅,2007,8.
    [2]国家电力公司成都勘测设计研究院.关于发展四川水电的几点建议[J].水电站设计,1999,15(2):1-4.
    [3]赵永龙,牛蓓.四川电网水电运行管理探讨[J].四川水力发电,2004,23(3):81-83.
    [4]严宇,马坷,于钊,等.改进发电调度方式,实施节能、环保、经济调度的探讨.中国电力[J],2007,40(6):18-20.
    [5]周翔.节能发电调度与市场机制的协调研究[D].华北电力大学硕士学位论文,2008:6-9.
    [6]艾琳,华栋.电力系统节能发电调度研究[J].华东电力,2008,36(9):85-89.
    [7]Crew M A, Kleindorfer P R. Reliability and Public Utility Pricing[M]. American Economic Review,1993:68.
    [8]王永干,刘宝华.国外电力工业体制与改革[M].北京:中国电力出版社,2005:23-40.
    [9]Chapman D J, Palmer A H, Leuer J F. A Case Study in Change from Centralized Energy Management System to a Decentralized One[J]. IEEE Transactions on Power System,1990,5(4):1517-1523.
    [10]Casazza J A. Electric Power. Market Forces and the Public Welfare[J]. IEEE Power engineering Review,1991,(11):3-5.
    [11]Douglas J. Buying and Selling Power in the Age of Competition[J]. IEEE Power Engineering Review,1994,(10):12-15.
    [12]曾鸣.电力工业商业化运营与电力市场[M].北京:中国电力出版社,1998:40-55.
    [13]中华人民共和国国务院.电力体制改革方案[R],2002,2.
    [14]尚金成,黄永皓,夏清.电力市场理论的研究与应用[M].北京:中国电力出版社,2002:68-73.
    [15]于尔铿,谢开,韩放.电力市场概述[J].电网技术,1995,(3):58-62.
    [16]韩放,曹防,杨以涵.电力市场的基本原则[J].电网技术,1995,(9):51-55.
    [17]谢开,于尔铿,韩放.电力市场对电网调度运行的影响[J].电网技术,1995,(12):48-53.
    [18]王平洋.电力市场竞争与电力调度[J].电力系统自动化,1997,(2):10-12.
    [19]王平洋.电力市场与远动技术[J].电力系统自动化,1997,(4):1-2.
    [20]王平洋.展望电力市场与管理信息[J].电力系统自动化,1997,(5):1-4.
    [21]于尔铿,白晓民,谢开.电力市场评述[J].中国电力,1997,(4):66-67.
    [22]于尔铿,韩放,谢开.电力市场[M].北京:中国电力出版社,1998:16-25.
    [23]言茂松.电能价值当量分析与分时电价预测[M].北京:中国电力出版社,1998:16-25.
    [24]梁宜.电力市场及其特性[J].水利电力科技,2002,(1-2):1-6.
    [25]孙洪波,常宝波,周家启.网损分摊决策研究[J].电力系统自动化,1999,(2):59-62.
    [26]曾鸣.电力市场建立和运作中的协调问题研究[J].电力系统自动化,1999,(2):41-44.
    [27]曾鸣,程芸,丁声高.我国电力市场的实施方案与相关问题研究[J].电网技术,2000,(2):69-73.
    [28]赖菲,翟桥柱.电力市场中非完全合作关系的研究[J].电力系统自动化,2000,(3):1-13,28.
    [29]刘亚安,管晓宏,赖菲.电力公司改变竞标策略对PX市场的影响[J].电力系统自动化,2000,(7):7-10.
    [30]赖菲,管晓宏,翟桥柱.小型电力供应商的竞标策略研究[J].电力系统自动化,2000,(16):6-8.
    [31]金允剑.“厂网分开,竞价上网”运营模式浅析[J].供电企业管理研究,2000,(4):9-11.
    [32]郑斌,王秀丽,王锡凡.电价的竞价机制及转运电价[J].华东电力,2000,(9):1-3.
    [33]薛正亮,朱近,陈继祥.电力市场改革的新模式和经济模型分析[J].上海经济研究,2001,(8):68-74.
    [34]杨华春,王鹏,贺仁睦.电力市场下各经济实体间利益分配的研究[J].华北电力大学学报,2002,(2):39-42.
    [35]张建林,肖青锋.发电企业竞价决策支持系统的研究[J].浙江大学学报(工学版),2002,(4):467-472.
    [36]Bloom J A. Representing the production cost curve of a power system using the method of moments[J]. IEEE Transactions on Power Systems,1992,3(7): 1370-1377.
    [37]文福拴,David A K.电力市场中的投标策略[J].电力系统自动化,2000,24(11):1-6.
    [38]祁达才,夏清,卢强,康重庆.发电侧电力竞争中价格垄断力的判据[J].电力系统自动化,2003,27(5):26-30.
    [39]Caramanis M C, Bohn R E, Schweppe F C. Optimal Spot Pricing:Practice and Theory[J]. IEEE Transactions on Power Systems,1982, PAS-101(9):3231-3215.
    [40]Martin L B, Shams N S. Real-Time of Reactive Power:Theory and Case Study Results[J]. IEEE Transactions on Power Systems,1991,6(1):23-29.
    [41]Martin L B, Walter W L. A Monte Carlo Model for Calculating Spot Market rices of Electricity[J]. IEEE Transactions on Power Systems,1992,7(2):584-590.
    [42]Dariush S, Visio V F, Boris G, Mario V P. Some Fundamental Technical Concepts About Cost Based Transmission Pricing[J]. IEEE Transactions on Power Systems,1996,11(2):1002-1008.
    [43]Liam M, John K R, Felix W F. Distributed Spot Pricing in Radial Distribution Systems[J]. IEEE Transactions on Power Systems,1994,9(1):311-317.
    [44]Michael C C, Roger E B, Fred G S. The Costs of Wheeling and Optimal Wheeling Rates[J]. IEEE Transactions on Power Systems,1986, PWRS-1(1): 63-73.
    [45]李延强.我国电力市场发展模式的研究[D].天津大学硕士论文,2000:3-10.
    [46]赵学顺,汪震,余志伟,等.电力市场中运行备用的获取和定价机制综述[J].浙江大学学报(工学版),2004,(1):52-59.
    [47]Zhang D Y, Wang Y J. Optimization based bidding strategies in the deregulated market[J]. IEEE Transactions on Power Systems,2000,15(3):981-986.
    [48]尚金成,黄永皓,张维存,等.一种基于博弈论的发电商竞价策略模型与算法[J].电力系统自动化,2002,(9):12-16.
    [49]郭家春,何光宇.发电公司报价决策行为的分析[J].电力系统自动化,2002,(5):5-8.
    [50]张任一,彭勃.电力企业在竞价上网中的博弈分析[J].科技进步与对策,2001,(2):161-163.
    [51]谭忠富,丁伟.运筹学方法在发电企业竞价策略中的应用研究[J].现代电力,2002,(4):83-88.
    [52]马隐,华瑶,袁金样.“标准电价法”竞价上网规则探讨[J].工业技术经济,2001,(3):84-85.
    [53]Hao S Y. A study of basic bidding strategy in clearing pricing auctions[J]. IEEE Transactions on Power Systems,2000,15(3):975-980.
    [54]龙丽.博弈论在企业竞争中的应用研究[D].厦门大学硕士论文,2001:20-29.
    [55]张任一,彭勃.电力企业在竞价上网中的博弈分析[J].科技进步与对策,2001,(2):161-163.
    [56]Guan X H, Ho Y C, David L P. Gaming and Price Spikes in Electric Power Markets[J]. IEEE Transactions on Power Systems,2001,16(3):402-408.
    [57]于尔铿,周京阳,王兴.电力市场的技术支持系统[J].电力系统自动化,1999,(2):24-28.
    [58]方艺,曹荣章,吴军.电力市场即时信息发布技术[J].电网技术,2000,(8):36-39.
    [59]宋燕敏,曹荣章,华定中.PMOS-2000发电市场技术支持系统概述[J].电力系统自动化,2000,(4):10-13.
    [60]曹容章,胡俊,杨争林.PMOS-2000发电市场结算子系统[J].电力系统自动化,2000,(16):9-12.
    [61]任震,高志华,黄福全.发电厂商成本效益分析[J].电力系统自动化,2004,(1):13-16.
    [62]龙军,吴杰康,王辑祥.电力市场中实现生产成本最小化的策略性竞标与数学模型[J].电力系统及其自动化学报,2003,(5):34-38.
    [63]宋燕敏,杨争林,胡俊.发电市场的核心技术—预计划处理子系统[J].电力系统自动化,2000,(8):23-25.
    [64]宋燕敏,杨争林,胡俊.实时发电市场的技术保障—实时调度子系统[J].电力系统自动化,2000,(12),9-11.
    [65]杨争林,华定中,肖云富.PMOS-2000发电报价管理子系统[J].电力系统自动化,2000,(13):5-7.
    [66]曹荣章,方艺,宋燕敏.PMOS-2000电力市场即时信息发布子系统[J].电力系统自动化,2000,(17):8-10.
    [67]喻洁,宋燕敏,胡俊.发电市场技术支持系统中的有功安全校正策略[J].电力系统自动化,2000,(14):7-10.
    [68]邹云.实施峰谷电价的基本原则探析[J].电力需求侧管理,2003,5(6):13-15.
    [69]吴秋伟,汪蕾,程浩忠.削峰填谷最优时基于DSM分时电价的确定与分析[J].继电器,2004,32(3):10-13.
    [70]吴秋伟,汪蕾,邹云.基于DSM和MCP的分时电价的确定与分析[J].电力需求侧管理,2003,(1):24-25.
    [71]霍雪松,金益民.电力市场中分时电价模型研究[J].江苏电机工程,2003,22(2):17-19.
    [72]韩洪琢,鲁守金.现行峰谷分时电价办法改革建议.电力需求侧管理,2002,(4):54-55.
    [73]曾鸣,尹佳音,等.上网侧和销售侧峰谷分时电价联动与整体优化的方法及实证分析[J].电力需求侧管理,2003,5(4):9-13.
    [74]唐捷,任震,胡秀珍.一种可操作的需求侧管理峰谷分时电价定价方法[J].电网技术,2005,29(22):71-75.
    [75]胡国强.梯级水电站优化调度模型与算法研究[D].华北电力工学博士论文,2007:24-42.
    [76]韩冰,张粒子,舒隽.梯级水电站优化调度方法综述[J].现代电力,2007,24(1):78-82.
    [77]Pereira M V F, Pinto L M V G. Stochastic optimization of a multi-reservoir hydroelectric system:a decomposition approach[J]. Water Resource Res.,1985, 21(6):779-792.
    [78]Rotting T A, Gjelsvik A. Stochastic dual programming for seasonal scheduling in the Norwegian powersystem[J]. IEEE Transactions on Power Systems,1992, 7(1):273-279.
    [79]Escudero L F, Fuente J L. Hydropower generation management under uncertainty via scenario analysis and parallel computation[J]. IEEE Transaction on Power Systems,1996,11(2):683-689.
    [80]Shrestha G B, Bikal K P, Tek T L. Fleten S E. Medium Term Power Planning With Bilateral Contracts[J]. IEEE Transactions on Power Systems,2005,20(2): 627-633.
    [81]宗航,周建中,张勇传.POA改进算法在梯级电站优化调度中的研究和应用[J].计算机工程,2003,29(17):105-109.
    [82]袁晓辉,袁艳斌,权先璋,等.基于混沌进化算法的梯级水电系统短期发电计划[J].电力系统自动化,2001,(16):34-38.
    [83]徐刚,马文光.基于蚁群算法的梯级水电站群优化调度[J].水力发电学报,2005,24(5):7-10.
    [84]伍永刚,王定一.二倍体遗传算法求解梯级水电站日优化调度问题[J].水电能源科学,1999,17(3):31-34.
    [85]梅亚东,朱教新.黄河上游梯级水电站短期优化调度模型及迭代解法[J].水力发电学报,2000,(2):1-6.
    [86]纪昌明,张玉山,李继清.市场环境下水电系统厂问经济运行问题研究[J].华北电力大学学报,2005,32(1):99-102.
    [87]杨东方,马光文,过夏明,等.竞价上网环境下梯级水电厂的经济运行问题研究[J].东北水利水电,2003,23(1):1-3,63.
    [88]刘治理,马光文.不同交易方式下的梯级水电厂日优化运行[J].水力发电,2005,31(9):72-74.
    [89]宋洋,钟登华,钟炜,等.面向电力市场的梯级水电站联合优化调度研究[J].水力发电学报,2007,26(3):22-28.
    [90]余听卉,李承军,刘广宇,等.峰谷电价下的梯级水电站短期优化调度分析[J].中国农村水利水电,2005,(3):90-94.
    [91]陈毕胜.梯级水电站长期优化调度的研究与应用[D].华中科技大学硕士学位论文,2004:7-15.
    [92]李义.梯级水电站短期优化调度的研究与应用[D].华中科技大学硕士学位论文,2004:31-39.
    [93]张铭,丁毅.梯级水电站水库群联合发电优化调度[J].华中科技大学学报(自然科学版),2006,34(6):90-92.
    [94]施展武,罗云霞.基于Matlab遗传算法工具箱的梯级水电站优化调度[J].电力自动化设备,2005,25(11):30-33.
    [95]赵国杰,杨敏.基于动态固化的梯级水电站长期优化调度研究[J].水力水电工程设计,2006,25(4):44-46.
    [96]王金文,石琦.水电系统长期发电优化调度模型及其求解[J].电力系统自动化,2002,26(24):22-25.
    [97]邹建国,芮钧.梯级水电站群优化调度控制研究及解决方案[J].电力自动化设备,2007,27(10):107-110.
    [98]曾勇红,姜铁兵,张勇传.基于线性规划的梯级水电系统短期发电计划[J].水电自动化与大坝监测,2004,28(4): 59-62.
    [99]倪二男,管晓宏,李人厚.梯级水电系统组合优化调度方法研究[J].中国电机工程学报,1999,19(1):19-23.
    [100]Xiaohong Guan, Ernan Ni, Renhou Li, Peter Bluh. An Optimization-Based Algorithm for Schedu-ling Hydrothermal Power Systems with Cascaded Reservoirs and Discrete Hydro Constraints[J]. IEEE Transactions on Power Systems,1997, 12(4):1775-1780·
    [101]彭天波.基于Hopfield网络的浠水梯级水电站实时优化调度[J].华中电力,1997,10(3):14-18.
    []102徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题[J].水利学报,2005,36(8):978-981.
    [103]伍永刚,王定一.基于遗传算法的梯级水电厂自动发电控制算法研究[J].电网技术,2000,24(3):35-38
    [104]王白陆,程春田,刘君,等.遗传算法和增量动态规划算法在水库优化调度中的应用[J].东北水利水电,2002,20(9):1-4,55.
    [105]梁伟,陈守伦,何春元,等.基于混沌优化算法的梯级水电站水库优化调度[J].水电能源科学,2008,26(1):63-66.
    [106]http://www.in-en.com/power/html/power-1522152237155900.html
    [107]http://www.zdxw.com.cn/jnhbpd/qyxw/200906/t20090615_282817.html
    [108]陈皓勇,张森林,张尧.区域电力市场环境下节能发电调度方式[J].电网技术,2008,32(24):16-22.
    [109]陶春华,杨忠伟,贺玉彬.梯级调度在节能发电调度中的作用[J].中国水力发电论文集2008:754-757.
    [110]黄明良.西北电网与华中(四川)电网联网规模选择研究[J].电力勘察设计,2006,(5):1-6.
    [111]吕宾.坚持科学发展观:从川电东送看全国联网.四川水力发电,2007,26(1):107-110.
    [112]黎岚,王海林,吴安平,等.坚持科学发展观:特高压交直流输电技术在四川电网的运用[J].四川电力技术,2007,30(1):1-4.
    [113]吕道斌.四川水电的根本出路在于特高压电网[J].四川水力发电,2006,25(3):100-103.
    [114]吕道斌.川电外送需要发展特高压电网[J].中国电力企业管理,2006,(9/10):89-91.
    [115]吕道斌.特高压将四川水电带入“高速公路”[J]. Stated Grid,2006, (5): 67-68.
    [116]陈运龙.流域梯级电站群联合运行调节效益补偿机制的研究[J].电力技术经济,2006,18(6):4-7.
    [117]张安华.关于节能发电调度若干问题的思考[J].电力需求侧管理,2008,10(6):4-6.
    [118]曾鸣,史连军,董军,等.与市场机制相协调的节能发电调度相关问题研究[J].电力技术经济,2009,19(5):1-5.
    [119]郭耀煌.运筹学原理与方法[M].成都:西南交通大学出版社,1994:78-82.
    [120]Simon H A. The seienees of the artificial. Cambridge[M]. MT:MIT Press, 1996:67-83.
    [121]姚新胜,黄洪钟,周仲荣.基于广义满意度原理的多目标优化理论研究[J].应用科学学报,2002,20(3):7-12.
    [122]Golden B, Assad A, Levy L, et al. The fleet size and mix vehicle routing problem[J]. Computers & Operations Researeh,1984, (11):49-65.
    [123]陈滋顶.铁路客运服务满意度调查方法研究[J].铁道运输与经济,2006,28(8):52-54.
    [124]Savelsbergh M, Desrosier J. Time Constrained Routing and Scheduling problems[J]. Transportation Researeh,1985,22(1):1-11.
    [125]姚新胜,黄洪钟,周仲荣.广义满意度原理及特性分析[J].西南交通大学学报(自然科学版),2003,35(6):712-716.
    [126]Dial R B. A Probabilistic Multi Path Traffic Assignment Model Which Obviates Path Enumeration[J]. Transportation Researeh,1999, (5):83-112.
    [127]程赐胜,丁祝燕.基于模糊嫡的物流企业客户满意度评价模型[J].铁道铁道科学与工程学报,2006,3(3):79-82.
    [128]Fornell C J, Michael D. The American Customer Satisfaction Index:Nature, Purepose and Findings[J]. Journal of Marketing,1996,(10):7-18.
    [129]刘伟达,孟建良.多Agent在电力系统中的应用[J].电气时代,2004,8:72-74.
    [130]蔡自兴.人工智能控制[M].北京:化学工业出版社,2005:130-134.
    [131]南充电业局“十一五”电网规划优化报告[R].南充电业局,2007.
    [132]四川南充电网.2007年运行方式[R].南充电业局,2007.
    [133]四川南充电网.2008年运行方式[R].南充电业局,2008.
    [134]2008年四川电网运行方式[J].成都:四川电力公司,2008.
    [135]何仰赞,温增银,汪馥瑛,等.电力系统分析上[M].华中理工大学出版社1995:30-37.
    [136]何仰赞,温增银,汪馥瑛,等.电力系统分析下[M].华中理工大学出版社,1995:124-134.
    [137]DL/T.584-953-110kV电网继电保护装置运行整定规程[R].
    [138]任祖怡,赵明君,夏尚学,等.安全稳定控制系统在新疆南部电网的应用[J].电力系统自动化,2008,32(12):104-106.
    [139]王立新,王彦良,陈晓红.地方小电厂并网的变压器和线路保护及安全自动装置配置方案探讨[J].继电器,2007,35(21):67-70.
    [140]周川梅,孙斌.贵州主网及地区电网孤网运行安全稳定措施研究[J].电力系统保护与控制,2008,36(19):29-32.
    [141]卢继平,孙华利,袁湘宁,等.基于PSS/E的宁夏电网静态电压稳定研究[J].继电器,2007,35(18):25-29.
    [142]任祖怡,窦乘国,许华乔.新型智能备用电源自投装置[J].电力系统自动化,2003,27(9):86-87.
    [143]上官帖,谌争鸣,郭军燕.和应涌流对变压器差动保护的影响及对策[J].华中电力,2004,17(5):50-52.
    [144]余高旺,毕大强,王志广,等.变压器和应涌流现象及实例分析[J].电力系统自动化,2005,29(6):20-23.
    [145]毕大强,王祥珩,李德佳,等.变压器和应涌流的理论探讨[J].电力系统自动化,2005,29(6):1-8.
    [146]战学牛,陈月红,刘太华,等.空投变压器导致线路差动误动的事故分析[J].继电器,2007,35(23):66-69.
    [147]DL 428-91.电力系统自动低频减负荷技术规定[R].
    [148]崔家佩,孟庆炎,陈永芳,等.电力系统继电保护与安全自动装置整定计算[M].北京:中国电力出版社,2006:454-489.
    [149]刘兴举.梯级水电站集中调度管理模式和发展方向[J].贵州水力发电,2009,23(1):79-82.
    [150]庞敏,周樨旸.梯级水电站水电联合优化调度系统研究[J].发电厂自动化,2007,(4):68-71.
    [151]http://hi.baidu.com/fanqil23/blog/item/3f4f33a88b20e5b2cal30c56.html
    [152]黄梯云.管理信息系统(第三版)[M].北京:高等教育出版社,2005:45-55.
    [153]Lyra C, Roberto L. A Multi Objective Approach to the Short-term Scheduling of a Hydro-electric Power System[J]. IEEE Transactions on Power Systems,1995, 10(4):1750-1754.
    [154]Campo R A. Probabilistic optimality in longterm energy sales[J]. IEEE Transactions on Power Systems,2002,17 (2):237-242.
    [155]Yang J S, Chen N. Short-term Hydrothermai Cordi-nation Using Multi-pass Dynamic Programming[J]. IEEE Trans on Power System,1989,4(3):1050-1056.
    [156]Mo B, GjelsvikA, GrundtA. Integrated riskmanagementof hydro power scheduling and contractmanagement[J]. IEEE Transactions on PowerSystems,2001, 16(2):216-221.
    [157]Tao Li, Mohammad Shahidehpour-Price-Based Unit Commitment:A Case of Lagrangian Relaxation Ver-sus Mixed Integer Programming[J]. IEEE Trans-actions on Power Systems,2005,20(4):2015-2025.
    [158]Ruzic E S. A Flexible Approach to Short-term Hydro-thermal Coordination[J]. IEEE Transactionson Power Systems,1996,11(8):1564-1571.
    [159]LinaresP. Multiple criteria decision making and risk analysis as risk management tools for power systems planning[J]. IEEE Transactionson Power Systems,2002,17(3):895-900.
    [160]Zeng M, Wu Z F, Liu BH, el al. An Economic Dispatching Model of Hydro-Thermal System under Market Environment and its Application[C]. IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian,China,2005:1-7.
    [161]Yuan Z Q, Hou Z J., Jiang C W. Eeonomic DisPatch and Optimal Power Flow Based on Chaotic Optimization[J]. IEEE Proceedings Powercon,2002,4: 2313-2317.
    [162]Zhao Y L, Wu Z F. Wei X M, el al. Studies on the Transmission and Distribution Operation under the Condition of Direct Power Purchasing for Large Customers[C]. The 5th international conference on power transmission & distribution technology 2005:382-388.