湿亚热带岩溶系统水文水化学对不同土地利用的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶地区环境容量低,是一种同沙漠边缘一样的脆弱环境区。中国幅员辽阔,地貌类型多样,其中以碳酸盐岩为主的岩溶地区面积广大,特别是以云贵高原为中心的湿亚热带岩溶连片分布区—西南岩溶区最为重要,不合理的土地利用将会造成岩溶区土地退化,发生石漠化现象等严重问题,这些问题将制约中国西南社会经济发展和人类生存。为此,中国政府有关部门,对西南湿亚热带岩溶区出现的石漠化现象进行监测与治理。然而,在岩溶石漠化监测与治理中由于对岩溶动力系统运行规律,特别是CO2、水、土、温度等与人类生存条件有密切联系的运行规律缺乏足够认识,以致于石漠化监测指标体系与方法不是很完善。岩溶动力系统中的水,不但是岩溶动力系统的枢纽,而且通过它与生物圈、人类活动、大气圈联系,使它们积极参与岩溶作用,为此,研究不同土地利用下湿亚热带岩溶水系统水文水化学的响应有着重要的意义。
     本文以此为题,选择了贵州省三个湿亚热带岩溶试验点进行研究,研究点为土地利用程度较高的普定县陈旗、灯盏河岩溶泉系统,以及原始森林覆盖下的荔波县板寨岩溶地下河系统,通过研究得出如下结论:
     (1)陈旗、灯盏河岩溶泉系统与板寨地下河系统为闭合系统,汇水面积分别为:陈旗1.3187km2,灯盏河2.8247 km2,板寨19.3043km2,补给来源主要为大气降水。其中陈旗、灯盏河岩溶泉系统内的土地利用程度较高,并发生一定程度的土质为主坡地的石漠化现象。板寨岩溶地下河系统内主要为喀斯特原始森林,人类的活动仅局限于洼地、谷地底部较平坦地区的水田耕作,而石质为主坡地未出现石漠化现象。
     (2)陈旗、灯盏河与板寨岩溶水系统的最枯径流模数都在同一数量级上,表明原始森林覆盖良好但土壤较少的岩溶水系统其枯季径流量并没有显著高于有土壤覆盖并发生一定程度石漠化现象的岩溶水系统,说明裸岩喀斯特森林调节枯水期径流的作用是有限的,同时说明土壤在调节水文过程中的重要性值得特别关注。
     (3)通过暴雨条件下岩溶水系统水化学过程变化和岩溶地下水流量衰减分析,推得陈旗、灯盏河与板寨岩溶水系统以管道流为主。可以根据岩溶泉水中CO2的变化情况推断陈旗、灯盏河的水田垂直渗透率较低。通过场雨的分析,得出裸岩喀斯特原始森林配合森林滞留泉子系统具有巨大的截留效应,而土地利用程度较高土质岩溶区,当植被被破坏并代之以农业用地以后,其系统蓄水容量将减小。
     (4)利用小波分析方法,对季节尺度上陈旗、灯盏河与板寨岩溶水系统集中排泄点的水化学日动态强度进行了分析,研究表明不同土地利用条件下岩溶水系统排泄点水化学日动态强度有所不同,表现为有土壤覆盖的但土地利用程度较高的岩溶水系统,其排泄点水化学指标中Pco2日动态强度要高于植被覆盖良好但岩石裸露系统排泄点的强度。说明岩溶水系统中土壤有着关键的作用,这间接说明了应加强石漠化评定标准的研究,区分土质为主石漠化和石质为主石漠化的重要性。
     (5)结合由水文地质调查、水化学动态变化解释、枯季流量衰减分析得出所研究区是以管道流为主的岩溶水系统后,通过地理信息系统平台,统计出土地利用程度较高的陈旗、灯盏河岩溶泉系统的下垫面参数,将这些参数带入分布式水文模型—SWMM模型中,对模型进行了率定、检验,结果显示其确定性系数基本在0.75以上,模型有效。该模型考虑了土地利用状况,在一定程度上可以反映不同土地利用下岩溶水系统水文水化学响应。最后,利用该模型,以陈旗岩溶泉为例,调整了土地利用参数,模拟了退耕还林后的情景,发现该岩溶水系统的排泄总量有所减少,洪峰有所消减。
The environmental capacity of karst region is low, just like the margin of desert, which is fragile. China is a country with a vast territory and has a diversity of land forms. The area of karst region where carbonate strata crop out is large, especially account of the continuous distribution of karst region in SW China. Unreasonable land uses have resulted in severe problems such as soil deterioration and rocky desertification in the karst region. These problems restricted the socioeconomic development and the human survival of southwest of China. Now, relevant Chinese government authorities are taking measures to try to solve these problems. However, the monitoring index systems and prevention and cure methods of karst rocky desertification is problematic due to lack of sufficient understanding of the running mechanisms of karst dynamic systems, such as the variations in CO2, water, soil and temperature, which have close relation with the human activities. Water not only has the key position in the karst dynamic systems, but also connects with atmosphere, biosphere and human activities, the latters being active in karstification. Therefore, research on the hydrological and hydrochemical response of humid subtropical karst systems to different land uses is of significance.
     The author chose this as the topic of the dissertation. Three sites in Guizhou Province were selected for this research. They are:Chenqi karst spring system, Dengzhanhe karst spring system and Banzhai karst subterranean river system. The former two sites are in Puding County, Guizhou Province. They belongs to paired catchemnts and have high but diffent degrees of land uses. The Banzhai karst subterranean river system is covered with a virgin forest, which grows on bared carbonate rocks.
     The following conclusions are obtained through this research.
     (1) All the three karst systems are closed hydrological systems. Their drainage areas are 1.3187km2, 2.8247km2, and 19.3043km2 for Chenqi, Dengzhanhe and Banzhai respectively. The recharge sources for these systems are all from the atmospheric precipitation. The land-use degrees of Chenqi and Dengzhanhe karst spring systems are high, and there are desertification phenomena of the slopes which are dominated by soil to some extent. Banzhai karst subterranean river system over which karst primary forest distributes and human activities only are minimal.
     (2) The dry season modulus of runoff of the three systems are in the same order, showing that the dry season runoff of the karst water system with good cover of primary forest but little soil is not necessary notably higher than that of the karst water systems with cover of soil but little vegetation. In other words, the dry season runoff adjusting capacity of karst primary forest is restricted due to its lack of soil cover. Therefore, the importance of soil in adjusting karst hydrologic processes should be paid more attention.
     (3) According to the analyses of storm-scale hydrochemical variation and discharge recession of karst water systems, the three karst systems are conduit systems. It is found that the vertical infiltration rates of paddy field in Chenqi and Dengzhanhe karst spring systems are low. By the single rainfall-runoff analyses, it is concluded that the interception effects of the virgin karst primary forest combined with forest retention are large, however, the impounded capacity of the karst region with thin soil cover and high land use degree will decreases if vegetation cover is changed to agricultural land.
     (4) By wavelet analysis method, it was found that the intensity of hydrochemical diurnal variation varies under different land use conditions. It is shown that the intensity of hydrochemical diurnal variation of the karst water system with soil cover but high degree of land use is higher than that of the system with good vegetation but little soil cover. This again shows that soil is key to the karst water system.
     (5) By using the parameters obtained by hydrogeological, hydrochemical and GIS-based lanuse surveys, a distributed hydrological model-SWMM was established, calibrated and verified. The results show that the deterministic coefficients were all above 0.75, indicating that the model is effective. This model takes the land use condition into account, so it was used to simulate the case of returning land use from farming land to forestry in the Chenqi karst system (as an example) through changing the parameter of land use. It was found that the total amount of discharge of this system decreases, and the peak discharge decreases too, showing the regulating effect of land use change on the karst hydrological process.
引文
[1]毕思文,许强.地球系统科学[M].科学出版社,2002.
    [2]张兰生,方休琦,任国玉.全球变化[M].高等教育出版社,2000.
    [3]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988.
    [4]David Drew and Heinz Hotzl. Karst Hydrogeology and Human Activeties [A]. International Contributions to Hydrogeology, Volume 20,1998.
    [5]陈沣勤,王晖IGBP中国全国委员会简介.IGBP中国委员会秘书处,1990.
    [6]袁道先.全球岩溶生态对比:科学目标和执行计划[J].地球科学进展,2001,(4).
    [7]袁道先,刘再华,林玉石等.中国岩溶动力系统[M].北京:地质出版社,2002.
    [8]王宇,张贵,李丽辉等.岩溶找水与开发技术研究[M].北京:地质出版社,2007.
    [9]Liu Zaihua, et al.,1995. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China:Field measurements and theoretical prediction of deposition rate. Geochimica et Cosmochimica Acta,59(15):3087-3097.
    [10]国家林业局.岩溶地区石漠化状况公报.http://www.gov.cn/ztzl/fszs/content_650610.htm
    [11]汤兵勇,姜海涛,任健等.环境系统工程方法[M].北京:中国环境科学出版社,1990.
    [12]施明乐.国际上LUCC研究的现状、问题和未来展望[J].上饶师范学院学报,2004,24(3).
    [13]倪绍祥,谭少华.近年来我国土地利用/覆盖变化研究的进展.中国地理学会自然地理专业委员会.土地覆被变化及其环境效应[M].北京:星球地图出版社,2002:7-8.
    [14]彭建,蔡运龙.LUCC框架下喀斯特地区土地利用/覆被变化研究现状与展望[J].中国土地科学,2006,20(5):48-53.
    [15]Lahmer W. Pffitzner B & Becker A. Assessment of land use and climate change impacts on the Mesoscale. Physics and Chemistry of the Earth.2001,26:565-575.
    [16]Rogers P. Hydrology and water quality. In:Meyer W B and Turner B L II eds. Changes in land use and land cover: A global perspective. Cambridge:Cambridge University Press,1994:231-258.
    [17]Bronstert A, Niehof D, Bilrger G. Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrological Processes,2002,16:509-529.
    [18]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000.
    [19]Calder I R. Hydrologic effects of land-use change. Chapter 13. In:Maidment D R ed. Handbook of hydrology. New York:McGraw-Hill.1993:50-60.
    [20]Krause P. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Physics and Chemistry of the Earth.2002,27:663-673.
    [21]Schuler T, Claytor R. Impervious cover as an urban stream indicator and a watershed management tool. In:Roeaner L A ed. Effects of Watershed development and management in aquatic ecosystems: Proceedings of an engineering workshop. New York:ASCE,1997:513-529.
    [22]Keppler E T, Ziemer R R. Logging effects on stream flow:water yield and summer low flows at Casper creek in Northwestern California. Water Resources Research,1990,26(7):1669-1679.
    [23]杨明德.论喀斯特环境的脆弱性[J].云南地理环境研究,1990,2:21-29.
    [24]彭建,蔡运龙.LUCC框架下喀斯特地区土地利用/覆被变化研究现状与展望[J].中国土地科学,2006,20(5):48-53.
    [25]章程,袁道先.典型岩溶地下河流域水质变化与土地利用的关系—以贵州普定后寨地下河流域为例[J].水土保持学报,2004,18(5):134-137.
    [26]贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶区岩溶水质的影响—以涪陵丛林岩溶槽谷区为例[J].自然资源学报,2004,19(4):455-461.
    [27]蒋勇先,袁道先,张贵等.岩溶流域土地利用变化对地下水水质的影响—以云南小江流域为例[J].自然资源学报,2004,19(6):707-715.
    [28]刘玉,李林立,赵柯等.岩溶山地石漠化地区不同土地利用方式下的土壤物理性状分析[J].水土保持学报,2004,18(5):142-145.
    [29]李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):122-125.
    [30]龙健,黄昌勇,李娟.喀斯特山区土地利用方式对土壤质量演变的影响[J].水土保持学报,2002,16(1):76-79.
    [31]万军,蔡运龙,张惠远等.贵州省关岭县土地利用/土地覆被变化及土壤侵蚀效应研究[J].地理科学,2004,24(5):573-579.
    [32]贾仰文,王浩,倪广恒等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [33]严启坤.概念性岩溶水文模型中几个疑难问题的探讨[J].中国岩溶,1993,12(4):295-303.
    [34]杨书娟,杨胜天,梁虹等.喀斯特地区分布式水文模型研究[J].贵州师范大学学报(自然科学版),2004,22(3):1-4.
    [35]章程,蒋勇军,LIAN Yan-qin等.利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程—以桂林丫吉试验场为例[J].水文地质工程地质,2007,(3):10-14.
    [36]吴月霞,蒋勇军,袁道先等.岩溶泉域降雨径流水文过程的模拟—以重庆金佛山水房泉为例[J].水文地质工程地质,2007,(6):41-48.
    [37]索立涛,万军伟,卢学伟TOPMODEL模型在岩溶地区的改进与应用[J].中国岩溶.2007,26(1):67-70.
    [38]任启伟.基于改进SWAT模型的西南岩溶流域水量评价方法研究[D].中国地质大学环境学院,中国地质大学研究生院,2006:45-59.
    [39]赵旭峰,陈植华,周天智.西南岩溶地区水资源预测评价中流域水文模型应用的特点及展望[J].水资源与水工程学报,2007,18(3):22-26.
    [40]徐胜友,何师意.碳酸盐岩土壤CO2的动态特征及其对溶蚀作用的驱动[J].中国岩溶,1996,15(1-2):50-56.
    [41]袁道先,刘再华,蒋忠诚等.碳循环与岩溶地质环境[M].北京:科学出版社,2003
    [42]何师意,潘根兴,曹建华等.表层岩溶生态系统碳循环特征研究[J].第四纪研究,2000,20(4):383-390.
    [43]李林立,况明生,张远瞩等.重庆金佛山岩溶区不同植被条件下土壤—植被系统CO2浓度日变化[J].农村生态环境,2005,21(3):67-70.
    [44]蒋忠诚,王瑞江,裴建国等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J].中国岩溶,2001,20(2):106-110.
    [45]Liu Zaihua, Dreybrodt W.,1997. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow:the role of the diffusion boundary layer and the slow reaction H2O+CO2=H++HCO3-. Geochimica et Cosmochimica Acta,61(14):2879-2899.
    [46]Liu Zaihua, Zhao Jinbo,2000. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environmental Geology,39(9):1053-1058.
    [47]Liu Zaihua, Chris Groves, Daoxian Yuan, Joe Meiman, Guanghui Jiang, Shiyi He,2004. Hydrochemical variations during flood pulses in the southwest China peak cluster karst:Impacts of CaCO3-H2O-CO2 interactions. Hydrological Processes,18(13):2423-2437.
    [48]Liu Zaihua, Li Qiang, Sun Hailong, Wang Jinliang,2007. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:soil CO2 and dilution effects. Journal of Hydrology,337(1-2):207-223.
    [49]刘再华,1992.桂林岩溶水文地质试验场岩溶水文地球化学的研究[J].中国岩溶,11(3):209-217.
    [50]刘再华,何师意,袁道先,1998.土壤中的CO2及其对岩溶作用的驱动[J].水文地质工程地质,25(4):42-45.
    [51]刘再华,袁道先,2000.我国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评,46(3):324-327.
    [52]王朝文,张玉环.贵州省农业地貌区划[M].贵阳:贵州人民出版社,1989.
    [53]李爱贞,刘厚凤.气象学与气候学基础[M].北京:气象出版社,2004.
    [54]贵州省普定县地方志编纂委员会.普定县志[M].贵阳:贵州人民出版社,1999.
    [55]万洪涛,谢传节,杨勇,等.贵州后寨河喀斯特小流域水化学特征[J].中国岩溶,1999:18(4):329-336.
    [56]路洪海.后寨河流域岩溶地下水时空演变规律及其与土地利用关系研究[博士论文].重庆:西南师范大学,2003.
    [57]贵州省荔波县地方志编纂委员会.荔波县志[M].北京:方志出版社,1997.
    [58]贵州省地方志编纂委员会.贵州省志·地理志(下册)[M].贵阳:贵州人民出版社,1988.
    [59]郭纯青,李文兴.岩溶多重介质环境与岩溶地下水系统[M].北京:化学工业出版社,2006.
    [60]周政贤.茂兰喀斯特森林科学考察集[M].贵阳:贵阳人民出版社.1987:74-109.
    [61]裴建国,梁茂珍,陈阵.西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J].中国岩溶,2008,27(1):6-10.
    [62]高道德,张世从,毕坤.黔南岩溶研究[M].贵阳:贵州人民出版社,1986:48-52.
    [63]张信宝,王世杰,贺秀斌.西南岩溶山地坡地石漠化分类刍议[J].地球与环境,2007,35(2):188-192.
    [64]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995:95-106.
    [65]Shuster E T, White W B. Seasonal fluctuations in the chemistry of limestone springs:a possible mean for characterizing carbonate aquifers. Journal of hydrology,1971,14:93-128.
    [66]刘再华,Chris Groves,袁道先等.水—岩—气相互作用引起的水化学动态变化研究—以桂林岩溶试验场为例[J].水文地质工程地质,2003:30(4):13-18.
    [67]袁道先,戴爱德,蔡五田,刘再华等.中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究—以桂林丫吉村为例[M].桂林:广西师范大学出版社,1996.
    [68]吴持恭.水力学(上册)[M].高等教育出版社.1982:364-420.
    [69]叶镇国.土木工程水文学[M].人民交通出版社,1999:44-48.
    [70]张宗祜,李烈荣.中国地下水资源(贵州卷)[M].北京:中国地图出版社,2005:26-46.
    [71]Wigley T M L. WATSPEC:A computer program for determining the equilibrium of aqueous solutions. British Geomorphological Research Group [J]. Technical Bulletin,1977:20:1-46.
    [72]周存宇.鼎湖山森林地表CO2通量及其影响因子的研究[J].中国科学D辑,2004,34增刊Ⅱ:175-182.
    [73]何师意,徐胜友,张美良.岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-323.
    [74]易志刚.鼎湖山自然保护区土壤有机碳、微生物生物量碳和土壤CO2浓度垂直分布[J].生态环境,2006,15(3):611-617.
    [75]Liu Z, He S, Yuan D, et al. Soil CO2 and its drive to karst processes [J]. Hydrogeology and Engineering Geology,1998,25,42-45.
    [76]Edwards N.T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor[J]. Soil Sci. Soc. Am. Proc.1975,39,361-365.
    [77]Howard D.M. and Howard P.J.A. Relationships between CO2 evolution, moisture content and temperature for a range of soil types[J]. Soil Biol. Biochem.1993,25,1537-1546.
    [78]Schwendenmann, L, Veldkamp, E, Brenes, T, et al. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest[J], La Selva, Costa Rica. Biogeochemistry.2003,64,111-128.
    [79]Mark Ellaway, Brian Finlayson and John Webb. The impact of land clearance on karst groundwater:a case study from Buchan, Victoria, Austrialia. Karst hydrogeology and human activities,[A],1998.
    [80]Lin Xueyu and LiaoZisheng. Agricultural impact on karst water resources in China. Karst hydrogeology and human activities,[A],1998.
    [81]L.F.Molerio Leon and J.Gutierrez Diaz. Agricultural impacts on Cuban karstic aquifers. Karst hydrogeology and human activities,[A],1998.
    [82]韩贵琳,唐杨,谭秋.喀斯特森林雨水的地球化学特征—以贵州茂兰国家级自然保护区为例[J].矿物岩石地球化学通报,2008,27(4):363-368.
    [83]洛塔岩溶地质研究组.洛塔岩溶及其水资源评价与利用的研究[M].北京:地质出版社,1984:169-177.
    [84]黄敬熙.流量衰减方程及其应用—以洛塔岩溶盆地为例[J].中国岩溶,1982(2):118-126.
    [85]韩行瑞,鲁荣安,李庆松.岩溶水系统—山西岩溶大泉研究[M].北京:地质出版社,1993:70-74.
    [86]郭纯青.中国岩溶生态水文学[M].北京:地质出版社.2007.74-80.
    [87]McCulloch J S G, M Robinson. History of forest hydrology[J]. Journal of Hydrology,1993,150: 189-216.
    [88]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [89]David G. Chandlera, James J. Bisogni Jr. The use of alkalinity as a conservative tracer in a study of near-surface hydrologic change in tropical karst. Journal of Hydrology,1999,216:172-182.
    [90]张喜,薛建辉,生原喜久雄等.黔中山地喀斯特森林的水文学过程和养分动态[J].植物生态学报,2007,31(5):757-768.
    [91]Ognjen Bonacci, Tanja Pipan, David C. Culver. A framework for karst ecohydrology[J]. Environ Geol (2008).
    [92]Bonacci O. (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci J 38(1):51-62.
    [93]N. Massei, J.P. Dupont, B.J. Mahler, et al. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses[J]. Journal of Hydrology,2006,329: 244-257.
    [94]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社.2007:99-104.
    [95]飞思科技产品研发中心.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社.2003:1-108.
    [96]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003:1-41.
    [97]董长虹,高志,余啸海.Matlab小波分析工具箱原理与应用[M].北京:国防工业出版社,2004:12-113.
    [98]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社.2004:3-27.
    [99]任美锷,刘振中.岩溶学概论[M].北京:商务印书馆,1983.86-99.
    [100]贾仰文,王浩.分布式流域水文模拟研究进展及未来展望[J].水科学进展,2003,14(增刊):118-123.
    [101]包为民.水文预报[M].北京:中国水利水电出版社.2006.138-214.
    [102]Atkinson, T.C.,1977b. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). Journal of Hydrology 35,93-110.
    [103]赖苗,赵坚.岩溶地下水渗流计算方法综述[J].水电能源科学,2002,20(4):44-47.
    [104]Scanlon, B.R., Mace, R.E., Barrett, M.E., Smith, B.,2003. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards Aquifer, USA. Journal of Hydrology 276 (1-4),137-158.
    [105]Thrailkill, J.,1974. Pipe flow models of a Kentucky limestone aquifer. Ground Water 12 (4), 202-205.
    [106]Gale, S.J.,1984. The hydraulics of conduit flow in carbonate aquifers. Journal of Hydrology 70 (1-4), 309-327.
    [107]Campbell, C.W., Sullivan, S.M.,1999. Simulating time-varying cave flow and water levels using the Storm Water Management Model (SWMM). In:Proceedings of the Seventh Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impact of Karst; Hydrogeology and Engineering Geology of Sinkholes and Karst. A.A.Balkema, Rotterdam, Boston,383-388.
    [108]Campbell, C.W., Sullivan, S.M.,2002.Simulating time-varying cave flow and water levels using the Storm Water Management Model. Engineering Geology 65 (2002),133-139.
    [109]吴月霞.基于SWMM的岩溶泉域水文过程的模拟研究—以重庆金佛山水房泉为例[D].西南大学研究生院,2008.
    [110]任伯帜,邓仁健,李文健.SWMM模型原理及其在霞凝港区的应用[J].水运工程,2006,(4):41-44.
    [111]陈守珊.城市化地区雨洪模拟及雨洪资源化利用研究[D].河海大学研究生院,2007.
    [112]Horton R.E. An Approach toward a Physical Interpretation of Infiltration-Capacity. Soil Science, 1940,5:399-417.
    [113]Mein R.G., Larson C.L. Modeling infiltration during a steady rain. Water Resources,1973,9:384-394.
    [114]刘迈.城市暴雨雨水管理系统的初探[J].南京市政,2000,(2):1-13.
    [115]Wayne C. Huber, Robert E. Dickinson etal. STORM WATER MANAGEMENT MODEL USER'S MANUAL. VERSION 4. Environmental Research Laboratory Office of Research and Development U.S. Environmental Protection Agency,1992,1-493.
    [116]黄元佐,黄先宁.林业常用GIS平台的介绍[J].华东森林经理.2004,18(4):52-55.
    [117]吴信才.MapGIS地理信息系统[M].北京:电子工业出版社.2004.203-232.
    [118]王华玉,于喜东.MapGIS在数字矿山中的应用[J].煤炭科技.2001,(2):10-13.
    [119]周英,申双和,孙睿.南京地区稻田蒸散的研究[J].南京气象学院学报,1993,16(4):492-499.
    [120]汪汉林,青先国,吴金水.稻田水量转换观测及模拟实验研究[J].湿地科学,2004,2(4):290-295.
    [121]R. L. Snyder, S. Eching. Penman-Monteith daily (24-hour) Reference Evapotranspiration Equations for Estimating ETo, ETr and HS ETo with Daily Data. The University of California.
    [122]Richard G. Allen, Luis S. Pereira, Dirk Raes, et al. Crop evapotranspiration-Guidelines for computing crop water requirements[M]. Rome,1998:FAO-Food and Agriculture Organization of the United Nations.
    [123]彭世彰,徐俊增.参考作物蒸发蒸腾量计算方法的应用比较[J].灌溉排水学报,2004,23(6):5-9.
    [124]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004:104-130.
    [125]Lewis A. Rossman. Storm water Management Model User's Manual(Version 5.0), Revised March 2008.
    [126]卫迦,田华兵.岩溶管流水力学模型的典型研究—以后寨地下河为例[J].成都理工学院学报,1997,24(增刊):58-64.