基于压电材料的结构应变在线监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应力应变信号是船舶与海洋工程结构健康监测技术最为重要的参数之一。因此,建立结构应变在线监测系统就成为必要。本文开发一种基于压电材料的结构应变在线监测系统。本系统可以长期在线监测船舶与海洋结构的应力应变,并具有预警功能;同时可以将采集到的数据上传至上位机进行存储;无线通信方式有效的避免了在船舶与海洋结构物上进行布线,减少了繁重的工作量。系统具有体积小、功耗低、电路构造简单等特点。
     论文研究了结构应变在线监测系统的组成、硬件结构设计和软件开发方法,并介绍了各个模块在系统中的作用。主要包括以下内容:
     首先,系统的硬件设计。本系统主要采用PVDF压电薄膜作为传感器,以MSP430单片机为核心,利用nRF905无线收发芯片设计构成。整个系统分为三个模块:数据采集模块、数据发射模块、数据接收模块。数据采集模块使用PVDF压电薄膜进行结构应力应变信号采集,使用微控制器内部集成的模数转换器ADC12进行电压数据的模数转换,再通过数据发射模块将采样数据发射出去,数据接收模块负责接收数据并将数据通过串口上传至上位机进行分析和处理,上位机还可以将数据保存下来以备后用。
     其次,系统的软件设计。系统软件设计分为两大部分:数据发送部分和数据接收部分。通过编程对MSP430单片机的功能模块进行设置并配置nRF905无线模块的各寄存器,然后由软件控制硬件,完成数据的采集、发射、接收和上传至上位机的功能。同时可以在软件中设置预警值。
     最后,实验验证工作。通过本文实验研究,进一步验证了如下关系:当钢板上表面应力的幅值T相同时,应力的频率f与上位机输出电压V的关系;当钢板上表面应力的频率f相同时,T与V的关系;PVDF薄膜面积A与V的关系。并且通过对比上位机软件显示的电压波形图与数据采集模块的输出电压波形图的方法对系统的无线数据采集及在线监测功能进行了验证。
Structural strain is the most important parameter in ship and marine structures healthmonitor. Therefore, establishment of structure strain on-line monitoring system is being moreand more necessary. A structural strain on-line monitoring system using piezoelectric materialis developed in this thesis. The system can monitor the stress and strain of ship and marinestructures on-line for long period, and preliminary warning function is available. At the sametime, the probed data can be uploaded and saved to the host computer. The wirelesscommunication mode effectively avoids wire disposal on the ship and marine structures, andreduces heavy workload. The system has obvious advantages such as small volume, lowpower consumption, simple circuit board and so on.
     The thesis studies the composition of the structural strain on-line monitoring system,hardware structure design and software design method in detail. The thesis also introduces therole of all the parts. The main research work of the thesis is shown as follows:
     Firstly, the hardware of system is designed. Based on MSP430 single chip microcomputerand nRF905 wireless transceiver this system is designed with PVDF film that is used as strainsensor. This system consists of three modules: data acquisition module, data emission module,and data receiving module. The structural stress and strain is probed with PVDF film in dataacquisition module. ADC12, the analog-to-digital converter internal integration in themicrocontrollcr, is used to analog-digital conversion of voltage data. The probed data are sentby data emission module, and received by data receiving module. At the same time the probeddata can be uploaded and saved to the host computer.
     Secondly, the software of system is designed. The software design of system consists oftwo parts: the data sending part and the data receiving part. The functional module ofMSP430 single chip microcomputer is set and each register of nRF905 wireless transmittalmodule is confected through programming, and then hardware is controlled by software. Thefunctions such as data acquisition, data emission, data receiving and uploading to the hostcomputer are available. At the same time, early warning value can be set in the software.
     Lastly, experimental examination is done. Through the research in this thesis, thefollowing relationships are further verified: the relationship between the stress frequency (f)and the output voltage of host computer (V) when the stress amplitude (T) at the surface of the plate keeps constant; the relationship between (T) and (V) while the stress frequency (f)keeps constant; The relationship between the area of PVDF (A) and (V). Also, the thesis teststhe wireless data acquisition module and the on-line monitoring module through comparingthe voltage waveform from the host computer and the voltage waveform from the dataacquisition module.
引文
[1] 温利民,黄亦辉.神经网络用于结构损伤识别的几个关键问题研究.建筑工业,2002,32(8):39~41.
    [2] 郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势.振动与冲击,2002,21(2):1~8.
    [3] P. L. Fuhr, Dryver R. Hus, Timothy P. Ambrose, David A. Barker. Embedded sensor results from the Winooski one Hydroelectric Dam. SPIE, 1994, 2191: 446-456.
    [4] H. Iwaki. Structure health monitoring system using FBG-based sensors for a damage tolerant. Smart structures and materials, San Diego, 2002: 4096-5009.
    [5] D. Inaudi. Monitoring of a concrete arch bridge duing construction. Smart structures and materials, San Diego, 2002: 4696-5017.
    [6] Z. X. Li, T. H. T. Chan, J. M. Ko. Health Monitoring and Fatigue damage assessment of bridge-deck sections. SPIE, 2000, 3995: 346-356.
    [7] 姜德生,梁磊,周雪芳等.光纤Bragg光栅传感器在冷饭盒大桥的应用.交通科技,2003,198(3):1~3.
    [8] 郭杏林,陈建林.基于神经网络技术的结构损伤探测.大连理工大学学报,2002,42(3):269~273.
    [9] 胡自力,熊克,杨红.基于智能材料结构的集中损伤评价方法.航空学报,2002,23(1):1~5.
    [10] 石容,陈伟民等.采用压电片阵列传感器进行损伤监测的研究.压电与声学,2000,22(4):277~280.
    [11] 陶宝祺,石立华,熊克等.自诊断自适应智能复合材料结构系统的研究.应用科学学报,1999(1):277~280.
    [12] 李青山,久保司郎,阪上隆英等.用压电材料进行损伤鉴别的理论与数值分析.力学学报,2001(3):415~422.
    [13] 赵红霞.一种高分辨率的有源光纤光栅传感系统.黑龙江大学硕士论文,2003:1~2.
    [14] 于秀娟,于有龙,张敏等.光纤光栅传感器在土木工程结构健康监测中的应用与进展.中国光学学会光电技术专业委员会成立二十周年暨第十一届全国光电技术与系统学术会议,中国北京,2005年7月15日~7月17日.北京:电子工业出版社,2005:800~805.
    [15] Kiyonori L, Wama, et al. JEE, 1976, 115: 35.
    [16] Kawai H. JapanJApplphys, 1969, 8: 975.
    [17] Sessler G M. JAcoustSocAm, 1981, 70(6): 1565.
    [18] Gellantree H R. MarconiRev, 1982, 45: 49.
    [19] Broussoux D, et al. JapanPhys, 1980, 51(4): 2020.
    [20] Graft G. Piezopolymers GoodVibration. HighTechnology, 1986(3): 24~27.
    [21] 功能材料及其应用编写组.功能材料及其应用.北京:机械工业出版社,1991.
    [22] Das Gupta D K. On the Nature of Pyroelectricity in PVDF. Ferroelectrics, 1981, 33: 75~89.
    [23] Solvay R Betz, Belgium Cie Brussels. New Technical Developments in PVDF Piezoelectric Devices in Europeand in USA. Solvay Technologies, Inc. 1990(4): 62~68.
    [24] 大东弘二.压电性高分子材料特性.静电气学会志,1983,7:92~98.
    [25] 具典淑,周智,欧进萍.PVDF压电薄膜的应变传感性研究.功能材料,2004,35(4):450~456.
    [26] 具典淑,周智,欧进萍.基于PVDF的金属构件裂纹监测研究.压电与声光,2004,26(3):245~248.
    [27] 王代华,周德高,刘建胜等.PVDF压电薄膜振动传感器及其信号处理系统.压电与声光,1999,21(2):122~6.
    [28] 刘建胜,汪同庆,王贵新,居琰,王代华.PVDF传感器实现斜拉桥桥索张力在线监测.仪表技术与传感器,2002,(12):3~4.
    [29] 刘剑飞,胡时胜.PVDF压电计在低阻抗介质动态力学性能测试中的应用.爆炸与冲击,1999,21(2):122~6.
    [30] Liu G, Fujimoto Y, Shintaku E, etc. Application of PVDF film to stress measurement of structural member. Journal of the Society of Naval Architects of Japan, 2002, 192: 591~599.
    [31] 刘刚,黄一,董维杰,孙宇.油漆涂层下PVDF的应变传感及测量方法研究.压电与声光,2007,29(5):615~618.
    [32] Galea S C. Use of piezoelectric films in detecting and monitoring damage in composites. J Intelligent Material System and Structures, 1993, 4: 330~336.
    [33] Yin L, Wang X M, Shen Y P. Damage monitoring in composite laminates by piezoelectric film. J Computers and Structures, 1995, 59(4): 623~630.
    [34] Egashira M, Shinya N. Local strain sensing using piezoelectric polymer. J of Intelligent Material Systems and Structures, 1993, 4: 558~560.
    [35] A Todoroki, Y Shimamura, T Inada. Plug and monitor system via Ethemet with distributed sensors and CCD cameras. Proceedings of the 2nd International Workshop on Structural Health Monitoring. Technomic, Lancaster, PA. 1999: 571~580.
    [36] 刘森,何希顺,何荣森.电子技术应用.2000年第12期:4~7.
    [37] 张晓红,Sasan Saadat,乔为民,敬岚,苟世哲,刘军科.红外通信IrDA标准与应用.光电子技术,2004(4):261~265.
    [38] 王建民.无线局域网技术应用与发展.计算机与通信,1998(4):13~16.
    [39] 魏小龙.MSP430系列单片机接口技术及系统设计实例.北京:航空航天大学出版社.2002,2 46-264,1~3,76~82,119~134,273~282,197~210,131~134,91~95,96~122.
    [40] 胡大可.MSP430系列FLASH型超低功耗16位单片机.北京:航空航天大学出版社.2001,205,45~55,122~125,70~83,29~45.
    [41] 潘卫江,胡大可.MSP430单片机Flash存储器的特性及应用.单片机与嵌入式系统应用,2001(4):38~41.
    [42] 陈鹏.MSP43系列芯片简要介绍.电子技术应用,1998(7):57~59.
    [43] Zhang H, Galea S C, Chiu K W, etc. An investigation of thin PVDF films as fluctuating-strain-measuring and damage-monitoring devices. Smart Mater Struct, 1993(2): 208~216.
    [44] Luo H, Hanagud S. PVDF film sensor and its applications in damage detection. Journal of aerospace engineering, 1999: 23-30.
    [45] 孙康,张福学.压电学(上册).国防工业出版社,1984年9月.
    [46] 张福学,孙康.压电学(下册).国防工业出版社,1984年9月.
    [47] 席道瑛,郑永来.PVDF压电计在动态应力测量中的应用.爆炸与冲击,1995,115(2).
    [48] Q X Chen, P A Payne. Industrial applications of piezoelectric polymer transducers. Meas. Sci. Technol. 6(1995), 249~267.
    [49] P. Chartagnac, P. Decaso et al. Dynamic Behavior of PVF2 in the 0-600kbar Range. Shock Compression of Condensed Matter, 1991.