磷酸盐控制释放玻璃的特性及其在水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制释放玻璃(CRG)是用途广泛的控制释放材料。本文研究磷酸盐CRG的
    释放动力学特性及其作为工业循环冷却水系统控制释放水处理剂的技术可行性。
     磷酸盐玻璃的组成决定其化学稳定性,构成影响磷酸盐CRG释放速率的内部
    因素。采用表面失重法测定样品在30℃去离子水中的溶解速率,研究化学组成影
    响磷酸盐CRG化学稳定性的规律。结果表明,二元磷酸钠CRG的化学稳定性以
    40Na_2O·60P_2O_5玻璃为最好;在此基础上,引入适量的CaO或Al_2O_3,能使化学
    稳定性显著改善;而引入B_2O_3或SiO_2,都使化学稳定性降低。样品的红外吸收光
    谱分析结果说明,当磷酸盐CRG的化学稳定性得到改善时,玻璃网络结构中[PO_4]
    四面体上非桥氧与金属离子的结合键及[PO_4]四面体之间由桥氧构成的P-O-P链的
    强度增加。
     介质性质和环境条件构成影响磷酸盐CRG释放速率的外部因素,磷酸盐CRG
    的溶解机理决定其释放特性。试验结果表明,25Na_2O·25CaO·50P_2O_5玻璃在水溶液
    中均匀溶解,溶解反应的活化能约为79kJ/mol;溶解速率随溶液酸性的增强而迅
    速增大,随溶液碱性的增强而缓慢降低。溶液中的聚磷酸盐和二价金属离子对磷
    酸盐玻璃的溶解过程,分别产生促进作用和抑制作用;磷酸盐CRG在水溶液中的
    溶解释放,是一个反应控制的传质-反应过程。对溶解机理的探讨表明,玻璃表面
    水化层的形成和移动速率取决于水分子在玻璃内部的扩散、渗透速率,水化反应
    的实质是钠离子从磷酸盐网络上发生离解反应,玻璃的溶解是通过水化层中磷酸
    盐网络的P-O-P链断裂实现的;玻璃-水界面上聚磷酸盐与二价金属离子的螯合反
    应,是溶液中聚磷酸盐浓度和溶液的水质硬质影响磷酸盐CRG溶解速率的主要因
    素。
     水解反应是影响聚磷酸盐水处理剂缓蚀阻垢性能的重要因素。SHMP的静态
    水解试验和25Na_2O·25CaO·50P_2O_5玻璃的溶解-水解试验的结果表明,水解反应的
    活化能在90~100kJ/mol之间;随溶液水质硬度的增大,水解反应加速、活化能降
    低。磷酸盐CRG的连续释放可显著降低溶液中聚磷酸盐的水解率,温度对水解反
    应速率的影响比对溶解反应的影响更大。采用“房室模型”对循环冷却水系统药
    物动力学进行了分析,可以证明采用控制释放投药方式有利于敞开式循环冷却水系
    统中水处理剂浓度和水解率的稳定控制,实现真正的稳态操作运行。
     循环冷却水中型动态模拟试验结果表明,磷酸盐CRG水处理剂具有良好的缓
    蚀阻垢性能,可以满足《GB 50050-95工业循环冷却水处理设计规范》对敞开式
    循环冷却水系统水质处理效果的要求。在工艺系统稳定运行的条件下,可实现聚
    磷酸盐浓度和水解率的稳定控制。连续排污以控制浓缩倍数是保证磷酸盐CRG水
    处理剂的稳定释放、实现水处理剂浓度的稳定控制,并减轻水解反应危害的重要
    前提。
     磷酸盐CRG作为载体可实现无机抗菌离子的控制释放。当Ag_2O含量不超过
    
    n 浙江人学博I:学位论义
    一
    4 mol%时,磷酸盐Ag-CRG的溶解速率随A&O引入量的增大而降低。银离于溶
    液平皿抑菌试验和旋转挂片试验的结果表明,银离子具有良好、持久的抑菌和杀
    菌作用,在水中的最低有效抑菌浓度为 SX 10’‘mg/L;增大溶液中的银离子浓度使
    碳钢挂片的腐蚀速率增大,而微量聚磷酸盐能有效抑制银离子对碳钢的电偶腐蚀、
    获得良好的缓蚀效果。试验证明,AgCRG可以同时稳定释放出聚磷酸盐和银离子,
    具有明显的抑菌效果和缓蚀效果。
     本文研究结果表明,用磷酸盐CRG可制成具有缓蚀.阻垢.抑菌作用的多功能
    控制释放水处理剂,利用CRG的均匀溶解和匀速释放,实现自动恒速投药,具有
    操作简单、维护方便等特点,可大幅度减轻水质监测和投药操作的工作量,在中
    小型工业循环冷却水系统的水质处理中具有良好的应用前景。
Literatures of controlled release technology were reviewed. The Comvlete Erosion Controlled
     Release Systems are characterized with the special advantages of 0-order release kinetics and no
     need of operation to remove the carrier when the release is complete. Controlled release glasses
     (CRGs) are the most suitable carriers for the release of inorganic metal ions and have found
     applications in agriculture, veterinary pharmacology and medical treatment. The release
     characteristics of phosphate CRGs and their prospective applications as controlled release water
     treatment agents are investigated in this paper, which includes the following parts.
     The chemical durability of phosphate glass is highly dependent on its composition, which
     comprises the internal factor of release kinetics of phosphate CRGs. Leach tests were conducted in
     deionized water at 30C in which the dissolution rates of specimens were measured by weight loss
     method. Results show that the 40Na2O . 60P,05 glass has the lowest dissolution rate among the
     Na2O-P2O~ binaiy glasses. On the basis of this composition, the durability of CRGs can be further
     improved by substitution of divalent metal oxides such as CaO for Na20 or trivalent metal oxides
     such as Al203 for P205, but deteriorated by introducing B203 or Si02 into the glass composition.
     FTIR spectra shows that the structural change related to the improvement of durability caused by
     composition adjustment includes strengthened M擮 bond on the [P04] tetrahedron formed by the
     non-bridging oxygen with the metal ions introduced and the P-O-P bond formed by the bridging
     oxygen between 2 [P04] tetrahedrons.
     The nature of solvent and experimental conditions comprises the external factors of the release
     kinetics of phosphate CRGs, which depends on the dissolution mechanism of phosphate glass.
     Results of leach test under different conditions show that the 25Na2&25CaO5OP2O5 glass dissolves
     congruently in deionized water, with an activation energy of about 79 kJ/mol. Its dissolution rate
     increases dramatically as the pH of solution decreases, and decreases slowly as the pH of solution
     increases. Sf-IMP or CaCl2 in solution have accelerating or decelerating effect, respectively, on the
     dissolution of phosphate glasses. The fact that the dissolution rate is not obviously affected by the
     stirring speed of solution implies that the mass transfer rate of the dissolution process of phosphate
     glass is controlled by the chemical reaction of dissolution itself. Discussions on the mass
     transfer-reaction behavior of dissolution mechanisms show that the nature of the reaction taking
     place in the hydrated layer is the dissociation of Na~ ions from the phosphate chains under the effect
     of the penetrating water molecules, rather than the generally accepted reaction of Na-H ion exchange.
     The velocity of formation and development of hydrated layer depends on the diffusion rate of water
     molecules in glass. The dissolution of glass is realized by the breakage of P-0-P bonds in the
     phosphate network in the hydrated layer followed by the disentanglement of phosphate chains into
     water solutions. The chelating ability of polyphosphate with divalent cations has great influence on
     the dissolution rate of phosphate CRGs and is found responsible for the accelerated or decelerated
     dissolution of the glass in SHMP or CaCl2 solutions, respectively.
     The hydrolysis reaction has been one of the main restrictions of polyphosphates as corrosion
     and scale inhibitors in cooling water systems. Static hydrolysis test of SHMP and
     dissolution-hydrolysis test of 25Na2O?5CaO~50P2O5 were conducted. Results show that the
     hydrolysis
引文
1. Das K G. Controlled-release Technology: Bioengineering Aspects[M]. New York: John Wiley & Sons, 1983
    2.吴礼光,刘茉娥,朱长乐等.控制释放技术[J].应用化学.1994,11(3):1-10
    3. Fan L T, Singh S K. Controlled Release: A quantitative treatment[M]. Berlin: Springer-Verlag, 1989:1-8
    4. Lee P I, Good W R. Overview of controlled-release drug delivery, ln: Lee P I, Good W R eds. Controlled-release technology-pharmaceutical applications[C]. Washington D.C.: American Chemistry Society, 1987:1-13
    5. Paul D R. Polymers in Controlled Release Technology. In: Paul D R and Harris F W ed. Controlled Release Polymeric Formulations [C]. ACS Symposium Series 33, 1976:11-13
    6. Liu L X. Osmotic Tablet for Controlled Delivery System: Nifedipine[D]. Korea: Chonbuk National University, 2000
    7. Lee P I. Interpretation of drug-release kinetics from hydrogel matrices in terms of time-dependent diffusion coefficients. In: Lee P I, Good W R eds. Controlled-release technology-pharmaceutical applications[C]. Washington D.C.: American Chemistry Society,1987:71-83
    8. Thombre A G, Himmelstein K J. Modelling of drug release kinetics from a laminated device having an erodible drug reservoir[J]. Biomaterials, 1984, 5:250-254
    9.张国亮,张纲,张风宝等.混合药膜包膜系统释放动力学研究[J].高校化学工程学报,1999,13(6):500-505
    10. Lee P I. Diffusional release of a solute from a polymeric matrix-approximate analytical solutions[J]. Journal of Membrane Science, 1980, 7:255-275
    11.彭洪修,古宏晨,郑志凤等.高分子微胶囊药物释放体系[J].化工新型材料,2001,28(12):7-11
    12. Ron E, Langer R. Erodible systems. In: Kydonieus A ed. Treatise on controlled drug delivery: Fundamentals, Optimization, Applications [M]. New York: Marcel Dekker, Inc. 1992: 199-212
    13. Hopfenberg H B. Controlled release from erodible slabs, cylinders, and spheres. In: Paul D R and Harris F W eds. Controlled release polymeric formulations [M]. ACS Washington, D. C., 1976:26-32
    14. Cooney D O. Effect of geometry on the dissolution of pharmaceutical tablets and other solids: Surface detachment dinetics controlling[J]. AIChE Journal, 1972, 18(2): 446-449
    15. Drake C F, Allen W M. The use of controlled-release glass for the controlled delivery of bioactive materials[J]. Biochemical Society Transactions, 1985, 13:516-520
    16. Clement J, Manero J M and Planell J A et al. Analysis of the structural change of a phosphate glass during its dissolution in simulated body fluid[J]. Journal of Materials Science: Materials in Medicine, 1999, 10:729-732
    17. Gilchrist T, Healy D M. Controlled silver-releasing polymers and their potential for urinary tract infection control[J]. Biomaterials, 1991, 12(1): 76-78
    18. Otsuka M, Sawada M, Matsuda Y et al. Effects of water-soluble component content on cephalexin release from bioactive bone cement consisting of bis-GMA/TEGDMA resin and bioactive glass ceramics[J]. Journal of Materials Science: Materials in Medicine. 1999, 10:59-64
    19. Cartmell S H, Doherty P J, Hunt J A et al. Soft tissue response to glycerol-suspended controlled-release glass particulate[J]. Journal of Materials Science: Materials in Medicine.1998, 9:773-777
    
    
    20. Cartmell S H, Doherty P J, Rhodes N P et al. Haemocompatibility of controlled release glass [J]. Journal of Materials Science: Materials in Medicine. 1998, 9:1-7
    21. Fernandez E, Gil F J, Ginebra M P et al. Calcium phosphate bone cements for clinical applications. Part 1: Solution chemistry [J]. Journal of Materials Science: Materials in Medicine. 1999, 10:169-176
    22. Fanovich M A, Porto Lopez J M. Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatites with different Ca/P ratios [J]. Journal of Materials Science: Materials in Medicine. 1998, 9:53-60
    23. Singh K and Bahadur D. Charaterization of SiO_2-Na_2O-Fe_2O_3-CaO-P_2O_5-B_2O_3 glass ceramics [J]. Journal of Materials Science: Materials in Medicine. 1999, 10:481-484
    24. Salomoni A, Tucci A, Esposito L et al. Forming and sintering of multiphase bioceramics[J]. Journal of Materials Science: Materials in Medicine. 1994, 5:651-653
    25. Andersson O H. Glass transition temperature of glasses in the SiO_2-Na_2O-CaO-P_2O_5-Al_2O_3-B_2O_3 system[J]. Journal of Materials Science: Materials in Medicine. 1992, 3:326-328
    26. Wallace K E, Hill R G, Pembroke J T et al. Influence of sodium oxide content on bioactive glass properties[J]. Journal of Materials Science: Materials in Medicine. 1999, 10:697-701
    27. Isave Iskander Kh et al. Granulated prolonged-action fertilizer based on phosphate glass[P]. USSR: 1742276, 1992
    28. Kani Yoshihiro et al. Water-soluble antibacterial and anti-fungal agents and leaf spray fertilizers [P]. Japan: 10218714, 1997
    29.汪山,程继健.载银型可溶性玻璃抗菌材料的研究与应用[J].玻璃与搪瓷,2000,28(5),46-50
    30.汪山,程继健.磷酸盐玻璃缓释材料应用进展[J].玻璃与搪瓷,2000,27(3):53-57
    31.西北轻工学院主编.玻璃工艺学[M].北京:中国建筑工业出版社,1982
    32.刘秋霞.Na_2O-CaO-SiO_2-P_2O_5 生物玻璃水解性研究[J].中国玻璃.1993,18(5):4-9
    33.李立华,陈跃进.SiO_2对磷酸盐玻璃晶化性能的影响[J].武汉工业大学学报.1994,16(3):58-62
    34.张俊英,张中大,唐子龙.MO.P_2O_5 玻璃的结构与性能[J].材料科学与工艺.2000,8(1):7-11
    35.许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑工业出版社,1992:714
    36.贝尔塔 P,贝尔塔 E著.侯立松,孙洪维,朱从善等译.玻璃物理化学导论[M].北京:中国建筑工业出版社,1983:67-71
    37. Boffardi B P. The chemistry of polyphosphate[J]. Materials performance, 1993, (8): 50-53
    38. Westman A E R, Crowther J. Constitution of soluble phosphate glasses[J]. Journal of the American Ceramic Society, 1954, 37(9):420-427
    39.项斯芬,严宣申,曹庭礼等.无机化学从书(第四卷):磷氮砷分族[M].北京:科学出版社,1995:337
    40. van Wazer J R and Holst K A. Structure and properties of the condensed phosphates[J]. Journal of the American Chemical Society. 1950, 72:639-663
    41. Corbridge D E C. Phosphorus: An outline of its chemistry, biochemistry and technology (3~(rd)Ed.) [M]. Amsterdam: Elsevier, 1985:156-192
    42.刘秋霞,陈晓明,万旺斌.热历史对Na_2O.CaO.2P_2O_5,玻璃水解性的影响[J].玻璃与搪瓷.1996,24(5):8-11
    43.刘秋霞,闫玉华,李瑞.分相对Na_2O.CaO.2P_2O_5玻璃水解性的影响[J].玻璃与搪瓷.1998,26(1):16-19
    44.刘秋霞,汪连山,钱进夫.Na_2O-CaO-2P_2O_5玻璃的分相与析晶[J].武汉工业大学学报,1996,18(1):22-25
    45.刘秋霞.Na_2O对Na_2O-CaO-P_2O_5玻璃水解性的影响[J].中国玻璃,1999,24(1):2-6
    
    
    46.刘秋霞.碱金属氧化物对R_2O-CaO-P2O_5玻璃水解性的影响[J].武汉工业大学学报,1994,16(3):85-88
    47. Smets B M J, Tholen M G W and Lommen T P A. The effect of divalent cations on the leaching kinetics of glass [J]. Journal of Non-Crystalline Solids, 1984, 65:319-332
    48.宋修玉,姜中宏.磷硼酸盐玻璃形成及性质的研究[J].玻璃与搪瓷,1990,18(1):1-6
    49.刘秋霞,闫玉华.B_2O_3对磷酸盐生物玻璃水解性的影响.武汉工业大学学报,1998,20(3):34-36
    50.潘宁芹等编.新型玻璃[M].上海:同济大学出版社,1992:42-44
    51.黄占杰,廖运茂,陈安玉.生物活性陶瓷与机体组织相互作用的若干问题[J].特种玻璃,1989,6(4):1~11
    52. Avon. Sodium phosphate glass with reduced rates of solution in water[J]. Research Disclosure,1995, 378:672
    53.刘秋霞.Na_2O-CaO-SiO_2-P_2O_5生物玻璃水解性研究.中国玻璃,1993,18(5):4-9
    54.李立华,陈跃进.SiO_2对磷酸盐玻璃晶化性能的影响.武汉工业大学学报,1994,16(3):58-62
    55.南京玻璃纤维研究设计院《玻璃测试技术》编写组.玻璃测试技术[M].北京:中国建筑工业出版社.1987:284-329
    56.刘慎中,赵志强,韩玉梅.光学玻璃化学稳定性测试标准的研究.长春光学精密机械学院学报.1989,12(1):37-40
    57.卓敦水.减少玻璃化学稳定性粉末失重法测定误差的方法.玻璃与搪瓷,1993,21(2):15-23
    58.侯立松,唐彦茹,朱毓秀.磷酸盐钕玻璃化学稳定性的研究[J].硅酸盐学报.1980,8(2):159-170
    59.华雁芬.磷酸盐玻璃的化学测试方法.上海计量测试,2000,(2):39-40
    60.刘秋霞,陈晓明,李晓.Na_2O.CaO.2P_2O_5玻璃水解性的研究.武汉工业大学学报,1996,18(1):27-29
    61. Shih P Y, Yung S W, Chin T S. Thermal and corrosion behavior of P_2O_5-Na_2O-CuO glasses [J].Journal of Non-Crystalline Solids, 1998, 224:143-152
    62. Weyi W A, Marboe E C. The constitution of Glasses: A dynamic interpretation. Volume 2. Part 1[M]. New York: Interscience Publishers, 1964:580
    63. Morey G W. The Properties of Glass[M]. New York: Reinhold, 1954:101-131
    64.王培铭主编.无机非金属材料学[M].上海:同济大学出版社,1991:144-144
    65. Doremus R H. Glass Science[M]. New York: John Wiley and Sons, 1973:242-244
    66. Hench L L. Physical chemistry of glass surfaces[J]. J. Non-crystal Solids, 1977, 25:343-369
    67. Douglas R W, El-Shamy M M. Reaction of glasses with aqueous solutions[J]. Journal of American Ceramic Society, 1967, 50(1): 1-8
    68. Isard J O, Allnatt A R, Melling P J et al. An improved model of glass dissolution[J]. Physics and Chemistry of Glasses, 1982, 23(6): 185-189
    69. Harvey K B, Litke C D and Boase C A. The dissolution of a simple glass. Part 1. Initial model and application to an open glass/water system[J]. Physics and Chemistry of Glasses, 1986,27(1): 15-21
    70. Rana M A and Douglas R W. The reaction between glass and water. Part 1. Experimental methods and observations. Part 2. Discussion of the results. Physics and Chemistry of Glasses,1961, 2(6): 179-205
    71. Bunker B C, Arnold G W, Wilder J A. Phosphate glass dissolution in aqueous solutions [J]. Journal of Non-Crystalline Solids, 1984, 64:291-316
    72.刘秋霞,陈晓明,李晓.Na_2O.CaO.2P_2O_5玻璃水解性研究[J].武汉工业大学学报,1996,18(1):26-29
    73.金熙、项成林、齐冬子编,工业水处理技术问答及常用数据(第二版)[M],化学工业出版社,1997
    
    
    74. Hatch G B. Protective film formation with phosphate glasses [J]. Industrial and Engineering Chemistry, 1952, 44(8):1775-1780
    75. Hatch G B. Inhibition of galvanic attack of steel with phosphate glasses [J]. Industrial and Engineering Chemistry, 1952, 44(8): 1780-1786
    76. Hatch G B and Rice O. Surface-active properties of hexametaphosphate [J]. Industrial and Engineering Chemistry, 1939,31 (1):51-54
    77.周本省主编.工业水处理技术[M].北京:化学工业出版社,1997
    78.李裕芳.聚磷酸盐的水解和它的控制[J].工业水处理,1987,7(2):3-6
    79.周怀梧编著.数理医药学[M].上海:上海科学技术出版社,1983:98
    80.姜启源.数学模型(第二版)[M].北京:高等教育出版社.1993:132-137
    81.胡明甫.循环水系统药剂损耗速率的测试[J].工业水处理,1990,10(5):28-30
    82.龙荷云.循环冷却水处理[M].南京:江苏科学技术出版社,1984:13
    83.石桥多闻.饮用水工程上事故与防治措施[M],中国建筑十业出版社,1982:63-79
    84.汪光焘主编.城市供水行业2000年技术进步发展规划[M].北京:中国建筑工业出版社,1993
    85.高华生,金一中,吴祖成等.饮用水的“红水”现象与供水管网腐蚀控制的试验研究[J],水处理技术,2000,26(3):183-186
    86. Hatch G B. Polyphosphate inhibitors in portable water[J]. Materials Protection, 1969, (11):31-35
    87. Singley J E, Beaudet B A, Markey P H et al. Corrosion Prevention and Control in Water Treatment and Supply Systems[M]. New Jersey: Noyes Publications, 1985:57-58
    88. Hatch G B and Rice O. Corrosion control with threshold treatment: Inhibition of the corrosion of iron and steel with hexametaphosphate [J]. Industrial and Engineering Chemistry, 1940,32(12):1572-1579
    89. Hatch G B and Rice O. Corrosion control with threshold treatment: Factors in formation of protective films upon steel by waters treated with glassy phosphates[J]. Industrial and Engineering Chemistry, 1945, 37(8):752-759
    90.李庆,魏本余.饮水系统缓蚀剂[J] 化学工程师,1998,(6):41-43
    91.栗田工业水处理药剂手册编委会编[日].章振玞译.水处理药剂手册[M].北京:中国石化出版社,1991
    92.水浩然.中小型循环冷却水系统的布置和水质处理[J].化工给水排水设计,1992,(4):33-36
    93.左亚洲.中小型空调制冷循环冷却水系统设计中的若干问题[J].给水排水,1999,25(6):45-50
    94.杨国华,徐国强,汪祖模.水处理片剂的研制[J].化学世界.1989,(4),174-176
    95.宋为兵,闫江民.归丽精生活水处理技术及其实践[J].新疆化工,1999,(2):33-34
    96.李永德.含膦复方硅酸盐被膜水处理剂在蒸汽机车上的应用[J].节能,1992,(9):47-48
    97.解鲁生.提高固态硅酸盐被膜缓蚀剂在热水锅炉应用效果的措施[J].区域供热,1992,(2):19-21
    98.刘振法,王育琳,籍宝霞.缓溶磷酸盐水处理剂的研制及在锅炉水处理中的应用[J].工业水处理.1998,18(5):11-12
    99.刘振法,王育琳,牛吉相等.新型高效阻垢缓蚀剂的研制[J].河北省科学院学报,1998,(2):44-46
    100. Cho Won-li, Kim Un-Suk, Kim Hyung-Sun et al. A study on the anti-corrosive properties of glassy polyphosphateinhibitors[J]. Journal of Corrosion Science Society of Korea, 1993, 22(1):31-40
    101.汪山,夏欣鹏,程继健.磷酸盐玻璃缓释型阻垢剂的制备及其性能研究[J].玻璃与搪瓷,2000,28(1):14-18
    102.郑苹芳.新型缓溶固体缓蚀阻垢剂——TS-706[J].工业水处理,1990,10(5):22-24
    103.高华生,俞建德,谭天恩.“锈垢净”水处理剂的缓释机理与应用前景[J].中国给水排水,2000,16(12):55-57
    
    
    104.张文钲,张羽天.载银抗菌材料的研究与开发[J].化工新型材料,1997,(7),20-22
    105.李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998,(5),8-11
    106. Oh S H, Choi S Y, Kim K N et al. Preparation and characterization of water-soluble phosphate glasses containing Cu by sol-gel method[J]. Journal of the Korean Ceramic Society, 1998,35(4): 319-324
    107.周本省.冷却水系统用的非氧化性杀生剂[J].化学清洗,1993,9(4):1-6
    108.徐寿昌等编.工业冷却水处理技术[M].北京:化学工业出版社,1984
    109. Kim T N, Feng Q L, Kim J O et al. Antimicrobial effects of metal ions (Ag~(+), Cu~(2+), Zn~(2+)) ir hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine, 1998, (9): 129-134
    110.张文钲,张羽天.新型银系无机抗菌剂HN-300[J].化工新型材料,2001,28(8):34-35
    111.《GB5749-85生活饮用水卫生标准》[S],1985
    112.张文钲,张羽天.载银抗菌材料的研究与开发[J].化工新型材料,1997,24(7):20-22
    113.蔡政武,杨玲.新型的无机抗菌剂[J].化工新型材料,2001,24(5):36-37
    114.张文钲,张羽天.载银抗菌剂的改进[J].化工新型材料,2000,27(4):20-22
    115.张文钲,张羽天.Zeomic抗菌剂及相关产品[J].化工新型材料,2000,27(7),18-19
    116.严建华,冯乃谦,封孝信.磷酸盐多孔微晶玻璃的研制及其在无机抗菌剂方面的应用[J].玻璃与搪瓷,2000,28(4),15-21
    117.张文钲,张羽天.Apaciaer抗菌剂及其相关产品[J].化工新型材料,2001,28(6):25-27
    118.汪山,程继健,陈奇.载银型无机缓释抗菌材料的研究与应用[J].中国陶瓷,2000,36(2),7-9
    119.吴建锋,徐晓虹,黄代勇等.抗菌功能陶瓷釉面砖的研究[J].硅酸盐学报,1999,27(4):18-24
    120.张文钲,于鸿潮.载银玻璃抗菌剂WA291制备及应用[J].化工新型材料,2001,28(2):20-22
    121.王长平,高建桥.防菌、防藻类玻璃材料的研制[J].硅酸盐通报,1998,(2):30-33
    122. Joe Jong-Ho, Lee Yong-Keum, Choi Se-Young et al. Preparation and characterization of water-soluble glass through melting process(Ⅰ): Dissolution characteristics, bactericidal effects and cytotoxicity[J]. Journal of the Korean Ceramic Society, 1995, 32(10): 1093-1102
    123. Oh Seung-Han, Joe Jong-Ho, Choi Se-Young et al. Preparation and characterization of water-soluble glass through melting process(Ⅱ): Dissolution characteristics, bactericidal effects and cytotoxicity[J]. Journal of the Korean Ceramic Society, 1997, 34(1): 13-22
    124.张文钲,张羽天.载银饮水杀菌技术的研究与开发[J].化工新型材料.2000,27(12):33-34,43
    125. Tokuji Yamamoto. Water treating agent [P]. US Patent 4931078, 1990
    126.齐亚范,廖运茂.锶磷酸盐系统玻璃差热、x射线和红外光谱研究.见:干福熹主编,玻璃科学技术前沿——1984年北京国际玻璃学术讨论会论文集[C].北京:中国建筑工业出版社,1986:145-148
    127.《HG/T2160-91冷却水动态模拟试验方法》[S],1991
    128.窦照英,周军,任德贵.实用无污染防垢技术[M].北京:化学工业出版社,1999:34-35
    129.《GB 50050-95 工业循环冷却水处理设计规范》[S],1995
    130.中石化总公司生产部发展部.冷却水分析和试验方法[M].安庆:安庆石化总厂信息处,1993:419