无硼无氟玻璃纤维组成与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃纤维是一种新型功能材料和结构材料,以其优良的性能广泛应用于电子、通讯、核能、航空、航天、兵器等高端领域,成为二十一世纪不可缺少的可持续发展的高新技术材料。目前生产的连续玻璃纤维90%以上是E玻璃,但是,在E玻璃熔制过程中硼、氟以氟硅酸、氢氟酸和氟硼酸盐的形式挥发,不但会影响玻璃成分的均一性、玻璃的使用性能,而且会污染环境。降低E玻璃纤维生产过程中硼、氟对环境造成的污染,成为人们关注的焦点。
     本文在充分分析国内外研究现状的基础上,对无硼无氟玻璃系统结构、性能和工艺性能进行了系统研究。分别采用相同摩尔数的MgO、TiO_2、ZnO替代CaO,通过传统的熔融冷却法制备无硼无氟玻璃系统玻璃。运用红外光谱分析(IR)、核磁共振等方法分析了玻璃结构的变化,并对玻璃的密度、介电常数、化学稳定性、工艺性能进行了测试,讨论微观结构与性能之间的关系。在此基础上设计优化得到最优无硼无氟玻璃纤维的配方。
     无硼无氟玻璃纤维基础体系引入碱土金属氧化物MgO。红外光谱和核磁共振研究结果表明:在基础玻璃体系中,Al~(3+)没有完全进入玻璃网络结构,部分Al~(3+)以[AlO_6]的形式存在于网络结构;1.5mol%MgO的引入有利于剩余的Al3+进入网络结构,玻璃的网络结构增强。随着MgO取代量的增加,玻璃的密度逐渐增加;介电常数和介电损耗值降低;化学稳定性增强;析晶上限温度先降低后升高;拉丝温度逐渐降低,其中MgO取代量为3mol%-6mol%时,符合玻璃纤维的拉丝工艺要求。
     无硼无氟玻璃纤维基础体系分别引入过渡金属氧化物TiO_2和ZnO的研究。①红外光谱分析表明,TiO_2取代量为1.5mol%-3mol%时,Ti~(4+)以网络外体的形式存在;取代量4.5mol%时,Ti~(4+)以[TiO4]形式进入网络结构;取代量6mol%时,Ti4+反极化作用明显,玻璃的网络结构先增强后降低。随着TiO_2取代量的增加,玻璃的密度逐渐增加;介电常数和介电损耗值均表现出先降低后增大的趋势;化学稳定性提高;析晶上限温度先降低后升高;拉丝温度逐渐降低。TiO_2取代量为1.5-3mol%时,符合玻璃纤维的拉丝工艺要求。②红外光谱测试表明,ZnO取代量为7.5mol%时,Zn~(2+)仍以网络外体的形式存在,玻璃的网络结构逐渐增强。随着ZnO取代量的增加,密度增加;玻璃介电常数先降低后增加;介电损耗逐渐降低;化学稳定性提高;析晶上限温度先降低后升高;拉丝温度逐渐降低。ZnO取代量为1.5-4.5mol%时,符合玻璃纤维的拉丝工艺要求。
     根据前面的实验结果,考察了MgO、ZnO、TiO_2共同作用对无硼无氟玻璃纤维性能的影响,并得到最佳无硼无氟玻璃纤维配方。
Fiberglass is one kind of new functional materials and the structural material,which has been applied in the electron, communication, nuclear power, aviation, astronautics, weapon and other high-end areas for a series of outstanding characteristics. Fiberglass becomes the essential high technology material for sustainable developments in 21st century. At present the produced continuous glass fibers above 90% is E glass. Boron and fluoride evaporate in the form of fluoride acid, hydrofluoric acid and fluorine borate in E glass-melting process, which not only affect the uniformity of glass composition and performance, but also pollute the environment. Now reducing boron-fluoride evaporation becomes the focus of attention.
     Based on the analysis of the situation at home and abroad, structure,basic properties and processing properties of Boron-fluorine-free glass fibers was studied. In this thesis, series of Boron-fluorine-free glasses that CaO was replaced by MgO, TiO_2, ZnO respectively in the same moore number were prepared via a usual melting and quenching technique in the air medium. A number of studies differential infrared spectra (IR), nuclear magnetic resonance were used to analyze the structure of glass, chemical resistant, density, dielectric constant, glass fiber process have been carried out to explain the relation between glass structure and dielectric properties. Based on this, the study got optimal formula of boron-fluorine-free glass fiber by design optimization.
     The study of boron-fluorine-free glassfiber based system for doping metal oxide MgO. IR spectra and NMR analysis showed that Al~(3+) isn’t fully into the glass network structure, part Al~(3+) exists in the network structure in the form of [AlO_6]. As 1.5mol % MgO introduced, the rest Al~(3+) enters the network structure.Glass network structure firstly increase then decrease, the glass density increase, the chemical durability improve ,dielectric constant and loss decrease after adding more MgO. Devitrification temperature and fiber-forming temperature firstly decreases then increases. The substituted amount of MgO increased from 3mol% to 6mol% is accord with glass fiber drawing technology requirements.
     The study of boron-fluorine-free glass fiber based system for doping transition metal oxides TiO_2 and ZnO respectively.①IR spectra shows that when the substituted amount of TiO_2 increased from 1.5mol%-3mol%, Ti4+enters the glass network as a modifier; but for 4.5 mol%, Ti~(4+) enter the glass network in form of [TiO4].The extreme unstability of Ti~(4+) is significant when TiO_2 is increased at 6mol%. Glass network structure firstly increases then decreases by doping TiO_2; the glass density increases; dielectric constant and loss firstly decreases then increases; the glass chemical durability increases after more TiO_2was added. Devitrification temperature firstly decreases and then increases, however fiber-forming temperature gradually reduced. The substituted amount of TiO_2 increased from 1.5mol% to 3mol% is accord with glass fiber drawing technology requirements.②IR spectra shows that Zn~(2+) enters the glass network as a modifier when the substituted amount is7.5mol%. Glass network structure increases by doping ZnO; the glass density increases; dielectric constant firstly decreases then increases, however dielectric loss decreases; the glass chemical durability improves. Devitrification temperature firstly decreases and then increases, however fiber-forming temperature gradually reduced. The substituted amount of ZnO increased from 1.5mol% to 4.5mol% is accord with glass fiber drawing technology requirements.
     From the experimental result above, the interaction of MgO, ZnO and TiO_2 to boron-fluorine-free glass fiber was investigated. The best formula was obtained.
引文
[1].南京玻璃纤维工业设计院.玻璃纤维的生产及应用[M].北京:中国建筑工业出版社,2002.
    [2].S P Murarka. Low dielectric constant materials for interlayer dielectric application[J]. Solid State Technology,2002,9(3):12-14.
    [3].高建枢.国际玻璃纤维市场与技术新动向[J].玻璃纤维,1995,1(6):6-20.
    [4].R.A. Smith. Boron in glass and glass making[J]. Journal of Non-Crystalline Solids, 1986, 84(2):421-432.
    [5].Hiromichi Takebe. Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses[J]. Journal of Non-Crystalline Solids,2006,352(6):709-713.
    [6].王连发,赵墨砚.光学玻璃工艺学[M].北京:兵器工业出版社,1995.
    [7].M J Snyder, M G Mesko. Volatilizationof boron from E-glass melts[J]. Journal of Non-CryStalline Solids,2006,352 (6):669-673.
    [8].B G Parkinson, et al. Effect of minor additions on structure and volatilization loss in simulated nuclear borosilicate glasses[J]. Journal of NonCrystalline Solids,2007,353 (44):4076-4083.
    [9].M G Mesko. Volatilization of boron from E-glass melts[J]. Phys. Chem.Glasses.2001,2:39-44.
    [10].L F Oldfield. The volatilization of constituents from borosilicate glass at elevated temperatures[J]. Glass Technology,1962,3(2):59-61.
    [11].J T Wenzel, D M Sanders. Sodium and Boron vaperisation from a boric oxide and a BoroSilicate glass melt[J]. Physics and Chemistry of Glass,1982,23(2):47-49.
    [12].钱达兴,周蔡兵.玻璃熔制时影响氧化硼挥发的若干工艺因素[J].建筑材料学,1998,1(2):197-200.
    [13].Vesselin Dimitrov, Takayuki Komatsu. Classification of oxide glasses:A polarizability Approach[J]. Journal of Solid State Chemistry.2005,178:831-846.
    [14].H.Li.L, Li.J.D. Vienna et al. Neodymium in Alumino-Borosilicate glasses[J]. Journal of Non-CrystallineSolids,2001,278:35-57.
    [15].H Mao, M Hillert, M Selleby. Thermodynamic assessment of the CaO-Al2O3-SiO2 system[J]. J. Am.Ceram.Soc,2006,89(1):298-308.
    [16] .许威,孙诗兵,田英良.R2O对低熔点硼硅酸盐玻璃性能的影响[J].玻璃与搪瓷,2007,5(2):15-18.
    [17].袁坚,陆平.锂辉石对浮法玻璃性能的影响研究[J].玻璃,2002,4(6):3-7.
    [18].H. Darwish, Samia N. Salama. Contribution of germanium dioxide to the thermal expansion characteristeics of some borosilicate glasses and their corresponding glassceramics[J]. Thermochimica Acta,2001,374:129-135.
    [19].H Doweidar. Density of mixed alkali borate glasses: A structural analysi[J]. Physica B,2005, 362:123-132.
    [20].J P Hamilton, C G Pantano. Effects of glass structure on the corrosion behavior of sodium-aluminosilicate glasses[J]. Journal of NonCrystalline Solids,1997,22:167-174.
    [21].吉尧.重庆国际研发成功高性能无硼无氟玻纤[J].中国建材报,2010,3(2):1-2.
    [22].J F Stebbins. Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR[J]. Journal of Non-Crystalline Solids,2000, (275):1-6.
    [23].刘心宇,陈国.CaO-Al2O3-SiO2玻璃晶化过程的红外光谱分析[J].矿产综合利用,2003,(3):20-23.
    [24].Ren-Guan Duan, Kai-Ming Liang, Shou-Ren Gu . The effect of Ti4+ on the site of Al3+ in the structure of CaO–Al2O3–SiO2–TiO_2 system glass[J]. Materials Science and Engineering A, 1998,249(2):217-222.
    [25].D R Neuville. Local Al site distribution in aluminosilicate glasses by 27Al MQMAS-NMR[J]. Journal of Non-Crystalline Solids,2007,353(2):180-184.
    [26].C I Merzbacher. A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses[J]. Journal of Non-Crystalline Solids,1990,124(2-3):194-206.
    [27].李如璧,徐培苍,莫宣学.三元硅酸盐玻璃相中Al3+离子结构状态的MAS-NMR谱研究[J].波谱学杂志,2003,20(1):37-43.
    [28].段仁官,梁开明,顾守仁等.CaO-Al2O3-SiO2系统玻璃晶化时首析晶相及TiO_2的作用机理预测和研究[J].硅酸盐学报,1997,25(3):305-311.
    [29].何峰,程金树. CaO-Al2O3-SiO2系统微晶玻璃的振动光谱研究[J].武汉工业大学学报,1998,20(3):28-31.
    [30].Osamu Sugiyama, Takao Ando. Surface modification of CaO-Al2O3-SiO2 glass by dissolution of aluminum and silicon components into alkali hydrothermal medium[J]. Solid State Ionics,2004,172(4):271-274.
    [31].梁开明,段仁官,顾守仁.TiO_2对CaO-Al2O3-SiO2系玻璃晶化机理的影响[J].无机材料学报,1998,13(3):308-314.
    [32].I A Levitskii, S A Gailevich. The Effect of Bivalent Cations on the Physicochemical Properties and Structure of Borosilicate glasses[J]. Glass and Ceramics,2004,61(3):73-76.
    [33].Mette Solvang. The effects of Mg–Ca and Fe–Mg substitution on rheological and thermodynamic properties of aluminosilicate melts[J]. Journal of Non-Crystalline Solids, 2004,34(5):782-786.
    [34].段仁官,梁开明,顾守仁.Na+和Ti4+对CaO-Al2O3-SiO2系玻璃结构和晶化的影响[J].陶瓷研究,1997,12(2):3-9.
    [35].田清波,李伟,王玥,尹衍升.添加ZnO对CaO-Al2O3-SiO2 MgO系微晶玻璃析晶的影响[J].硅酸盐学报,2006,34(4):495-499.
    [36].Amy B Jedlicka, Alexis G.Clare. Chemical durability of commercial silicate glasses.Ⅰ.Material characterization[J]. Journal of Non-Crystalline Solids,2001,281:6-24.
    [37].Somsak Siwadamrongpong. Prediction of chloride solubility in CaO–Al2O3–SiO2 glass systems[J]. Journal of Non-Crystalline Solids,2004,347(3):114-120.
    [38].尤德强,徐晓虹等.TiO_2对堇青石玻璃陶瓷析晶性能的影响[J].中国陶瓷,2006,42(11):33-35.
    [39].史培阳.CaO对CaO-Al2O3-SiO2系微晶玻璃析晶和性能的影响[J].硅酸盐学报,2004,32(11):1389-1393.
    [40].宋树欣.Al2O3对R2O-CaO-SiO2-F系统微晶玻璃结构及析晶的影响[J].玻璃与搪瓷,2009,38(4):4-8.
    [41].任祥忠.MgO-Al2O3-SiO2系统微晶玻璃的红外光谱研究[J].材料科学与工程学报,2007,25(2):197-200.
    [42].倪亚茹,张其土,陆春华,等.稀土硼铝硅酸盐玻璃结构及其耐碱性研究[J].材料科学与工程学报,2006,24(3):393-395.
    [43].陆春华,倪亚茹,许仲梓,等.稀土搀杂硼铝硅酸盐玻璃结构的NMR研究[J].波谱学杂志,2005,22(3):261-267.
    [44]. V P Klyuev and B Z Pevzner. Influence of Aluminum and Gallium Oxides on the Thermal Expansion and Viscosityof Barium Borate glasses[J]. Fiz. Khim. Stekla, 1998, 24(4):532–545.
    [45].陆佩文.无机材料科学基础[M] .武昌:武汉工业大学出版社,2001.
    [46].Amy B.Jedlicka, Alexis G.Clare.Chemical durability of commercial silicate glasses. Journal of Non-Crystalline Solids,2001,28:6-24.
    [47].Tamura Shinichi. Low-dielectric-constant glass fibers and glass fiber fabric made there of, United States Patent 6,846,761.2003(3).
    [48].A Levitskii, S A Gailevich, I S Shimchik. The effect of bivelent cations on the physicochemical properties and structure of borosilicate glass[J]. glass and Ceramics, 2004,61(3):3-4.
    [49].C. Narayana Reddy, R.P. Sreekanth Chakradhar. Elastic properties and spectroscopic studies of fast ion conducting Li2OZnOB2O3 glass system[J]. Mater. Res. Bull,2007,42: 1337-1343.
    [50].Barbara; George, Bill; McIntyre, Peter. Título: Modern infrared spectroscopy: analytical chemistry by open learning. P. imprenta: New York. 1998. 179
    [51].M Tomozawa, J W Hong and S R Ryu. Infrared (IR) investigation of the structural changes of silica glasses with fictive temperature[J]. Journal of Non-Crystalline Solids,2005, 351:1054-1060.
    [52].P F McMillan, W T Petuskey. A Structural investigation of SiO2-CaO-Al2O3 glasses via 27Al MAS-NMR[J]. Journal of Non-Crystalline Solids,1996,195:261-271.
    [53].Low enstein W. Apparatus for separating fluorine from alumino silicates by Pyrohydrolysis[J]. Am mineral.1954,39:92.
    [54].M. Arbatti, X.Shan: Adv mater. Ceramic–polymer composites with high dielectric constant[J]. Forum Vol. 2007,(19):1369-1378
    [55].J S Andrade, A G Pinheiro and I F Vasconcelos.Raman and infrared spectra of KNbO3 in niobate glass-ceramics[J]. J. Phys. Condens. Matter.1999,11:441-452.
    [56].刘克本.无机化学[M].成都:成都科技大学出版社,1987:137.
    [57].胡一晨,陆洪凯,王中俭等.二价金属氧化物对低介低损玻璃工艺性能及电学性能的影响[J].玻璃与搪瓷,2006,34(1):34-38.
    [58].M Bengisu, R K Brow and E Yilmaz. Aluminoborate and aluminoborosilicate glasses with high chemical durability and the effect of P2O5 additions on the properties[J]. J. Non-Cryst. Solids,2006 (352): 3668-3675.
    [59].张碧栋,吴正明.连续玻璃纤维工艺基础[M].北京:中国建筑工业出版社,1988.
    [60].S N Crichton, M. Tomozawa. Stress-corrosion mechanisms in silicate glasses[J]. J. Non-Cryst. Solids.2006,215:244-251.
    [61].T Kokubo, H Takagi. Alkaline durability of BaO-TiO_2-SiO2 glasses[J]. JourNal of NonCrystalline Solids,1982,5(3):9-10
    [62].T Satyanarayana. Role of titaium valence state in optical and electronic features of PbO-Sb2O3-B2O3.TiO_2 glass alloys[J]. Journal of Alloys and Compounds, 2009, 482(2):283- 297.
    [63].吴建锋.TiO_2对堇青石微晶玻璃结构及性能的影响[J].武汉理工大学学报,2006,28(6):10-14.
    [64].Manal Abdel-Baki. Optical characterization of xTiO_2-(60-x)SiO2-40Na2O glasses: Absorption edge, Fermi level, electronic polarizability and optical basicity[J].Optics Communications,2006,261:65-70.
    [65].赵青林.氧化物自身的耐碱性与氧化物对玻璃耐碱性的影响[J].硅酸盐通报,2003,2(1):8-14.
    [66].吴正明.含锆逆性玻璃及TiO_2,PbO,SiO2的耐碱性以及氧化物耐碱性的评估[J].武汉工业大学学报,1997,19(4):31-35.
    [67].Hu A M, Li M, Mao D L, et al. Crystallization and properties of a spodumene willemite glass ceramic[J].Thermochimica Acta,2005,437 (2):110-113.
    [68].张明熹. ZnO·B2O3-SiO2玻璃红外光谱的研究[J].硅酸盐通报,2009,28(5):1051-1056.
    [69].孙慧萍. ZnO和Na2O对CaO-B2O3-SiO2介电陶瓷结构与性能的影响[J].陶瓷学报,2004,25(1):61-64.
    [70].陈国华.氧化锌对MgO-Al2O3-SiO2系玻璃结构和性能的影响[J].中国有色金属学报,2006,16(11):1092-1097.