低速交流电机伺服系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着伺服系统应用范围的不断扩大,很多应用场合对现代伺服系统的低速甚至超低速性能要求也越来越高。比如高精度数控机床工作台伺服进给系统、雷达卫星天线自动跟踪系统、工业机器人、光学加工等领域要求伺服系统在低速运行时有良好的跟随特性和抗干扰性能,即电机在给定转速变化、负载变化的条件下能够低速平稳运行。伺服电机系统的性能会受到各种量化误差、采样误差,以及电机转矩脉动等因素的影响。特别是在低速运行时,速度反馈的精度和动态性能都受到极大限制,因此电机往往处于无规律地转和停状态,速度很难控制,进而影响整个系统的低速性能指标。低速运行时,速度的平稳性主要由执行电机的特性和控制器性能决定。因此,对低速电机伺服系统的研究必须从电机本体、控制策略、驱动方式、编码器采样方式等个各方面综合分析和考虑,以提高系统的稳态性能、动态响应特性和抗扰性,满足各种应用场合的要求。
     本文首先就低速电机伺服系统的应用背景和相关技术领域进行了阐述,概述了对国内外相关领域的研究现状,分析了本课题的选题背景和意义。
     其次,建立了基于DSP的低速电机伺服系统实验平台。平台选取无槽无刷交流永磁电机作为执行电机,以消除齿槽转矩对电机低速运行时的影响,并尽量减少电磁谐波转矩。文中对无槽无刷电机从结构和电磁场性能的角度对其特性做了详细的分析,建立了基于转子磁场定向的数学模型。系统采用定子电压空间矢量电流预测控制方法,以进一步减少电流波形畸变,降低电机转矩脉动。
     然后,在实验平台基础上,采用基于位置信号的含滤波器的一阶扰动转矩观测器,构建了低速电机伺服系统。观测器使用一阶伪微分结构,在准确估计扰动转矩的同时,尽量减少微分运算对测量和计算误差的放大。算法结合永磁同步电动机具有的无槽式结构(无齿槽转矩)、气隙大(直轴电流对气隙磁场影响小)、绕组电感及电气时间常数小(动态特性良好)等特点,抑制电机运行时转矩扰动,提高伺服电机转速的抗扰性。系统在采用普通分辨率(1000ppr)的光电编码器,实现了1r/min左右超低速范围内的稳定运行,并具有良好的动态特性。仿真和实验表明,系统能够快速抑制速度误差和扰动转矩对电机低速运行的影响,且容易实现,有较强的实用性。
     接着,本文提出了一种基于二阶滑模微分运算的速度计算和补偿算法,算法通过对采样到的位置信号的二次滑模运算,得到加速度信息,然后根据加速度信息计算出速度值,使速度反馈值能够快速跟踪负载的变化。通过采用此算法,使永磁同步伺服电动机可以在低速区域的动态性能获得明显的提高。实验结果表明该方法具有快速的动态性能和对负载扰动有较强的鲁棒性。
     提高编码器分辨率是能够提高低速电机伺服系统性能最直接和有效的手段和方法,本文最后介绍一种正弦波编码器信号细分转换方法,使伺服系统能够将采样到的正、余弦波信号值转换为可以用于计算电机速度、位置的高分辨率脉冲信号。方法包括区域分段法和线性函数近似计算法,方法在不提高位置传感器成本条件下,提高了低速电机伺服速度和位置信息检测精度,且具有占用的计算资源少,硬件成本低,精度高,抗干扰性好的特点。
Nowadays, low speed and sometimes even ultralow speed electric machine drive servo systems with exquisite steady and dynamic performance have been highly demanded for wide range of particular applications, such as modern high precision computer numeric control (CNC) machine tools, automatic tracking systems of radar and satellite antenna, industrial robotic systems, and optical processing equipments. The electric machine in those servo systems which require good tracking and anti-disturbance performance in low speed operation should be able to operate smoothly at certain speed or load changes. Normally, the performances of electric machine drive servo systems are inevitably deteriorated by various quantization, sampling, and measurement errors as well as machine torque ripple. Furthermore, the precision and dynamic response of the speed feedback in such servo system might be greatly tampered in low speed operation so that high-performance speed control of the machine could be rather difficult to accomplish. Consequently, the low speed performance of such servo system could be greatly compromised as the machine will usually spin and stop randomly. Overall, the smoothness of low speed electric machine drive servo system is determined by two factors:torque characteristics of the machine and performance of the controller. Investigations on electric machine itself, driving scheme, control strategy, and sampling method of position sensor are usually indispensible in order to improve both the steady and dynamic performances of the low speed electric machine drive servo system.
     Firstly, the paper has covered background and corresponding technical fields of the low-speed electric machine drive servo system. An overview of the state of the art in this research area has been also presented and meanwhile both the context and significance of such topic have been declared.
     Secondly, the experimental platform of low speed electric machine drive servo system has been built and introduced. A slotless permanent magnet synchronous machine is employed in this system in order to eliminate the cogging torque and minimize electromagnetic torque ripple. Comprehensive analysis on the structure and electromagnetic field has been carried out to unveil the unique features of the slotless machine so that mathematic model of the machine can be established based on rotor magnetic field. Stator voltage vector control with predictive current method has been employed to alleviate current distortion and hence torque ripple.
     Thirdly, a first-order disturbance observer based on filtered position signal has been presented and implemented in the proposed experimental platform. A first-order low pass filter, which filters the output value of the disturbance observer instead of stator winding current, is employed to achieve pseudo-differential operation so that the computational speed error caused by position quantization error of the optical encoder can be reduced over the low speed operation region. Besides cogging torque free, the slot less permanent magnet synchronous machine has a relatively larger air gap and hence small inductance and electrical time constant, resulting in excellent dynamic performance. Consequently, the low speed slotless permanent magnet synchronous machine drive servo system with proposed disturbance torque observer can effectively suppress torque disturbances and improve the drive performance. A stable low speed region (around lr/min) has been achieved in the proposed servo system equipped with a moderate resolution (1000ppr) encoder. Both the simulation and experimental results have revealed that the proposed disturbance torque observer can be easily implemented in practical applications to suppress the corresponding effects of the disturbance torque and computational speed error.
     Fourthly, a speed calculation method based on second-order sliding mode differentiator has been proposed. The method imposes twice sliding mode operations on the position sampling signal to retrieve the rotor acceleration information. Thus, the rotor speed can be accordingly obtained accurately with on compromise on the effectiveness and timeliness in low speed region. The dynamic performance of the servo system in low speed region (20r/min-40r/min) can be effectively improved by the proposed second-order sliding mode differentiator together with the current compensation algorithm of disturbance torque. The experimental results have shown that the proposed method cannot only improve the dynamic response and robustness of the servo system against the load disturbance.
     The most direct and effective approach to improve low speed performance of a servo system is to increase the resolution of the encoder. Last, a novel interpolation method for sinusoidal quadrature encoder, which involves approximate-linear function and interval division algorithm, has been introduced. The sine and cosine wave signals received by the servo system can be converted to high-resolution pulse sequence by this method, so that the speed of the machine can be accordingly calculated. The method can be easily implemented in the system to achieve high precision and anti-interference in speed calculation with little extra computational resource but no additional hardware expense.
引文
[1]卢志刚,吴杰,吴潮,数字伺服控制系统与设计[M],机械工业出版社,2007.
    [2]秦忆,现代交流伺服系统[M],华中理工大学出版社,1995.
    [3]曾玉金,高性能交流伺服系统及其复合控制策略的研究[D],博士学位论文,浙江大学,2004.
    [4]陈荣,永磁同步电机伺服系统的研究[D],博士学位论文,南京航空航天大学,2004.
    [5]林伟杰,永磁同步电机伺服系统控制策略的研究[D],博士学位论文,浙江大学,2004.
    [6]沈建新,方宗喜,现代电机发展方向与关键技术[J],微特电机,2008,6:55-57.
    [7]高扬,杨明,于泳,徐殿国,基于扰动观测器的PMSM交流伺服系统低速控制[J],中国电机工程学报,2005,22(25):125-129.
    [8]陈张玮,郭杨宽,李玉和,等,高精度低速转台控制系统的设计研究[J],光学精密工程,2004,12(3):296-298.
    [9]李学雷,超低速跟踪伺服系统的研究[D],硕士学位论文,西北工业大学,2002.
    [10]刘建涛,王钦泽,张尊泉,多电机高精度同步控制系统的研制[J],现代电子技术,2005,28(5):109-110.
    [11]刘杰,同周期控制交流伺服系统的研究[D],博士学位论文,哈尔滨工业大学,2009.
    [12]陈娟,乔彦峰,伺服系统低速摩擦力矩特性及补偿研究概况[J],光机电信息,2002,11:30-34.
    [13]吴茂刚,矢量控制永磁同步电动机交流伺服系统的研究[D],博士学位论文,浙江大学,2006.
    [14]张琛,直流无刷电动机原理及应用[M],机械工业出版社,1995.
    [15]J. R. Hendershot Jr, T JE Miller, Design of Brushless Permanent—Magnet Motors [M], Oxford:Magna Physics Publishing and Clarendon Press,1994.
    [16]莫会成,永磁交流伺服电动机转矩波动分析[J],微电机,2007,40(3):1-4.
    [17]李钟明,刘卫国,稀土永磁电机[M],北京:国防工业出版社,1999.
    [18]唐任远,现代永磁电机理论与设计[M],北京:机械工业出版社,1997.
    [19]王秀和,永磁电机[M],北京:中国电力出版社,2007.
    [20]Ree J. D. L., Boules N., Torque production in permanent magnet synchronous motors [J], IEEE Trans. on Industry Applications,1989,25(1):107-112.
    [21]Li T., Slemon G., Reduction of cogging torque in PM motors [J], IEEE Trans. on Magnetics,1988,24(6):2901-2903.
    [22]Han K. J., Cho H. S., Cho D. H., Jung H. K., Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm [J], IEEE Trans. on Magnetics,2000,36(4):1927-1931.
    [23]Hwang S. M., Lieu D. K., Reduction of torque ripple in brushless DC motors [J], IEEE Trans. on Magnetics,1995,31(6):3737-3739.
    [24]Parsa L., Hao L., Toliyat H. A., Optimization of average and cogging torque in 3-phase IPM motor drives [J], Proceeding of IEEE Industry Applications Conference,2002,1:417-424.
    [25]Bianchi N., Bolognani S., Design techniques for reducing the cogging torque in surface-mounted PM motors [J], IEEE Trans. on Industry Applications,2002, 38(5):1259-1265.
    [25]姜庆明,杨旭,甘永梅等,一种基于光电编码器的高精度测速和测加速度方法[J],微计算机信息,2004,20(6):48-49.
    [261 徐静,阮毅,基于TMS320F240的#M/T(?)测速的实现与应用[J],变频器世界,2004,(4):41-43.
    [27]李为民,姜漫,基于光电编码器的速度反馈与控制技术[J],现代电子技术,2004,(23):84-86.
    [28]高瑞昌,孙昌国,DSP在测速中的应用[J],自动化技术与应用,2004,23(3):71-73.
    [29]宋刚,基于普通编码器的高精度测速方法[J],上海交通大学学报,2002, 36(8):1169-1172.
    [30]刘栋良,贺益康,交流伺服系统逆变器死区效应分析与补偿新方法[J],中国电机工程学报,2008,28(21):46-50.
    [31]吴茂刚,赵荣祥,汤新舟,正弦和空间矢量PWM逆变器死区效应分析与补偿[J],中国电机工程学报,2006,26(12):101-105.
    [32]王江,王家军,许镇琳,基于逆变器死区特性的永磁同步电动机系统的自适应变结构控制[J],中国电机工程学报,2001,21(8):37-41.
    [33]Shaotang Chen, Chandra Namuduri, Sayeed Mir, Controller-induced parasitic torque ripples in a PM synchronous motor [J], IEEE Trans. on Industry Application,2002,3.8(5):1273-1281.
    [33]王伟颖,永磁同步电机抗负载扰动控制策略研究[D],硕士学位论文,浙江大学,2012.
    [34]徐东,王田苗,刘敬猛,魏洪兴,永磁同步电机电流环自适应复合控制方法研究[J],系统仿真学报,2009,21(22):7199-7204.
    [35]鲁文其,胡育文,梁骄雁,黄文新,永磁同步电机伺服系统抗扰动自适应控制[J],中国电机工程学报,2011,31(3):75-81.
    [36]Vladan Petrovic', Romeo Ortega, Aleksandar M. Stankovic', Gilead Tadmor, Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors[J], IEEE Trans. on Power Electronics, 2000,15(5):871-880.
    [37]耿洁,陈振,刘向东,赖志林,永磁同步电机的自适应逆控制[J],电工技术学报,2011,26(6):51-55.
    [38]Yasser Abdel-Rady, Ibrahim Mohamed, Adaptive self-Tuning speed control for permanent-magnet synchronous motor drive with dead time [J], IEEE Trans. on Energy Conversion,2006,21(4):855-962.
    [39]曲永印,赵希梅,郭庆鼎,永磁同步电动机伺服系统自校正零相位误差跟踪控制[J],电工技术学报,2008,23(1):60-64.
    [40]纪志成,李三东,沈艳霞,自适应积分反步法永磁同步电机伺服控制器的设计[J],控制与决策,2005,2(3):329-336.
    [41]韩京清,自抗扰控制器及其应用[J],控制与决策,1998,13(1):19-23.
    [42]刘子建,吴敏,陈鑫,王春生,永磁同步电机混合非线性控制策略[J],浙江大学学报(工学版),2010,44(7):1303-1307.
    [43]胡建辉,邹继斌,永磁同步电动机自适应反步控制的建模与仿真[J],系统仿真学报,2007,19(2):247-303.
    [44]孙凯,许镇琳,盖廓,邹积勇,窦振,基于自抗扰控制器的永磁同步电机位置伺服系统[J],中国电机工程学报,2007,27(15):43-46.
    [45]Y.X.Su, C.H.Zheng, B.Y.Duan, Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors [J], IEEE Trans. on Industrial Electronics,2005,52(3):814-823.
    [46]刘志刚,李世华,基于永磁同步电机模型辨识与补偿的自抗扰控制器[J],中国电机工程学报,2008,28(24):118-123.
    [47]邵立伟,廖晓钟,张宇河,邓青宇,自抗扰控制器在永磁同步电机控制中的应用[J],北京理工大学学报,2006,26(4):326-329.
    [48]曹先庆,朱建光,唐任远,基于模糊神经网络的永磁同步电动机矢量控制系统[J],中国电机工程学报,2006,26(1):137-141.
    [49]许振伟,蒋静坪,骆再飞,基于神经网络的永磁同步电动机模糊自适应控制[J],电力系统及其自动化学报,2003,15(3):49-52.
    [50]李宏儒,顾树生,神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.
    [51]K.B. Lee, Disturbance observer that uses radial basis function networks for the low speed control of a servo motor [J], IEE Proceedings-Control Theory and Applications,2005,152(2):118-124.
    [52]K.B. Lee, F. Blaabjerg, Robust and stable disturbance observer of servo system for low speed operation [J], IEEE Trans. on Industry Applications,2007,43(3): 627-635.
    [53]夏长亮,王娟,史婷娜等,基于自适应径向基函数神经网络的无刷直流电机直接电流控制[J],中国电机工程学报,2003,23(6):123-127.
    [54]杨书生,钟宜生,永磁同步电机转速伺服系统鲁棒控制器设计[J],中国电 机工程学报,2009,29(3):84-90.
    [55]Yasser Abdel-Rady, Ibrahim Mohamed, Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer [J], IEEE Trans. on Industrial Electronics,2007,54(4): 1981-1988.
    [56]Kuo-Kai Shyu, Chiu-Keng Lai, Yao-Wen Tsai, Ding-I Yang, A newly robust controller design for the position control of permanent-magnet synchronous motor [J], IEEE Trans. on Industrial Electronics,2002,49(3):1558-1565.
    [57]刘栋良,永磁同步电机伺服系统非线性控制策略的研究[D],浙江大学博士论文,2005.
    [58]张涛,蒋静坪,交流伺服系统的非线性控制[J],电工技术学报,2001,16(1):57-59.
    [59]刘刚,李华德,杨丽娜,永磁同步电机的非线性自适应解耦控制[J],西安交通大学学报,2009,43(8):102-106.
    [60]王江,王静,费向阳,永磁同步电动机的非线性PI速度控制[J],中国电机工程学报,2005,25(7):125-130.
    [61]汪海波,周波,方斯琛,永磁同步电机调速系统的滑模控制[J],电工技术学报,2009,24(9):71-77.
    [62]皇甫宜耿,刘卫国,马瑞卿,永磁同步电机高阶滑模控制与扰动转矩估计[J],西北工业大学学报,2009,27(5):630-634.
    [63]童克文,张兴,张星基于新型趋近律的永磁同步电动机滑模变结构控制[J],中国电机工程学报,2008,28(21):102-106.
    [64]Lai, C.-K., Kuo-Kai Shyu, A novel motor drive design for incremental motion system via sliding-mode control method [J], IEEE Trans. on Industrial Electronics,2005,152(2):499-507.
    [65]刘强,高性能机械伺服系统运动控制技术综述[J],电机与控制学报,2008,12(5):603-609.
    [66]S.M., Shahruz M., Performance enhancement of a class of nonlinear systems by disturbance observers [J], IEEE Trans. on Mechatronics,2000,5(3):319-323.
    [67]Carl J. Kempf, Seiichi Kobayashi, Disturbance observer and feedforward design for a high-speed direct-drive positioning table [J], IEEE Trans. on Control System Technology,1999,7(5):513-527.
    [68]White M. T., Tomizuka M., Smith C., Improved track following in magnetic disk drives using a disturbance observer [J], IEEE Trans. on Mechatronics, 2000,5(1):3-11.
    [69]谢巍,何忠亮,采用改进型扰动观测器的控制方法[J],控制理论与应用,2010,27(6):695-700
    [70]Yamada K, Komada S, Ishida M, et al., Analysis of servo system realized by disturbance observer [C], Advanced Motion Control,1996,1:338-343.
    [71]Bertoluzzo M., Buja G., Stampacchia E. Performance, Analysis of a servo system with high-band width torque disturbance observer [J], IEEE Trans.on Mechatronics,2004,9(4):653-660.
    [72]贾松涛,朱煜,杨开明,李恒,精密工作台扰动观测器的设计[J],微细加工技术,2007,8(4):39-42.
    [73]K.S.Eom, I.H.Suh, W.K.Chung, Disturbance observer based path tracking control of robot manipulator considering torque saturation [J], IEEE Trans. on M echatronics,2001,6(11):325-343.
    [74]Addisu Tesfaye, Ho Seong Lee, Masayoshi Tomizuka, A sensitivity optimization approach to design of a disturbance observer in digital motion control systems [J], IEEE Trans. on Mechatronics,2000,5(1):32-38.
    [75]康琪,林军,数控机床和伺服电机中应用扰动观测器的精度控制与补偿[J],上海师范大学学报:自然科学版,2012,41(5):475-482.
    [76]郑泽东,李永东,FADEL M,肖曦,基于状态观测和反馈的伺服系统位置控制器[J],清华大学学报:自然科学版,2008,48(1):24-27.
    [77]于艾,杨耕,徐文立,具有扰动观测器调速系统的稳定性分析及转速环设计[J],清华大学学报(自然科学版),2005,45(4):521-524.
    [78]陈荣,邓智泉,严仰光,基于负载观测的伺服系统抗扰研究[J],中国电机工程学报,2004,24(8):103-108.
    [79]Jian-Xin Xu, S. K. Panda, Ya-Jun Pan, Tong Heng Lee, A modular control scheme for PMSM speed control with pulsating torque minimization [J], IEEE Trans. on Industrial Electronics,2004,51(3):526-536.
    [80]张小华,刘慧贤,丁世宏,李世华,基于扰动观测器和有限时间控制的永磁同步电机调速系统[J],控制与决策,2009,24(7):1028-1032.
    [81]赵希梅,郭庆鼎,基于扰动观测器和重复控制器的永磁直线同步电动机鲁棒控制[J],中国电机工程学报,2010,30(15):64-69.
    [82]王伟颖,永磁同步电机抗负载扰动控制策略研究[D],浙江大学硕士学位论文,2012.
    [83]王军平,陈全世,基于扰动观测器的伺服控制器设计及仿真研究[J],系统仿真学报,2004,16(8):1825-1827.
    [84]王成元,徐展,基于转矩观测器的模糊滑模控制交流伺服驱动系统[J]电气传动,1998,1:17-20.
    [85]J. Corres, P.Gil., Instantaneous speed and disturbance torque observer using nonlinearity cancellation of shaft encoder [C], Power Electronics Specialists Conference,2002,2:540-545.
    [86]王成元,夏加宽,孙宜标,现代电机控制技术[M],机械工业出版社,2009.
    [87]Zheng Zedong, Li Yongdong, Fadel M., A rotor speed and load torque observer for PMSM based on extended kalmanfilter [C], IEEE Conference on ICIT, 2006:233-238.
    [88]章玮,姚卫忠,梁文毅,基于卡尔曼滤波器的永磁同步电动机转速精确控制[J],微电机,2008,1:4-6.
    [89]Wu Fang, Wan Shanming, Huang Shenghua, Chen Yongjun. Study on speed detection and control method of PMSM under ultra-low Speed [C],42nd Universities Power Engineering Conference,2007, UPEC 2007:178-183.
    [90]刘景林,马瑞卿,刘卫国,基于高性能微控制器的超低速稀土永磁交流伺服系统[J],西北工业大学学报,2003,21(1):10-13.
    [91]翟百臣,直流PWM伺服系统低速平稳性研究[D],中国科学院研究生院,博士学位论文,2005.
    [92]Shin-ichiro Sakai, Yoichi Hori, Ultra-low speed control of servomotor using low resolution rotary encoder [C], Proceedings of the IEEE IECON international conference,1995, MC2:4.1-4.3.
    [93]Kiyoshi Ohishi, Toshimasa Miyazaki, Yoshihiro Nakamura, High performance ultra-Low speed servo system based on doubly coprime factorization and instantaneous speed observer [J], IEEE Trans.on mechatronics,1996, (1):89-96.
    [94]Ming-Shyan Wang, Ying-Shieh Kung, Berinde Sergio, Nguyen Thi Han, Reference model based low-speed control of PMSM [C], The Eighth International Conference on Power Electronics and Drive Systems,2009:78-83.
    [95]Heni-wook Kim, Seung Ki Sul, A New Motor Speed Estimator using Kalman Filter in low speed range [C], IEEE Trans. on Ind. Electro.1996,43(4): 498-504.
    [96]Miroslav Markovic, Yves Perriard, Simplified design methodology for a slotless brushless DC motor[J], IEEE Trans. on Magnetics,2006,42(12):3842-3846.
    [97]T. Batzel, K. Y. Lee, Commutation torque ripple minimization for permanent magnet synchronous machines with Hall effect position feedback [J], IEEE Trans, on Energy Conversion,1998,13(3):257-262.
    [98]沈建新,陈永校,无槽无刷直流电机及其前期设计[J],电工电能新技术,1997,1:45-49.
    [99]沈建新,费伟中,陈利根,气隙磁场波形及磁瓦充磁方式对无刷直流电动机性能的影响[J],微特电机,2006,6:7-9.
    [100]沈建新,陈利根,永磁无刷电机中平行充磁2极气隙磁场的解析计算[J],电机与控制应用,2006,33(1):7-10.
    [101]Lam B.H., Panda S.K., Xu J. X., Reduction of periodic speed ripples in PM synchronous motors using iterative learning control [C], Industrial Electronics Society,2000,2:1406-1411.
    [102 ]刘豹,现代控制理论[M],机械工业出版社,2005.
    [103]王治铭,卢桂章,线性多变量系统的能观规范型与辨识[J],数学物理学报,1982,2(1):45-61.
    [104]Matsui N., Makino T., Satohet H., Autocompensation of torque ripple of direct drive motor by torque observer [J], IEEE Trans. on Industry Applications, 1993,29(1):187-194.
    [105]K. Kubo, M. Watanabe, F. Kozawa, K. Kawasaki, Disturbance torque compensated speed observer for digital servo drives [C], Proceeding of IECON'90,1990,2:1182-1187.
    [106]陈荣,邓智泉,严仰光,微分反馈控制在永磁伺服系统中的应用研究[J],电工技术学报,2004,20(9):92-97.
    [107]王江,李韬,曾启明等,基于观测器的永磁同步电动机微分代数非线性控制[J],中国电机工程学报,2005,25(2):87-92.
    [108]MXH Multiplier board option manual P/N:EDO110 (V1.6), AEROTECH, Inc. USA,2005.
    [109]凌睿,柴毅,永磁直线同步电机多变量二阶滑模控制[J],中国电机工程学报,2009:60-66.
    [110]刘颖,周波,方斯琛,基于新型扰动观测器的永磁同步电机滑模控制[J], 中国电机工程学报,2010:80-85.
    [111]孙宜标,魏秋瑾,王成元,永磁直线同步电机二阶滑模控制仿真研究[J],系统仿真学报,2009,21(7):2037-2045.
    [112]S. Drakunov, V. Utkin, Sliding mode observers [C], Tutorial, Proceeding of the 34th Conference on Decision and Control,1995:3376-3378.
    [113]I. Boiko, L. Fridman, A. Pisano, E. Usai, Analysis of chattering in systems with second-order sliding modes [J], IEEE Trans. on Automatic Control,2007,52: 2085-2102.
    [114]A. Levant, Quasi-continuous high-order sliding-mode controllers [J], IEEE Transactions on Automatic Control,2005,50:1812-1816.
    [115]G. Bartolini, A. Damiano, et al, Robust speed and torque estimation in electrical drives by second-order sliding modes [J], IEEE Trans. on Control System,2003,11:84-90.
    [116]G. Bartolini, A. Ferrara, E. Usai, Chattering avoidance by second-order sliding mode control [J], IEEE Trans. on Automatic Control,1998:241-246.
    [117]V. Utkin, Sliding Mode Control Design Principles and Applications to Electric Drives[J], IEEE Trans. on Industrial Electronics,1993:23-36.
    [118]A. Levant, Principles of 2-sliding mode design [J], Automatica,2007:576-586.
    [119]A. Levant, Sliding order and sliding accuracy in sliding mode control [J], International Journal of Control,1993,58:1247-1263.
    [120]Chang F. J., Twu S. H., Chang S., Tracking control of DC motors via an improved chattering alleviation control [J], IEEE Trans. on Industrial Electronics,1992,39(1):25-29.
    [121]Zhang J., Barton T., Robustness enhancement of dc drives with a smooth optimal sliding-mode control [C], Industry Applications Society Annual Meeting,1991.
    [122]N. Hagiwara, H. Murase, Method of improving the resolution and accuracy of rotary encoders using a code compensation technique[J], IEEE Trans. on Instrum. and Meas.,1992,41:98-101.
    [123]羊彦,李辉,景占荣,永磁交流伺服系统中新型光学旋转编码器的应用[J],微特电机,2005,10:32-38.
    [124]王峰,张波,丘东元交流电机的虚拟光电编码盘测速技术,中国电机工程学报[J],2005,25(6):99-103.
    [125]徐晓丹,增量式光电编码其细分技术的研究[D],长春理工大学,硕士学位论文,2010.
    [126]汤天瑾,曹向群,林斌,光电轴角编码器发展现状分析及展望[J],光学仪器,2005,27(1):90-95.
    [127]J. R. R Mayer, High resolution of rotary encoder analog quadrature signals [J], IEEE Trans, on lnstrum. and Meas.,1994,43:494-498.
    [128]Ju-Chan Kim, Jang-Mok Kim, Cheul-U Kim, Cheol Choi, Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoders [C], IEEE APEC Proceedings,2006:930-934.
    [129]K. K. Tan, Huixing X. Zhou, Tong Heng Lee, New interpolation method for quadrature encoder signals [J], IEEE Trans. on Instrum. and Meas.,2002, 51(5):1073-1079.
    [130]Yim C. H., Ha I. J., Ko M. S., A resolver-to-digital conversion method for fast tracking [J], IEEE Trans. on Industrial Electronics,1992,39(5):369-378.
    [131]T. Emura, L. Wang, A high-resolution interpolation for incremental encoders based on the quadrature PLL method [J], IEEE Trans. on Ind., Electron., 2000,47:84-90.
    [132]Hung Van Hoang, Jae Wook Jeon, Signal compensation and extraction of high rResolution position for sinusoidal magnetic encoders [C], International Conference on Control, Automation and Systems,2007:1368-1373.
    [133]孙莹, 万秋华, 王树洁等,航天级光电编码器的信号处理系统设计[J],光学精密工程,2010,18(5):1182-1188
    [134]C. Attaianese, G. Tomasso, Position measurement in industrial drives by means of low-cost resolver-to-digital converter [J], IEEE Trans. on Instrum. Meas., 2007,21:55-2159.
    [135]Kok-Zuea Tang, Kok-Kiong Tan, Tong-Heng Lee, Chek-Sing Teo, Neural network-based correction and interpolation of encoder signals for precision motion control [C], IEEE AMC Proceedings,2004:499-504.
    [136]Kok Kiong Tan, Kok-Zuea Tang, A daptive online correction and interpolation of quadrature encoder signals using radial basis functions [J], IEEE Trans. on Control Systems Technology,2005,13(3):370-377.
    [137]Benammar M., Precise, wide-range approximations to arc sine function suitable for analog implementation in sensors and instrumentation publications [J], IEEE Trans, on Circuit and Systems Ⅰ,2005,52(2):262-270.
    [138]罗刚,熊文卓,光电轴角编码器光电信号正交偏差的测量和补偿方法[J],传感技术学报,2008,21(11):1853-1857.
    [139]熊文卓,孔智勇,张炜.光电轴角编码器光电信号正性偏差的向量校正方法[J],光学精密工程,2007,15(11):1745-1748.