河北杨干旱胁迫响应基因的分离与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河北杨(Populus hopeiensis Hu et Chow)属杨柳科(Salicacae)杨属(Populus L)白杨派(Section Leuce Duby)树种,是一个主要分布在我国西北与华北干旱半干旱地区的重要乡土杨树,它抗旱、抗寒、耐瘠薄、根蘖性强,是进行干旱胁迫相关基因克隆与研究林木干旱胁迫信号转导与耐受性机理的理想材料。本研究以河北杨为试验材料,建立了其组织培养无菌体系,利用cDNA-AFLP差异表达技术对河北杨干旱胁迫响应基因进行筛选,获得了457条TDFs片段。在对其进行分析的基础上,通过同源克隆结合RACE方法从干旱胁迫处理的河北杨中分离了植物CBF/DREB1与DREB2类转录因子基因:PhCBF4a/4b、PhDREB2a/2b,进而对其序列及组织特异性表达模式与不同胁迫条件下的表达模式进行了系统的分析。同时,通过瞬时表达研究与转化拟南芥研究,进一步鉴定了PhCBF4a/4b、PhDREB2a/2b基因的功能。经上述研究主要得到如下结果:
     1.以干旱处理不同程度的河北杨无菌生根苗为试验材料,使用256对选择性扩增引物对河北杨干旱胁迫响应基因进行了较为全面的筛选,共回收了484条TDFs片段,最后测序获得457条片段序列。其中,391条TDFs在NCBI蛋白数据库中有同源基因,其余38个在杨树EST数据库中有同源序列,25个在杨树基因组数据库有类似序列,而TDF45-1、TDF183、TDF280-1在三个数据库中均没有类似序列。根据条带强度变化模式,对TDFs条带进行了分级聚类,共分为12个类群,其中Cluster8与Cluster9分别包含118与106条TDFs片段,其表达模式为瞬时上调然后下降或持续上调。这两个类群的TDFs数目占所有片段的49.0%,暗示了这两类基因在河北杨干旱胁迫响应中的重要作用。在所获得的TDFs片段中,有些TDFs片段代表了同一个基因或同一个基因家族的不同成员,也就是说,在干旱胁迫诱导的河北杨中,这些基因的转录本数较多,显示了这些基因在调控河北杨干旱胁迫耐受性中的重要作用。
     2.通过同源分析方法,推测杨树CRT/DRE顺式作用元件的核心基序为A/GCCGACA/G,不完全等同于拟南芥CRT/DRE的基序A/GCCGACNT。利用这一推测模式,发现在获得的457条TDFs片段中有8条可能是河北杨DREB转录因子的靶基因。其中有4条是LEA或ERD类的基因,另外4条可能参与了基因转录或翻译过程,而在拟南芥、水稻与玉米中,第二类的基因并没有占如此大的比例,这一结果显示虽然DREB调控子在植物中普遍存在,但并不完全一致。
     3.利用同源克隆结合RACE方法从干旱处理的河北杨中克隆了两对DREB类基因:PhCBF4a/4b、PhDREB2a/2b。虽然存在Indel区段与氨基酸残基的替换,但在氨基酸水平上,其序列一致性分别达到94.0%与97.7%,而且其同源基因在其它杨树及杨树杂交群体中的存在模式并不一致,推测它们可能分别是一对等位基因。同时,利用半定量PCR方法对其组织特异性表达模式与不同胁迫条件下的表达模式进行了分析,发现PhCBF4a/4b主要受干旱、低温与NaCl胁迫的诱导,而PhDREB2a/2b基因受干旱、高温与NaCl胁迫条件诱导而较强表达;在各种胁迫条件下,PhDREB2a/2b的表达量基本上均高于PhCBF4a/4b,而且在正常条件下,PhDREB2a/2b也能检测到表达;同时,在各种胁迫条件下,PhCBF4a与4b、PhDREB2a与2b表达模式也并不完全一致。这些结果暗示了PhCBF4a与PhCBF4b、PhDREB2a与PhDREB2b在调控河北杨胁迫抗性中的不同作用。
     4.对PhCBF4a/4b同源基因进行的进化发育分析显示,植物CBF/DREB1类基因经历了复杂的进化事件。在从共同的双子叶祖先分离之前或分离过程中,CBF/DREB1基因经历了多次的复制与趋异事件。在双子叶亚家族中,CBF/DREB1基因的分类部分的平行于物种分类,表明部分CBF基因是在物种形成之后才开始进行复制与趋异的进化过程。
     5.瞬时表达研究发现PhCBF4a/4b、PhDREB2a/2b具有明显的转录激活功能,而且PhCBF4a与4b、PhDREB2a与2b的转录激活功能有显著的差异,说明其序列的差异导致了其功能的差异,并可能影响到其在河北杨干旱胁迫耐受性中的功能。
     6.通过拟南芥遗传转化研究,发现与对照拟南芥植株相比,转PhCBF4a/4b、PhDREB2a/2b基因拟南芥生长迟缓、开花期延迟,在正常条件下,其DREB靶基因的表达量明显提高,干旱胁迫耐受性也明显提高,进一步证实了PhCBF4a/4b、PhDREB2a/2b的转录激活功能及其在调控河北杨胁迫响应中的重要作用。
     7.通过重叠PCR方法删除了PhDREB2a/2b 3'编码区的两个PEST序列,瞬时表达研究与转化拟南芥研究证实获得的PhDREB2bP12d基因的转录激活功能并没有提高,初步说明河北杨PhDREB2a/2b可能不存在类似于拟南芥AtDREB2A的翻译后调控过程。
     总之,通过研究初步筛选获得了河北杨干旱胁迫响应的TDFs片段,同时分离了河北杨DREB类基因并对它们进行了进一步的分析与功能鉴定,为河北杨及其它杨树干旱胁迫相关基因与干旱胁迫耐受性机理的进一步研究及林木抗旱遗传改良奠定了基础。
Populus hopeiensis Hu et Chow is a native species in Section Leuce,which is mainly distributed in northwest of China and north China.It's a drought- and chilling-tolerant tree species,therefore being an ideal material to study the mechanism of drought tolerance of woody plants.However,previous studies in P.hopeiensis mainly focused on in vitro culture,screening of somatic stress-resistant mutants,hybridization,and so on.In present study,drought stress responsive genes were screened with cDNA-AFLP in P.hopeiensis. Meanwhile,two pairs of highly similar DREB-like genes,PhCBF4a/4a and PhDREB2a/2b, were isolated from drought-stressed in vitro cultured plantlets,and their tissue-specific expression pattern and expression profile under various stress conditions were also studied. In addition,by transient expression assay and transgenic Arabidopsis assay,their function differences were characterized.The major results and conclusions are described as follows:
     1.Drought stress responsive genes were screened with cDNA-AFLP,and 484 differential expressed TDFs were excised from PAGE gels.457 TDFs were successfully cloned,among which,454 TDFs were found homologs in NCBI protein Database,or in Populus EST Database,or in Genome Database of P.tricocarpa,but the rest 3 TDFs, TDF45-1、TDF183、TDF280-1,found no homologs,meaning that they are probably specific genes in P.hopeiensis.Based on the expression patterns of TDFs in the different drought-stressed plantlets,the TDFs were classified into 12 clusters.And the Cluster8 and Cluster9 contained 118 and 106 TDFs respectively,occupying 49.0%of all obtained TDFs, suggesting their important roles in response to drought stress in P.hopeiensis.Meanwhile, some genes or gene families were represented by more than one TDF,also suggesting their roles in regulation of drought stress tolerance in P.hopeiensis.
     2.Using homolog analysis,the putative core motif of CRT/DRE cis-acting element was identified as A/GCCGACA/G in Populus.Corresponding to this motif,8 of the cloned 457 TDFs were presumable target genes of DREB-related genes of P.hopeiensis.Among them,4 TDFs shared high identity with LEA or ERD genes in other plants,and the rest 4 TDFs were probably involved in gene transcription or translation.
     3.By RT-PCR and RACE-PCR,PhCBF4a/4b and PhDREB2a/2b were isolated from drought stressed plantlets in P.hopeiensis.Although indel fragment and substitution of amino acids residue were found in their coding region,PhCBF4a and PhCBF4b, PhDREB2a and PhDREB2b,shared a 94.0%and 97.7%overall amino acid sequence identity each other respectively,suggesting that PhCBF4a and PhCBF4a,PhDREB2a and PhDREB2b,were two pairs of alleles,i.e.,in terms with PhCBF4a/4b and PhDREB2a/2b, P.hopeiensis was heterozygous.It was further characterized by studying the occurrence patterns of their orthologous genes in other Populus or cross population.In addition,the expression profiles of PhCBF4a/4b and PhDREB2a/2b were characterized with semi-quantitative PCR.Expression of PhCBF4a/4b was induced by drought,cold and NaCl stresses,whereas drought,heat and NaCl stresses upregulated expression of PhDREB2a/2b.Meanwhile,the expression amounts of PhDREB2a/2b were higher than those of PhCBF4a/4b under stress conditions.Moreover,PhCBF4a and PhCBF4b, PhDREB2a and PhDREB2b,showed similar but not identical expression patterns.All these revealed their similar but not identical roles in response to stresses in P.hopeiensis.
     4.A comprehensive phylogenic analysis revealed that the PhCBF4a/4b-like genes underwent complex evolution events in plants.In the eudicot subfamily,the existence of multiple subclades,each of which includes CBF gene members from Arabidopsis and P. tricocarpa,suggested that CBF genes were duplicated multiple times and diverged before or during speciation from the common eudicot ancestor.Meanwhile,clustering of the CBF homologs partly parallels the taxonomic classification,suggesting that duplication and divergence of some CBF genes occurred after speciation.
     5.Characterization of trans-activation of PhCBF4a/4b and PhDREB2a/2b was performed with transient expression assay.The results showed that PhCBF4a/4b and PhDREB2a/2b could activate expression of GUS gene,thus were trans-active.At the same time,significant differences of trans-activity of PhCBF4a and PhCBF4a,PhDREB2a and PhDREB2b were found,confirming that the indel and substitutions of amino acid resulted in the different trans-activity,thereby presumably affected their functions in regulating responsiveness to stresses in P.hopeiensis.
     6.Compared with the Control plants,overexpression of PhCBF4a/4b,PhDREB2a/2b in Arabidopsis not only induced strong expression of DREB target genes under unstressed conditions but also caused dwarfed phenotypes,later flowering in the transgenic plants.In addition,the transgenic plants also revealed elevated drought tolerance.All these also confirmed the trans-activation of PhCBF4a/4b and PhDREB2a/2b.
     7.With over-lapping PCR,two PEST fragments in 3' coding region of PhDREB2a/2b were deleted.However,the subsequent transient expression assay and transgenic Arabidopsis assay revealed that trans-activity of the obtained PhDREB2bP12d wasn't promoted.On the contrary,its trans-activity was reduced,so it could be preliminarily concluded that the post-translation regulation in AtDREB2A doesn't exist in P.hopeiensis.
     Taken together,the obtained results and conclusions gave new insights not only into elucidating the molecular mechanism of drought tolerance in P.hopeiensis but also into the genetic improvement of drought tolerance of woody plants.
引文
1.陈旭吉,周富吉.河北杨休眠期带木质芽嫁接繁育技术.甘肃科技.2003,19(10):149-150
    2.董茂山,黄钦才,林静芳.利用组织法繁殖河北杨的研究.中国林业科学院林业研究所研究报告.1983,1:50-59
    3.杜金友,陈晓阳,李伟 等.林木抗旱的渗透调节及其基因工程研究进展.西北植物学报.2004,24(6):1154-1159
    4.范淑英,乐建刚,成广杰 等.用cDNA-AFLP技术构建白菜转录图谱.中国农业科学.2008,41(6):1735-1741
    5.范小峰,李师翁,张民权.河北杨组织培养快繁技术研究.中国水土保持.2001,3:17-18
    6.郭予琦,田曾元,闫道良 等.盐生植物海滨锦葵幼苗盐胁迫下基因差异表达分析.遗传.2008,30(7):941-950
    7.李博.毛白杨及毛新杨转录组图谱构建及若干性状的遗传学联合分析.北京林业大学博士学位论文.2009
    8.李周岐,徐养福,郭军战.河北杨体细胞抗盐性突变体抗性稳定性研究.西北林学院学报.1997,12(2):80-84
    9.梁峥,马德钦,汤岚 等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报.1997,13(3):236-240
    10.林静芳,黄钦才,董茂山.用组织培养法获得河北杨植株.林业科技通讯.1980,4:3-4
    11.林元震.甜杨葡萄糖-6-磷酸脱氢酶克隆及结构分析与功能鉴定.北京林业大学博士学位论文.2006
    12.刘强,赵南明,Yamaguchi-Shinozaki K等.DREB转录因子在提高植物抗逆性中的作用.科学通报.2000,45(1):11-16
    13.卢孟柱,胡建军.我国转基因杨树的研究及应用现状.林业科技开发.2006,20(6):1-4
    14.路子显,常团结,刘翔 等.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展.遗传.2001,23:564-570
    15.秦红霞,贾志平,张海超 等.银新杨中与DRE元件结合的转录因子的克隆及鉴定分析.生物工程学报.2005,21(6):906-910
    16.全先庆,高文.盐生植物活性氧的酶促清除机制.安傲农业科学.2003,31(2):320-322
    17.时新宁,李桂华,张登凤.河北杨优良种源及优良无性系的选择研究.宁夏农林科技.2000,3:7-10
    18.孙耀中,东方阳,陈受宜 等.盐胁迫下转甜菜醛脱氢酶基因水稻幼苗耐盐生理的研究.华北农学报.2004,19(3):38-42
    19.王福森,孙惠杰,温宝阳 等.几个杨树新品种抗旱能力与生理反应研究.防护林科技.2001, 46(1):18-24
    20.徐纬英 主编.杨树.黑龙江人民出版社.1988.pp 36-38
    21.杨孟冬.过氧化物酶同工酶与杨树种及品种间亲缘关系的研究.无锡教育学院学报.1997,3:74-79
    22.杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析.林业科学.2002,38(6):36-42
    23.杨双,阮燕晔,樊金娟 等.一种简易的拟南芥幼苗微量DNA提取方法.沈阳农业大学学报.2005,36(1):99-100
    24.杨秀萍,翟梅枝,张凤云 等.河北杨体细胞抗盐性突变体Na~+、K~+积累特性.西北林学院学报.2003,18(4):26-28
    25.杨寅桂,娄群峰,庄勇 等.黄瓜幼苗热胁迫响应基因的分离.生态学杂志.2007,26(7):1034-1037
    26.俞嘉宁,山仑.LEA蛋白与植物的抗旱性.生物工程进展.2002,22(2):10-14
    27.Abe H,Urao T,Ito T et al.Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) Function as Transcriptional Activators in Abscisic Acid Signaling.Plant Cell.2003,15:63-78
    28.Abe H,Yamaguchi-Shinozaki K,Urao T et al.Role of Arabidopsis Myc and Myb homologs in drought- and abscisic acid-regulated gene expression.Plant Cell.1997,9:1859-1868
    29.Abel S,Theologis A.Transient transformation of Arabidopsis leaf protoplasts:A versatile experimental system to study gene expression.Plant J.1994,5:421-427
    30.Agarwal M,Hao YJ,Kapoor A et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.J Biol Chem.2006,281:37636-37645
    31.Agarwal P,Agarwal PK,Nair S et al.Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity.Mol Genet Genomics.2007,277:189-198
    32.Agarwal PK,Agarwal P,Reddy MK et al.Role of DREB transcription factors in abiotic and biotic stress tolerance in plants.Plant Cell Rep.2006,25:1263-1274
    33.Alamillo J,Almoguera C,Bartels D et al.Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum.Plant Mol Biol.1995,29(5):1093-1099
    34.Allen MD,Yamasaki K,Ohme-Takagi M et al.A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.EMBO J.1998,17:5484-5496
    35.Almoguera C,Coca M,Jordano J.Tissue-specific expression of sunflower heat shock proteins in response to water stress.Plant J.1993,4(6):947-958
    36. Almoguera C, Prieto-Dapena P, Diaz-Martin J et al. The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol. 2009,9:75-86
    37. Altman A , Alegrand T , Pelah D et al. Molecular biology of drought tolerance and transformation of Populus and Pinus at the Hebrew university of Jerusalem. Dendrom. 1996,3(2): 5-7
    38. Amy MB, Victor BB, Steven HS. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci. 2004, 9(1): 49-56
    39. Bachem CWB, Oomen RJFJ, Visser RGE. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep. 1998, 16: 157-174
    40. Bachem CWB, van der Hoeven RS, de Bruijn SM et al. Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 1996, 9: 745-753
    41. Benedict C, Skinner JS, Meng R et al. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 2006, 29: 1259-1272
    42. Berger B, Stracke R, Yatusevich R et al. A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant J. 2007, 50: 911-916
    43. Bhalerao R, Keskitalo J, Sterky F et al. Gene expression in autumn leaves. Plant Physiol. 2003, 131:430-442
    44. Bohert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends Biotech. 1996, 14: 89-97
    45. Borovskii GB, Stupnikova IV, Antipina Al et al. Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J Plant Physiol. 2000, 156: 797-800
    46. Boyer JS. Plant productivity and environment. Science. 1982, 218: 443-448
    47. Bradshaw FID, Ceulemans R, Davis J et al. Emerging model systems in plant biology: Poplar (Populus) as a model forest tree. Plant Growth Regul. 2000, 19(3): 306-313
    48. Bray EA. Plant responses to water deficit. Trends Plant Sci. 1997,2:48-54
    49. Breyne P, Dreesen R, Cannoot B et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics. 2003, 269(2): 173-179
    50. Brugmans B, Carmen A, Bachem C et al. A novel method for the construction of genome wide transcriptome maps. Plant J. 2002, 31:211-222
    51. Campalans A, Pages M, Messeguer R. Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol. 2001, 21(10): 633-643.
    52. Campcell SA, Crone DE, Ceccardi TL et al. A ca. 40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol Biol. 1998, 38: 417-423
    53. Cao JS, Yu XL, Ye WL et al. Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. spp. chinesis makino). Plant Cell Rep. 2006,24: 715-723
    54. Caruso A, Chefdor F, Carpin S et al. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J Plant Physiol. 2008, 165: 932-941
    55. Caruso A, Morabito D, Delmotte F et al. Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol Biochem. 2002,40(12): 1033-1042
    56. Catherine B, Barreneche T, Saintagene C et al. Molecular differentiation between two European oak species: Quercus robur and Quercus petraea. San Diego, CA: Plant & Animal Genome XII Conference. 2004, 10-14
    57. Chang S, Puryear J, Cainey J. A simple and efficient method for RNA isolating from pine trees. Plant Mol Biol Rep. 1993, 11: 113-116
    58. Chen JH, Xia XL, Yin WL. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun. 2009,378(3): 483-487
    59. Chinnusamy V, Ohta M, Kanrar S et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003, 17: 1043-1054
    60. Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol. 2002, 129: 1781-1787
    61. Close TJ. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant. 1996, 97: 795-803
    62. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16(6): 735-743
    63. Cnudde F, Moretti C, Porceddu A et al. Transcript profiling on developing Petunia hybrida floral organs. Sex Plant Reprod. 2003, 16: 77-85
    64. Cote C, Rutledge RG. An improved MUG fluorescent assay for the determination of GUS activity within transgenic tissue of woody plants. Plant Cell Rep. 2003,21: 619-624
    65. Crooks GE, Hon G, Chandonia JM. WebLogo: A Sequence Logo Generator. Genome Res. 2004, 14: 1188-1190
    66. Danyluk J, Perron A, Houde M et al. Accumulation of an Acidic Dehydrin in the Vicinity of the Plasma Membrane during Cold Acclimation of Wheat. Plant Cell. 1998, 10(4): 623-638
    67. De Paepe A, Vuylsteke M, Van Hummelen P et al. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J. 2004, 39: 537-559
    68. Dingwall C and Laskey RA. Nuclear targeting sequences - a consensus? Trends Biochem Sci. 1991, 16:478-481
    69. Dong CH, Agarwal M, Zhang Y et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiqutination and degradation of ICE1. Proc Natl Acad Sci USA. 2006, 103(21): 8281-8286
    70. Dubos C, Le Provost G, Pot D et al. Indentification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol. 2003a, 23(3): 169-217
    71. Dubos C, Plomion C. Indentification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol. 2003b, 51(2): 249-262
    72. Dubouzet JG, Sakuma Y, Ito Y et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33:751-763
    73. Dure L. Developmental biochemistry of cottonseed embryogenesis and germination: changing mRNA populations as shown in vitro and in vivo protein synthesis. Biochem. 1981,20: 4162-4168
    74. Durrant WE, Rowland O, Piedras P et al. cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell. 2000, 12: 963-977
    75. Egawa C, Kobayashi F, Ishibashi M et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst. 2006, 81: 77-91
    76. Eisen MB, Spellman PT, Brown PO et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95: 14863-14868
    77. Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ASIS encodes a basic leucine zipper transcription factor. Plant Cell. 2000, 12: 599-609
    78. Floral of China. 1999,4: 139-162
    79. Foyer CH, Souriau N, Perret S et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 1995, 109: 1047-1057
    80. Franco OL, Melo R. Osmoprotectants-A plant strategy in response to osmotic stress. Russ J Plant Physiol. 2000, 47: 137-144
    81. Fray RG, Wallace A, Grierson D et al. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol. 1994,24: 539-543
    82. Fujita M, Fujita Y, Maruyama K et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004,39: 863-876
    83. Gail T. Populus: Arabidopsis for forestry: Do we need a model tree. Ann Bot. 2002, 90: 681-689
    84. Gao MJ, Allard G, Byass L et al. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol. 2002,49:459-471
    85. Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol. 2004, 54: 767-781
    86. Gilmour SJ, Zarka DG, Stockinger EJ et al. Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998, 16:433-442
    87. Ginzberg I, Stein H, Kapulnik Y et al. Isolation and characterization of two different cDNAs of △1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol. 1998, 38(5): 755-764
    88. Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biol. 2003, 52: 696-704
    89. Haake V, Cook D, Riechmann JL et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002, 130: 639-648
    90. Han SY, Zhang SG, Wang Q et al. Construction of dehydration responsive element (DRE) reporter for the screening of DRE-binding transcription factors from tree plant Populus simonii. J Agri Biotechnol. 2007, 15: 446-450
    91. Holmstrom KO, Somersalo S, Mandal A et al. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot. 2000, 51: 177-185
    92. Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta. 2005, 220(6): 875-888
    93. Hsiao TC. Plant response to water stress. Ann Rev Plant Phsiol. 1973, 24: 519-570.
    94. Igarashi Y, Yoshiba Y, Sanada Y et al. Characterization of the gene for △1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol. 1997, 33(5): 857-865
    95. Iturriga G, Leyns L, Villegas A et al. A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation. Plant Mol Biol. 1996,32: 707-716
    96. Jaenicke R. Protein-folding: Local structures, domains, subunits and assemblies. Biochem. 1991, 30:3147-3161
    97. Jaglo KR, KleV S, Amundsen KL et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 2001, 127: 910-917
    98. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6(13): 3901-3907
    99. Kajita S, Osakabe K, Katayama Y et al. Agrobacterium-mediated transformation of poplar using a disarmed binary vector and the overexpression of a specific member of a family of poplar peroxidase in transgenic poplar cell. Plant Sci. 1994, 103: 231-239
    100. Kasuga M, Liu Q, Miura S et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999, 17: 287-291
    101. Kawai S, Matsumoto Y, Yamada K et al. Nucleotide sequence for the genomic DNA encoding an anionic peroxidase gene from a hybrid poplar, Populus kitakamiensis. Biosci Biotech Biochem. 1993,57:131-133
    102. Kayal WE, Navarro M, Marque G et al. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot. 2006, 57: 2455-2469
    103. Kim YH, Yang KS, Ryu SH et al. Molecular characterization of a cDNA encoding DRE binding transcription factor from dehydration treated fibrous roots of sweetpotato. Plant Physiol Biochem. 2008, 46:196-204
    104. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L: identification of three ERDs as HSP cognate genes. Plant Mol Biol. 1994, 25(5): 791-798
    105. Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant physiol. 1998, 118: 637-650
    106. Kohler A, Delaruelle C, Martin D et al. The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett. 2003, 542: 37-41
    107. Konstantinova T, Parvanova D, Atanassov A et al. Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant science. 2002, 8: 157-164
    108. Lee SC, Lee MY, Kim SJ et al. Characterization of an Abiotic Stress-inducible Dehydrin Gene, OsDhnl, in Rice (Oryza sativa L.). Mol Cells. 2005, 19(2): 212-218
    109. Lei YB, Yin CY, Li CY. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant. 2006, 127:182-191
    110. Li XP, Tian AG, Luo GZ et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet. 2005, 110(8): 1355-1362
    111. Liu Q, Sakuma Y, Abe H et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10: 1491-1406
    112. Lu PL, Chen NZ, An R et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol. 2007, 63(2): 289-305
    113. Magome H, Yamaguchi S, Hanada A et al. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 2004, 37: 720-729
    114. Maruyama K, Sakuma Y, Kasuga M et al. Identification of coldinducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004, 38: 982-93
    115. Maurel C, Reizer J, Schroeder JI et al. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993, 12(6): 2241-2247
    116. Mckersie BD, Bowley SR, Jones KS. Winter survival of transgenic alfalfa overexpressing superoxide dismulase. Plant Physiol. 1999, 119: 839-847
    117. Meissner RC, Jin H, Cominelli E et al. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell. 1999, 11: 1827-1840
    118. Miernyk JA. Protein folding in plant cell. Plant Physiol. 1999, 121: 695-703
    119. Mittler R. Oxidative stress, antioxidantsants and stress tolerance. Trends Plant Sci. 2002, 7: 405-410
    120. Morgan JM. Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol. 1984, 35: 299-319
    121. Nakagawa H, Ohmiya K, Hattori T. A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J. 1996, 9: 217-227
    122. Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant. 2006, 126: 62-71
    123. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiol. 2009, 149: 88-95
    124. Nanjo T, Futamura N, Nishiguchi M et al. Characterization of full-length enriched expressed sequence tags of stress treated poplar leaves. Plant Cell Physiol. 2004,45: 1738-1748
    125. Narusaka Y, Nakashima K, Shinwari ZK et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003,34: 137-148
    126. Navarro M, Marque G, Ayax C et al. Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot. 2009, 60(9): 2713-2724
    127. Novillo F, Alonso JM, Ecker JR et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2004, 101: 3985-3990
    128. Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA. 2007, 104:21002-21007
    129. Oeda K, Salinas J, Chua NH. A tobacco bZip transcription activator (TAF-1) binds to a G-box like motif conserved in plant genes. EMBOJ. 1991, 10: 1793-1802.
    130. Okamuro JK, Caster B, Villarroel R et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA. 1997,94: 7076-7081
    131. Osakabe K, Koyama H, Kawai S et al. Molecular cloning of two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential regulation in the stem. Plant Mol Biol. 1995,28:677-689
    132. Pelah D, Shoseyov O, Altman A et al. Water-stress responsive in Aspen {Populus tremula): Differential accumulation of dehydrins, sucrose synthase, GAPDH homologues, and soluble sugars. J Plant Physiol. 1997a, 151: 96-100
    133. Pelah D, Shoseyov O, Altman A. Characterization of BspA, a major boiling-stable, water-stress-responsive protein in aspen (P. tremula). Tree Physiol. 1995, 15: 673-78
    134. Pelah D, Wang W X, Altman A et al. Differential accumulation of water-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant. 1997b, 99: 153-59
    135. Piton-Smits EAH, Ebskamp MJM, Paul MJ et al. Improved performance of transgenic fructan-accumulation tobacco under drought stress. Plant Physiol. 1995, 107: 125-130
    136. Pring DR, Tang HV, Chase CD et al. Microspore gene expression associated with cytoplasmic male sterility and fertility restoration in sorghum. Sex Plant Reprod. 2006, 19: 25-35
    137. Qin F, Kakimoto M, Sakuma Y et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007, 50(1): 54-69
    138. Qin F, Sakuma Y, Li J, Liu Q et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004,45: 1042-1052
    139. Qin F, Sakuma Y, Tran LSP et al. Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress-Responsive Gene Expression. Plant Cell. 2008,20:1693-1707
    140. Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plants. Plant cell environ. 2002, 25: 141-151
    141. Richard S, Morency M, Drevet C et al. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol. 2000,43: 1-10
    142. Roxas VP, Smith RK, Allen ER et al. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotech. 1997, 15:988-991
    143. Russell BL, Rathinasabapathi B, Hanson AD. Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth. Plant Physiol. 1998, 116: 859-865
    144. Saavedra L, Svensson J, Carballo V et al. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J. 2005, 45(2): 237-249
    145. Sakuma Y, Liu Q, Dubouzet JG et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002, 290: 998-1009
    146. Sakuma Y, Maruyama K, Osakabe Y et al. Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell. 2006, 18: 1292-1309
    147. Sambrook J, Russell D. Molecular cloning: A laboratory manual, 3rd edition. Cold spring habor laboratory Press. 2001
    148. Sarda X, Tousch D, Ferrare K et al. Two TIP-like Genes Encoding Aquaporins are expressed in Sunflower Guard Cells. Plant J. 1997, 12(5): 1103-1111
    149. Schein CH. Production of soluble recombinant proteins in bacteria. Nature Biotech. 1989, 7: 1141-1149
    150. Schramm F, Larkindale J, Kiehlmann E et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 2008, 53: 264-274
    151. Seki M, Narusaka M, Abe H et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 2001, 13: 61-72
    152. Seki M, Narusaka M, Ishida J et al. Monitoring the expression profiles of ca 7000 Arabidopsis genes under drought, cold and highsalinity stresses using a full-length cDNA microarray. Plant J. 2002,31:279-292
    153. Senanayake SD, Brian DA. Precise large deletions by the PCR-based overlap extension method. Mol Biotechnol. 1995,4(1): 13-15
    154. Serraj R, Sinclair TR. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002,25(2): 333-341
    155. Shen YG, Zhang WK, He SJ et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet. 2003, 106:923-930
    156. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997, 115: 327-334
    157. Shinozakil K and Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007, 58(2): 221-227
    158. Smith HM, Raikhel NV. Protein targeting to the nuclear pore. What can we learn from plants? Plant Physiol. 1999, 119: 1157-1164
    159. Sterky F, Bhalerao BR, Unneberg P et al. A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA. 2004, 101: 13951-13956
    160. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA. 1997,94: 1035-1040
    161. Strizhov N, Abraham E, Okresz L et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J. 1997, 12: 557-569.
    162. Sun WN, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta. 2002, 1577(1): 1-9
    163. Szekely G, A braham E, Cseplo A et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008, 53(1): 11-28
    164. Terashima A, Takumi S. Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2. Genome. 2009, 52: 100-105
    165. Thompson JD, Gibson TJ, Plewniak F et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882
    166. Trana LSP, Nakashima K, Sakuma Y et al. Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter. Plant cell. 2004, 16:2481-2498
    167. Tuskan GA, DiFazio S, Jansson S et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006,213: 1596-1604
    168. Tsutsui T, Kato W, Asada Y et al. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res. 2009, 122: 633-643
    169. TyystjYrvi E, Riikonen M, Arisi ACM et al. Photoinhibition of photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismutase. Physiol Plant. 1999, 105: 409-416
    170. Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006,9: 189-195
    171. Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 1991,42:579-620
    172. Walker JM. Protein Protocol Handbook, 2nd edition. Humana Press, 2002
    173. Wang J, Zhang H, Allen RD. Overexpression of Arabidopsis peroxisomal as orbate peroxidase gene in tobacco increase protection against oxidative stress. Plant Cell Physiol. 1999, 407: 725-732
    174. Wang S, Yang S, Yin Y et al. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome. Plant Mol Biol. 2009,69: 167-178
    175. Wang WX, Pelah D, Alergand T et al. Characterization of SP1, a stress-responsive, boiling-soluble, Homo-Oligomeric protein from Aspen. Plant Physiol. 2002, 130: 865-75
    176. Wang Z, Triezenberg SJ, Thomashow MF et al. Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in transactivation. Plant Mol Biol. 2005, 58: 543-559
    177. Welin BV, Olson A, Nylander M et al. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol. 2004, 26(1): 131-144
    178. Wood AJ, Saneoka H, Rhodes D et al. Betaine aldehyde dehydrogenase in sorghum: Molecular cloning and expression of two related genes. Plant Physiol. 1996, 110: 1301-1308
    179. Xiao HG, Siddiqua M, Braybrook S et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ. 2006,29: 1410-1421
    180. Xiao HG, Tattersall E, Siddiqua M et al. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ. 2008, 30: 1-10
    181.Xiong L, Lee H, Ishitani M et al. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA. 2002, 99(16): 10899-10904
    182. Xiong YW, Fei SZ. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L). Planta. 2006, 224(4): 878-888
    183. Xue GP, Loveridge CW. HvDRFl is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 2004, 37: 326-339
    184. Yamaguchi-Shinozaki K and Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold Stresses. Annu Rev Plant Biol. 2006, 57: 781-803
    185. Yamaguchi-Shinozaki K, Koizumi M, Urao S et al. Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 1992, 33: 217-224.
    186. Yamaguchi-Shinozaki K, Shinozaki K. A novel as-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994, 6: 251-264.
    187. Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration-stress in Arabidopsis thaliana. Mol Gen Genet. 1993,238: 17-25.
    188. Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000, 22(6): 543-551
    189. Yang YF, Wu J, Zhu K et al. Identification and characterization of two chrysanthemum (Dendronthema×moriforlium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep. 2009,36:71-81
    190. Zhao H, Bughrara SS. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Mol Genet Genomics. 2008, 279: 585-594
    191. Zhao TJ, Sun S, Liu Y et al. Regulating the Drought-responsive Element (DRE)-mediated Signaling Pathway by Synergic Functions of Trans-active and Trans-inactive DRE Binding Factors in Brassica napus. J Biol Chem. 2006,281(16): 10752-10759
    192. Zhuang J, Cai B, Peng RH et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun. 2008, 371:468-474