抗CD3/抗Pgp微型双功能抗体的改造及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤细胞对不同的化学相关或不相关的抗肿瘤药物产生不敏感性,即多药耐药(Multidrug resistance,MDR)。MDR是造成肿瘤化疗失败的主要原因,产生MDR的原因通常是因为药物失活或被外排泵排出肿瘤细胞。MDR产生的主要分子机制是细胞表面存在一种叫做P-糖蛋白(P-glycoprotein,Pgp)的跨膜糖蛋白,由MDR1基因编码,Mr为170000。Pgp蛋白属于ATP结合盒(ATP-binding cassette,ABC)转运蛋白超家族,是ATP依赖性的药物外排泵,能将各种不同的药物排出细胞,从而产生MDR。已经证实Pgp蛋白与肿瘤复发和预后差高度相关,是评价肿瘤预后的重要指标之一。以Pgp为治疗靶点已经成为克服肿瘤耐药的新策略。
     Diabody是双特异性抗体(Bispecific antibody)的一种构建形式之一。通常是两个具有不同抗原结合位点的抗体可变区序列,在同一个启动子控制下组成两个顺反子,同一顺反子中VH和VL用一个短Linker连接。表达产物中同一顺反子上的V_H和V_L因Linker太短而存在空间位阻,不能配对,只能与另一顺反子上的V_H和V_L配对,共价结合形成二聚体。Diabody分子量在55-60 kDa,肿瘤穿透性强;缺乏Fc段,副作用小;Diabody能够将体内细胞毒性T细胞靶向到肿瘤细胞表面,直接发挥细胞毒杀伤效应,避免了使用外源性非特异性细胞毒性物质,并且不受MHC限制。抗CD3/抗Pgp Diabdoy具有良好的临床应用前景。但是,由于Diabody自身结构特点,两条肽链是通过非共价键结合在一起,容易解离而失去活性。向Diabody引入二硫键,可以大大增强其稳定性,并且不影响抗体亲和力,甚至亲和力增加。
     T细胞活化需要协同刺激信号,否则,T细胞不但不能有效活化,还会处于无能状态。B7分子是协同刺激分子最主要的家庭成员,它包括两种分子:CD80和CD86。文献报道,化疗药物阿糖胞苷(ARA-C)能够诱导肿瘤细胞高表达B7分子。因此,我们推测抗CD3/抗Pgp Diabdoy和ARA-C联合应用可以增强细胞毒性T细胞的活性,达到更好的治疗效果。
     本实验室构建了抗CD3/抗Pgp微型双功能抗体(Diabody),并进行原核可溶性表达,体外实验证实具有良好的生物学活性,体内实验证实能有效地介导细胞毒性T淋巴细胞杀伤耐药移植瘤细胞。抗CD3/抗Pgp Diabody带有15肽的Etag纯化标记,可能引起免疫原性,影响其临床应用价值。并且抗CD3/抗Pgp Diabody在体内实验中,停药一周后肿瘤复发,不能彻底根除肿瘤。可能与体外活化的T细胞在体内不能维持其持续活化的状态,以及Diabody不稳定有关。本实验主要对抗CD3/抗Pgp Diabody进行了两项改进,分别为:①通过基因工程技术将抗CD3/抗Pgp Diabody的纯化标签Etag去除,降低免疫原性。与ARA-C联合应用治疗耐药裸鼠移植瘤。②向抗CD3/抗Pgp Diabody的抗CD3或抗Pgp可变区引入一对二硫键,增强其稳定性,提高疗效。
     实验结果显示,去除Etag的抗CD3/抗Pgp Diabody生物学活性没有明显改变,与ARA-C联合应用,疗效大大增强,在观察窗内肿瘤没有复发。向抗CD3/抗Pgp Diabody的抗Pgp可变区引入一对二硫键后,二硫键不能正确配对。而向抗CD3/抗Pgp Diabody的抗CD3可变区引入一对二硫键后(dsCD3-Diabody),二硫键能够正确配对,在原核系统可溶性表达。dsCD3-Diabody抗原结合活性没有明显改变,介导细胞毒性T细胞发挥杀伤效应的能力亦没有明显改变,而体内外稳定性大大增强,介导细胞毒性T细胞杀伤耐药移植瘤的作用增强一倍。
     近二十年来,已经证实存在肿瘤干细胞,肿瘤干细胞的存在可能是肿瘤复发难治的根源。最近研究显示,急性髓系白血病(AML)细胞上PgP蛋白的表达明显高于其他亚群的细胞,这样白血病干细胞(LSC)就容易逃脱化疗药物的杀伤作用,重新生长并增殖。研究同时发现,LSC上的Pgp蛋白虽然数量增多,但是其功能是降低的,这可能是ABCB1逆转剂临床治疗效果并没有预期那么好的原因之一。我们研制的抗CD3/抗Pgp Diabody是通过识别Pgp蛋白的三维结构,与之特异性结合,从而介导细胞毒性T细胞发挥细胞杀伤效应。因此,抗CD3/抗Pgp Diabody较ABCB1逆转剂具有更好的临床应用价值。
A major issue in the treatment of cancer in terms of a poor response or relapse is the development of multidrug resistance(MDR) by the tumor cells. Pgp,encoded by the MDR1 gene,is a 170 kDa transporter consisting of 1280 amino acids that is located in the plasma membrane and is responsible for cancer resistance to multiple chemotherapeutic agents.The level of Pgp expression is an adverse prognostic factor for complete remission and survival in malignant diseases.Pgp may therefore act as a potential therapeutic target for cancer intervention.
     Immunotherapy with bispecific antibodies(BiAbs) is a very promising approach for targeting to tumors.T cells play a pivotal role acting against tumors by directly eliminating the tumor cells through the formation of cytotoxic T cell-tumor cell synapses.However,the complexity of T cell recognition offers a variety of strategies for tumor cells to evade specific T cell recognition.Anti-CD3/anti-TAA(tumor associated antigen) BiAbs can possess two specificities,one directed at the T cell and the other at the cancer cell.This enables them to serve as mediators between T cells and cancer cells,bypassing the conventional T cell recognition process. Bispecific diabodies are the smallest BiAbs with about one-third the size of IgG.Bispecific diabodies are dimers,one chain comprising a V_H domain from antibody A and a V_L domain from antibody B,connected by a short peptide linker,and vice versa.The linker is too short to allow pairing between domains of the same chain,thus driving the pairing between complementary domains on different chains and forming two antigen binding sites that point away from each other.In addition the relatively small size of diabodies(55 kDa) facilitates penetration into solid tumors as compared to larger whole antibodies.Diabodies lack Fc domains thus eliminating the undesirable side-effects they have in immunotherapy.Further,diabodies can be readily produced by secretion from bacteria at a yield of up to 1g/L,thus possessing a considerable potential for application in a clinical setting.
     A critical and important factor contributing to the therapeutic effect of recombinant antibodies is stability.The two chains of diabodies are associated non-covalently and are therefore capable of dissociation.By introducing a disulphide bond into the recombinant Fv fragment,between two conserved framework residues,a significant improvement in the antibody stability is achieved.The disulphide bond locks the two peptide chains covalently while retaining full or even improved antigen binding activity.The disulphide bond stabilized Fv fragment or BsAbs may thus have the same,or even higher antitumor activity,compared to its non-stabilized counterpart.
     In our previous study it was suggested that an anti-Pgp/anti-CD3 diabody might be an effective agent in the treatment of MDR tumors. However,the diabody contains an Etag peptide,which can lead to immunogenicity,the poor stability of the diabody limits the antitumor response and reduces its effectiveness in cancer therapy.The required dose of anti-Pgp/anti-CD3 diabody was relatively high and a rapid tumor relapse occurred only one week after therapy.
     In this study,we generated an anti-Pgp/anti-CD3 diabody without Etag by the technology of gene egineering,which retain the full binding activity. It was reported that ARA-C can induce CD80 or CD86 expression in tumor cells.We used diabody in combination with ARA-C to inhibit MDR xenografts, and achieve the better therapeutic effect.During the observation window, no tumor was detected.To enhance the stability,We introduced cysteine residues into the CD3(dsCD3-Diabody) or Pgp(dsPgp-Diabody) V-domain to covalently lock the two chains together.The dsPpg-diabody failed to form disulphide bond properly.The designed disulphide bridge between the different chains of dsCD3-diabody was formed correctly.Compared with the parent diabody,the dsCD3-Diabody obtained was more stable in human serum at 37℃,without loss of affinity or cytotoxicity activity in vitro. Furthermore,the dsCD3-Diabody showed improved tumor localization and a two-fold improved antitumor activity over the parent diabody in nude mice bearing Pgp-overexpressing K562/A02 xenografts.
引文
1.Moscow,J.A.,Schneider,E.,Ivy,S.P.Cowan,K.H.Multidrug resistance.Cancer Chemother Biol Response Modif 17,139-177(1997).
    2.Gottesman,M.M.ε Pastan,I.Biochemistry of multidrug resistance mediated by the multidrug transporter.Annu Rev Biochem 62,385-427(1993).
    3.Deuchars,K.L.& Ling,V.P-glycoprotein and multidrug resistance in cancer chemotherapy.Semin Oncol 16,156-165(1989).
    4.Endicott,J.A.ε Ling,V.The biochemistry of P-glycoprotein-mediated multidrug resistance.Annu Rev Biochem 58,137-171(1989).
    5.Ling,V.Multidrug resistance:molecular mechanisms and clinical relevance.Cancer Chemother Pharmacol 40 Suppl,S3-8(1997).
    6.Schaich,M.,Soucek,S.,Thiede,C.,Ehninger,G.& Illmer,T.MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia.Br J Haematol 128,324-332 (2005).
    7.Tsukamoto,F.,et al.Immunohistochemical Detection of P-glycoprotein in Breast Cancer and Its Significance as a Prognostic Factor.Breast Cancer 4,259-263 (1997).
    8.Stinchcombe,J.C.,Bossi,G.,Booth,S.6t Griffiths,G.M.The immunological synapse of CTL contains a secretory domain and membrane bridges.Immunity 15,751-761 (2001).
    9.Hicklin,D.J.,Marincola,F.M.& Ferrone,S.HLA class Ⅰ antigen downregulation in human cancers:T-cell immunotherapy revives an old story.Mol Med Today 5,178-186 (1999).
    10.Johnsen,A.K.,Templeton,D.J.,Sy,M.& Harding,C.V.Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis.J Immunol 163,4224-4231 (1999).
    11.Kageshita,T,Hirai,S.,Ono,T,Hicklin,D.J.& Ferrone,S.Down-regulation of HLA class Ⅰ antigen-processing molecules in malignant melanoma:association with disease progression.Am J Pathol 154,745-754 (1999).
    12.Rees,R.C.& Mian,S.Selective MHC expression in tumours modulates adaptive and innate antitumour responses.Cancer Immunol Immunother 48,374-381 (1999).
    13.Stopeck,A.T.,et al.Loss of B7.2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma.Clin Cancer Res 6,3904-3909 (2000).
    14.Buhler,P.,et al.A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells.Cancer Immunol Immunother 57,43-52 (2008).
    15.Cochlovius,B.,et al.Treatment of Human B Cell Lymphoma Xenografts with a CD3 CD19 Diabody and T Cells.J Immunol 165,888-895 (2000).
    16.Dreier,T.,et al.T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct.J Immunol 170,4397-4402(2003).
    17.Dreier,T.,et al.Extremely potent,rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody.Int J Cancer 100,690-697 (2002).
    18.Hayashi,H.,et al.A highly effective and stable bispecific diabody for cancer immunotherapy:cure of xenografted tumors by bispecific diabody and T-LAK cells.Cancer Immunol.Immunother.53,497-509 (2004).
    19.HoUiger,P.,Prospero,T.& Winter,G.“Diabodies”:small bivalent and bispecific antibody fragments.Proc.Natl.Acad.Sci.U.S.A 90,6444-6448 (1993).
    20.Zhu,Z.,et al.High level secretion of a humanized bispecific diabody from Escherichia coli.Biotechnology (N Y) 14,192-196 (1996).
    21.Gao,Y.,et al.Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody.Leukemia 18,513-520(2004).
    22.Kipriyanov,S.M.,et al.Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics.J Mol Biol 293,41-56 (1999).
    23.FitzGerald,K.,HoUiger,P.& Winter,G.Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris.Protein Eng 10,1221-1225 (1997).
    24.Brinkmann,U.,Reiter,Y.,Jung,S.H.,Lee,B.& Pastan,I.A recombinant immunotoxin containing a disulfide-stabilized Fv fragment.Proc.Natl.Acad.Sci.U.S.A 90,7538-7542(1993).
    25.Beta,T.K.,Williams-Gould,J.,Beers,R.,Chowdhury,R & Pastan,I.Bivalent disulfide-stabilized fragment variable immunotoxin directed against mesotheliomas and ovarian cancer.mol Center Ther 1,79-84(2001).
    26.Beta,T.K.,Onda,M.,Brinkmann,U.& Pastan,I.A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2.J mol.Biol.281,475-483(1998).
    27.Benhar,I.,Reiter,Y.,Pai,L.H.& Pastan,I.Administration of disulfide-stabilized Fv-immunotoxins B1(dsFv)-PE38 and B3(dsFv)-PE38 by continuous infusion increases their efficacy in curing large tumor xenografts in nude mice.Int J Cancer 62,351-355(1995).
    28.Reiter,Y.,Pai,L.H.,Brinkmann,U.,Wang,Q.C.& Pastan,I.Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment.Cancer Res 54,2714-2718(1994).
    29.Vereecque,R.,Saudemont,A.& Quesnel,B.Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells.Leukemia 18,1223-1230(2004).
    30.邵晓枫,et al.抗抗CD3 ScFv单克隆抗体的制备及鉴定.中国免疫学杂志 23,142-145(2007).
    31.de Figueiredo-Pontes,L.L.,et al.Determination of P-glycoprotein,MDR-related protein 1,breast cancer resistance protein,and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia.Cytometry B Clin Cytom 74,163-168(2008).
    32.Stromskaya,T.P.,et al.Role of P-glycoprotein in evolution of populations of chronic myeloid leukemia cells treated with imatinib.Biochemistry(Mosc) 73,29-37(2008).
    33.Keshet,G.I.,et al.MDR1 expression identifies human melanoma stem cells.Biochem Biophys Res Commun 368,930-936(2008).
    34.Stephan,M.T.,et al.T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation,resulting in potent tumor rejection.Not med 13,1440-1449(2007).
    35.So,T.,Lee,S.W.& Croft,M.Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity.Int J Hematol 83,1-11(2006).
    36.Zhang,H.,et al.4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy.J Immunol 179,4910-4918(2007).
    37.Wolf,E.,Hofmeister,R.,Kufer,P.,Schlereth,B.& Baeuerle,P.A.BiTEs:bispecific antibody constructs with unique anti-tumor activity.Drug Discov Today 10,1237-1244(2005).
    38.Bargou,R.,et al.Tumor regression in cancer patients by very low doses of a T cell-engaging antibody.Science 321,974-977(2008).
    39.Guo,H.,et al.Extracellular domain of 4-1BBL enhanced the antitumora[efficacy of peripheral blood lymphocytes mediated by anti-CD3 x anti-Pgp bispecific diabody against human multidrug-resistant leukemia.Cell Immunol 251,102-108(2008).
    40.Maeda,T.,Towatari,M.,Kosugi,H.& Saito,H.Up-regulation of costimulatory/ladhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells.Blood 96,3847-3856(2000).
    41.Magner,W.J.,et al.Activation of MHC class Ⅰ,Ⅱ,and CD40 gene expression by histone deacetylase inhibitors.J Immunol 165,7017-7024(2000).
    42.Benedict,C.A.,MacKrell,A.J.& Anderson,W.F.Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel,flow cytometry based assay.J Immunol Methods 201,223-231 (1997).
    43.Creighton,T.E.Disulfide bond formation in proteins.Methods Enzymol 107,305-329 (1984).
    44.Lapidot,T.,et al.Nature Web Focus:Cancer stem cells--A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature 367,645-648 (1994).
    45.Al-Hajj,M.,Wicha,M.S.,Benito-Hernandez,A.,Morrison,S.J.8t Clarke,M.F.Prospective identification of tumorigenic breast cancer cells.Proc Natl Acad Sci USA 100,3983-3988 (2003).
    46.Singh,S.K.,et al.Identification of a cancer stem cell in human brain tumors.Cancer Res 63,5821-5828(2003).
    47.Zhou,S.,et al.Bcrpl gene expression is required for normal numbers of side population stem cells in mice,and confers relative protection to mitoxantrone in hematopoietic cells in vivo.Proc Natl Acad Sci USA 99,12339-12344 (2002).
    48.Hirschmann-Jax,C,et al.A distinct“side population”of cells with high drug efflux capacity in human tumor cells.Proc Natl Acad Sci U S A 101,14228-14233 (2004).
    49.Kondo,T.,Setoguchi,T.& Taga,T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.Proc Natl Acad Sci U S A 101,781-786 (2004).
    50.Huntly,B.J.& Gilliland,D.G.Leukaemia stem cells and the evolution of cancer-stem-cell research.Nat Rev Cancer 5,311-321 (2005).
    51.Holyoake,T.,Jiang,X.,Eaves,C.& Eaves,A.Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia.Blood 94,2056-2064 (1999).
    52.Raaijmakers,M.H.,et al.ABCB1 modulation does not circumvent drug extrusion from primitive leukemic progenitor cells and may preferentially target residual normal cells in acute myelogenous leukemia.Clin Cancer Res 12,3452-3458 (2006).
    53.Juweid,M.,et al.Micropharmacology of monoclonal antibodies in solid tumors:direct experimental evidence for a binding site barrier.Cancer Res 52,5144-5153 (1992).
    54.Ullrich,A.& Schlessinger,J.Signal transduction by receptors with tyrosine kinase activity.Cell 61,203-212 (1990).
    55.Balzar,M.,Winter,M.J.,de Boer,C.J.& Litvinov,S.V.The biology of the 17-1A antigen (Ep-CAM).J Mol Med 77,699-712 (1999).
    56.Canevari,S.,et al.Bispecific antibody targeted T cell therapy of ovarian cancer:clinical results and future directions.J Hematother 4,423-427 (1995).
    57.Karashima,T.,et al.Inhibition of angiogenesis by the antiepidermal growth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing orthotopically in nude mice.Clin Cancer Res 8,1253-1264 (2002).
    58.Segal,D.M.,Weiner,G.J.& Weiner,L.M.Bispecific antibodies in cancer therapy.Curr.Opin.Immunol 11,558-562 (1999).
    59.van Spriel,A.B.,van Ojik,H.H.Et van De Winkel,J.G.Immunotherapeutic perspective for bispecific antibodies.Immunol Today 21,391-397 (2000).
    60.Monleon,I.,et al.Differential secretion of Fas ligand-or AP02 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells.J Immunol 167,6736-6744 (2001).
    61.Kontermann,R.E.Recombinant bispecific antibodies for cancer therapy.Acta Pharmacol Sin 26,1-9(2005).
    62.Grosse-Hovest,L,et al.Cloned transgenic farm animals produce a bispedfic antibody for T cell-mediated tumor cell killing.Proc Natl Acad Sci U S A 101,6858-6863 (2004).
    63.McCall,A.M.,et al.Isolation and characterization of an anti-CD16 single-chain Fv fragment and construction of an anti-HER2/neu/anti-CD16 bispedfic scFv that triggers CD16-dependent tumor cytolysis.Mol Immunol 36,433-445 (1999).
    64.Kipriyanov,S.M.,et al.Effect of domain order on the activity of bacterially produced bispedfic single-chain Fv antibodies.J Mol Biol 330,99-111 (2003).
    65.Brandao,J.G.,et al.CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispedfic single-chain Fv antibody enhances cytotoxic T cell activation.Vaccine 21,2268-2272 (2003).
    66.Korn,T.,Nettelbeck,D.M.,Volkel,X,Muller,R.8t Kontermann,R.E.Recombinant bispedfic antibodies for the targeting of adenoviruses to CEA-expressing tumour cells:a comparative analysis of bacterially expressed single-chain diabody and tandem scFv.J Gene Med 6,642-651 (2004).
    67.Zhu,Z.,Presta,L.G.,Zapata,G.& Carter,P.Remodeling domain interfaces to enhance heterodimer formation.Protein Sci 6,781-788 (1997).
    68.Gruen,M.,Bommert,K.& Bargou,R.C.T-cell-mediated lysis of B cells induced by a CD19xCD3 bispedfic single-chain antibody is perforin dependent and death receptor independent.Cancer Immunol Immunother 53,625-632 (2004).
    69.Bruenke,J.,et al.Effective lysis of lymphoma cells with a stabilised bispedfic single-chain Fv antibody against CD19 and FcgammaRII! (CD16).Br.J Haematol.130,218-228 (2005).
    70.Alt,M.,Muller,R.& Kontermann,R.E.Novel tetravalent and bispedfic IgG-like antibody molecules combining single-chain diabodies with the immunoglobulin gammal Fc or CH3 region.FEBS Lett 454,90-94 (1999).
    71.Lu,D.,et al.Di-diabody:a novel tetravalent bispedfic antibody molecule by design.J Immunol Methods 279,219-232 (2003).
    72.Shahied,L.S.,er al.Bispedfic minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format.J Biol Chem 279,53907-53914 (2004).
    73.Volkel,T.,Korn,T.,Bach,M.,Muller,R.& Kontermann,R.E.Optimized linker sequences for the expression of monomeric and dimeric bispedfic single-chain diabodies.Protein Ens 14,815-823(2001).
    74.Cochlovius,B.,et al.Cure of Burkitt's lymphoma in severe combined immunodeficiency mice by T cells,tetravalent CD3 x CD19 tandem diabody,and CD28 costimulation.Cancer Res 60,4336-4341 (2000).
    75.Yang,K.,et al.Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation.Protein Eng 16,761-770 (2003).
    76.Muller,D.,et al.Improved pharmacokinetics of recombinant bispedfic antibody molecules by fusion to human serum albumin.J Biol Chem 282,12650-12660 (2007).
    77.Blanco,B.,Holliger,P.,Vile,R.G.& Alvarez-Vallina,L.Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells.J Immunol 171,1070-1077 (2003).
    78.Balaji,K.N.,Schaschke,N.,Machleidt,W.,Catalfamo,M.a Henkart,P.A.Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation.J Exp Med 196,493-503 (2002).
    79.Coultas,L.& Strasser,A.The role of the Bcl-2 protein family in cancer.Semin Cancer Biol 13,115-123(2003).
    80.Fontana,A.,et al.Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice.J Immunol 143,3230-3234 (1989).
    81.Urosevic,M.,et al.Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology,human leukocyte antigen class Ⅰ loss and interleukin-10 production.Am J Pathol 159,817-824 (2001).
    82.Masopust,D.,Vezys,V.,Marzo,A.L.& Lefrancois,L.Preferential localization of effector memory cells in nonlymphoid tissue.Science 291,2413-2417 (2001).
    83.Balch,CM.,et al.Patterns of human tumor-infiltrating lymphocytes in 120 human cancers.Arch Surg 125,200-205 (1990).
    84.Ayanlar-Batuman,0.,Ebert,E.& Hauptman,S.P.Defective interleukin-2 production and responsiveness by T cells in patients with chronic lymphocytic leukemia of B cell variety.Blood 67,279-284(1986).
    85.Dutcher,J.Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma.Oncology (Williston Park) 16,4-10 (2002).
    86.Rossi,C.R.,Foletto,M.,Pilati,P.,Mocellin,S.& Lise,M.Isolated limb perfusion in locally advanced cutaneous melanoma.Semin Oncol 29,400-409 (2002).
    87.Heusel,J.W.,Wesselschmidt,R.L.,Shresta,S.,Russell,J.H.& Ley,T.J.Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells.Cell 76,977-987 (1994).
    88.Lieberman,J.The ABCs of granule-mediated cytotoxicity:new weapons in the arsenal.Nat Rev Immunol 3,361-370 (2003).
    89.Hussein,A.M.£t Feun,L.G.Tumor lysis syndrome after induction chemotherapy in small-cell lung carcinoma.Am J Clin Oncol 13,10-13 (1990).
    90.Holliger,P.,et al.Carcinoembryonic antigen (CEA)-specific T-cell activation in colon carcinoma induced by anti-CD3 x anti-CEA bispecific diabodies and B7 x anti-CEA bispecific fusion proteins.Cancer Res 59,2909-2916 (1999).
    91.Loffler,A.,et al.A recombinant bispecific single-chain antibody,CD19 x CD3,induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes,Blood 95,2098-2103 (2000).
    92.Hamburger,A.W.& Salmon,S.E.Primary bioassay of human tumor stem cells.Science 197,461-463 (1977).
    93.Iwama,A.,et al.Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1.Immunity 21,843-851 (2004).
    94.Dakic,A.,et al.PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis.J Exp Med 201,1487-1502 (2005).
    95.Iwasaki,H.,et al.Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation.Blood 106,1590-1600 (2005).
    96.Cozzio,A.,et al.Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors.Genes Dev 17,3029-3035 (2003).
    97.Huntly,B.J.,et al.MOZ-TIF2,but not BCR-ABL,confers properties of leukemic stem cells to committed murine hematopoietic progenitors.Cancer Cell 6,587-596 (2004).
    98.Jamieson,C.H.,et al.Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.N Engl J Med 351,657-667 (2004).
    99.Hall,M.A.,et al.The critical regulator of embryonic hematopoiesis,SCL,is vital in the adult for megakaryopoiesis,erythropoiesis,and lineage choice in CFU-S12.Proc Natl Acad Sri U SA 100,992-997 (2003).
    100.Mikkola,H.K.,et al.Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene.Nature 421,547-551 (2003).
    101.Zhang,P.,et al.Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha.Immunity 21,853-863 (2004).
    102.Nutt,S.L.,Metcalf,D.,D'Amico,A.,Polli,M.a Wu,L Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors.J Exp Med 201,221-231 (2005).
    103.DeKoter,R.P.£t Singh,H.Regulation of B lymphocyte and macrophage development by graded expression of PU.1.Science 288,1439-1441 (2000).
    104.Dahl,R.,et al.Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor.Nat Immunol 4,1029-1036(2003).
    105.Migliaccio,A.R.,et al.GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1 low mouse mutant.J Exp Med 197,281-296 (2003).
    106.Shivdasani,R.A.,Fujiwara,Y.,McDevitt,M.A.fit Orkin,S.H.A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development.EMBO J 16,3965-3973 (1997).
    107.Yu,C,et al.Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo.J Exp Med 195,1387-1395(2002).
    108.Jekely,G.,Sung,H.H.,Luque,CM.& Rorth,P.Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration.Dev Cell 9,197-207(2005).
    109.Okuno,Y.,et al.Potential autoregulation of transcription factor PU.1 by an upstream regulatory element.Mol Cell Biol 25,2832-2845 (2005).
    110.Rosenbauer,F.,et al.Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor,PU.1.Nat Genet 36,624-630 (2004).
    111.Vyas,P.,et al.Different sequence requirements for expression in erythroid and megakaryocyte cells within a regulatory element upstream of the GATA-1 gene.Development 126,2799-2811 (1999).
    112.Gottgens,B.,et al.The scl +18/19 stem cell enhancer is not required for hematopoiesis:identification of a 5' bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1.Mol Cell Biol 24,1870-1883 (2004).
    113.Cilloni,D.,et al.Down-modulation of the C/EBPalpha transcription factor in core binding factor acute myeloid leukemias.Blood 102,2705-2706 (2003).
    114.Zheng,R.,et al.Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression.Blood 103,1883-1890(2004).
    115.Wechsler,J.,et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.Nat Genet 32,148-152 (2002).
    116.Mueller,B.U.,et al.Heterozygous PU.1 mutations are associated with acute myeloid leukemia.Blood 100,998-1007 (2002).
    117.Dohner,K.,et al.Mutation analysis of the transcription factor PU.1 in younger adults (16 to 60 years) with acute myeloid leukemia:a study of the AML Study Group Ulm (AMLSG ULM).Blood 102,3850;author reply 3850-3851 (2003).
    118.Cook,W.D.,et al.PU.1 is a suppressor of myeloid leukemia,inactivated in mice by gene deletion and mutation of its DNA binding domain.Blood 104,3437-3444 (2004).
    119.Suraweera,N.,et al.Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced,but not human therapy-related,acute myeloid leukaemia.Oncogene 24,3678-3683 (2005).
    120.Porse,B.T.,et al.Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage.J Exp Med 202,85-96(2005).
    121.Shimizu,R.,et al.Leukemogenesis caused by incapacitated GATA-1 function.Mol Cell Biol 24,10814-10825 (2004).
    122.Westervelt,P.,et al.High-penetrance mouse model of acute promyelocyte leukemia with very low levels of PML-RARalpha expression.Blood 102,1857-1865 (2003).
    123.Yan,M.,et al.Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development.Proc Natl Acad Sci USA 101,17186-17191(2004).