纳米颗粒在振动流化床中的聚团流态化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米颗粒(属于Geldart C类颗粒,亦称黏性颗粒)在流化过程中易形成流化聚团、并最终以聚团形式流化,多数粘性颗粒的流化聚团具有较宽的粒径分布。目前,气固流态化领域中颗粒团聚机理及团聚物性质已成为研究热点。
     本文在传统流化床和振动流化床中,对纳米级SiO2、ZnO、TiO2三种颗粒进行了流态化实验,研究了其聚团流化性能和聚团尺寸变化规律。经研究发现,由于颗粒所特有的物理性质,三种纳米颗粒在传统流化床中低表观气速下易形成活塞和沟流。随表观气速的增加,床内鼓泡加剧,活塞与沟流消失,床中均出现分层现象,聚团偏析大,扬析严重,流化效果较差。振动能的引入可以有效的消除节涌、抑制沟流、降低最小流化速度、减小聚团平均尺寸和整个床层的偏析率,显著的改善了纳米颗粒的流化质量。同时,本实验系统的考察了操作条件对聚团尺寸的影响。实验结果表明:纳米颗粒在流化床中流化一段时间后聚团才形成比较稳定的硬聚团。初始床层越高,振动波传播受到的阻碍越大,浅床层(h0/D=0.8或1)有利于振动能的吸收,聚团流化性能好,但总体效果是高径比对聚团尺寸影响较小。振动参数对聚团尺寸的影响具有两面性,在恒定振幅下,试验初期随振动频率的增加聚团尺寸从300μm降低到100μ左右。当振动频率超过一临界值时,聚团尺寸随振动频率的增加反而增加。在A=3 mm时,SiO2、TiO2和ZnO的临界频率分别为10 Hz、15 Hz、15Hz。可能原因是额外的振动能不仅可以促进聚团的破碎,还可以增加颗粒间或聚团间的接触机会,在黏性力较大的情况下易形成大聚团。振动频率对聚团尺寸的影响要强于振幅。另外,较高气速可以使聚团大小减小。
     根据纳米颗粒聚团在振动流化床中碰撞能、有效振动能、流体剪切能和黏性能的平衡分析,建立了估算聚团大小的能量平衡模型。结果表明:随着振动强度的加大聚团尺寸的实验值和计算值均减小,在振动条件下该模型预测值与试验结果吻合较好,说明了模型的合理性。基于振动机理,探讨了振动床中聚团团聚和解聚的机理。本文研究为进一步开展有关研究和开发超细粉振动场流化床打下了良好的基础。
Nano-particles, belonging to Geldart's group C patricles or cohesive powders, are easy to aggregate into fluidized agglomerates during fluidization, which results in factually agglomerates of cohesive powders. Usually, the fluidized agglomerates are in wide size distribution. Measurements of agglomerate properties and study on the mechanism for particle agglomerating behavior have been one of the hot spots in the field of fluidization.
     The behavior and agglomerate sizes of different cohesive SiO2, TiO2 and ZnO nano-particles are investigated in the conventional fluidized bed (CFB) and vibro-fluidized bed (VFB). It was found that slugs and channels were formed firstly under low superficial gas velocity due to the specific physical and surficial properties of particles. With increasing the superficial gas velocity, slugs and channels vanished, whilst the bubbling in bed was intensified obviously, and there existed a severe degree of the size-segregation of the agglomerates throughout the whole bed, namely, the agglomerates sizes were small in the upper zone and large in the lower zone. Because of the severe entrainment, the fluidization quality was poor. The experimental results showed that slugging and channeling of bed disappeared, the minimum fluidization velocity and the measured agglomerate sizes were decreased, and the fluidization quality was significantly improved due to introduction of vibration energy. The effects of vibration parameters on three nano-particles agglomerate sizes are systematically investigated in VFB. The nano-particles agglomerates were formed during fluidization after a period of fluidization time. Vibration wave propagation was hampered by powers under higher original bed height of nano-particles, and shallow bed contributed to the absorption of vibration energy and better agglomerates fluidization quality which could be obtained at ho/D=0.8 or 1 for nanoparticles, while ratio of height to diameter had little effect on agglomerates sizes. Meanwhile, mechanical vibration had complex effect on agglomerate size. The average agglomerate size is changed from 300μm to around 100μm when the vibration is applied. The effect of vibration on the agglomeration in vibro-fluidized beds of nano-particles depends on the critical vibration frequency corresponding to a minimum agglomerate size, and the critical point thresholds linking to A=3 mm of SiO2, TiO2, ZnO were 10 Hz,15 Hz,15 Hz, respectively. It can help to suppress formation of agglomerates due to the additional vibration energy, and it can also prefer to the coalescence of the agglomerates due to the enhanced contacting probability between particles and/or agglomerates. However, the overall trend of agglomerate sizes decreased with increasing vibration intensity. In this context, the effect of the vibration frequency on agglomerate sizes is more obvious than that of the vibration amplitude. Both the experimental and theoretical results show that a higher gas velocity leads to a smaller agglomerate size.
     An energy balance model for the prediction of agglomerate sizes has also been established on the basis of energy balance of the agglomerate collision energy, the effective energy arising from vibration wave, energy generated by hydrodynamics shear and cohesive energy in VFB. The agglomerate sizes predicted is in good agreement with the experimental data for three nano-particles by the vibration excitation. Based on vibration mechanism, agglomeration and deagglomerates in VFB were also studied.
引文
[1]Geldart D. The effect of thin liquid layers on fluidization characteristics. Powder Technol.,1973,7(2):285-292
    [2]李春忠,汪齐方.氢氧焰燃烧制备纳米二氧化硅的团聚现象及流化特性.华东理工大学学报(自然科学版),2005,31(2):163-167
    [3]郝利峰,高志华,阴丽华,等.气凝胶的制备及其在催化领域的应用.天然气化工,2005,1:49-53
    [4]Zhou J, Grace J R, Lim C J, et al. Particle Cross-Flow, Lateral Momentum Flux and Lateral Velocity in a Circulating Fluidized Bed. Canadian J. of Chem. Eng., 1995,3:612-619
    [5]易江林,金涌,俞芷青,等.MSB树脂的流化床干燥.见:第五届全国干燥技术交流会议论文集.上海:1995,316-319
    [6]崔玉斌,魏飞,金涌,等.气固逆并流多级旋流干燥的流体力学行为研究.化工冶金,1996,17(3):248-253
    [7]黄水源,汪展文,金涌,等.气固循环流化反应器的流体力学行为.化工学报,1996,47(3):357-361
    [8]Zhu J X. Personal Communication, University of Western Ontario,1999, London, Ontario, Canada
    [9]蔡平,金涌,俞芷青,等.鼓泡流态化向湍动流态化过渡的判别.化工学报,1986,4:341-401
    [10]金涌,俞芷青,张礼,等.流化床反应器塔形内构件的研究.化工学报,1980,2:117-127
    [11]汪展文,金涌,姚文虎,等.湍动流化床醋酸乙烯合成反应器的工业试验.化学反应工程与工艺,1995,11(1):50-55
    [12]杨贵林,黄哲,陈大保,等.快速流化床H-98催化剂丁烯氧化脱氢制丁二烯.石油化工,1988,16(10):680-685
    [13]Squires A M. The story of fluid catalytic cracking. Circulating fluidized bed technology, ed. P Basu, Pergamon Press, Toronto,1986,1-19
    [14]Bai D R, Zhu J X, Jin Y, et al. Novel designs and simulations of FCC Riser Regenerator. Industrial and Eng. Chem. Res.,1997,36(11):4543-454
    [15]Shingles T, Mcdonald A F. Commercial experience with synthol CFB reactors. Circulating fluidized bed technology Ⅱ, eds. P Basu, J F Large, Pergamon Press, Toronto,1988,43-50
    [16]时钧,汪家鼎,余国琮,等.化学工程手册.化学工业出版社,北京:1996
    [17]Reh L. The circulating fluid bed reactor-A key to efficient gas/solid Processing. Circulating fluidized bed technology, ed. P Basu, Pergamon Press, Toronto,1986, 105-118
    [18]Zhu J X, Bi H T. Distinctions between low density and high density circulating fluidized beds. J. of Chem. Eng. of Japan,1995,73:644-649
    [19]Chaouki J, Chavarie C, Klvana D, et al. Effect of interparticle forces on the hydrodynamic behavior of fluidized aerogels. Powder Technol.,1985,43:117-125
    [20]周涛.粘性颗粒聚团流态化实验与理论研究:[博士学位论文].北京:中国科学院化工冶金研究所,1998
    [21]Luis F H, Julie L P, Michelle D C, et al. Aggregation behavior of nanoparticles in fluidized beds. Powder Technol.,2005,160:149-160
    [22]Zhou T, Li H, Kunio S. Agglomerating fluidization of group C particles:major factors of coalescence and breakup of agglomerates. Adv. Powder Technol.,2006, 17(2):159-166
    [23]Kenya K, Masayuki H. A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles. Chem. Eng. Sci.,2002,57:4737-4744
    [24]Wang Y, Gu G S, Wei F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol.,2002,124:152-159
    [25]Wang X. S., Rahman F., Rhodes M. J. Nanoparticle fluidization and Geldart's classification. Chem. Eng. Sci.,2007,62:3455-3461
    [26]Wang X S, Palero V, Soria J, et al. Laser-based planaring of nano-particle fluidization:Part Ⅰ-determination of aggregate size and shap. Chem. Eng. Sci., 2006,61:5476-5486
    [27]Wang X S, Palero V, Soria J, et al. Laser-based planaring of nano-particle fluidization:Part Ⅱ-mechanistic analysis of nanoparticle aggregation. Chem. Eng. Sci.,2006,61:8040-8049
    [28]Li H. Multi-scale aggregation of particles in gas-solids fluidized beds. China Particuology,2004,2(3):101-106
    [29]Huang C, Wang Y, Wei F. Solids mixing behavior in a nano-agglomerate fluidized bed. Powder Technol.,2008,182:334-341
    [30]王兆霖.细颗粒的流态化及添加颗粒的作用:[博士学位论文].北京:中国 科学院化工冶金研究所,1995
    [31]Matsuda S, Hatanoa H, Tsutsumib A. Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem. Eng. J.,2001,82:183-188
    [32]Jung J, Gidaspow D. Fluidization of nano-size particles. Journal of Nanoparticle Research,2002,4(5):483-497
    [33]Zhu C, Yu Q, Dave R N. Gas Fluidization Characteristics of Nanoparticle Agglomerates. AIChE Journal,2005,51(2):426-439
    [34]李洪钟,郭慕孙.气固流态化的散式化.北京:化学工业出版社,2002
    [35]Wilhelm R H, Kwauk M. Fluidization of Solid Particles. Chem. Eng. Progress, 1948,44:201-218
    [36]Doichev K. Energetic aspects of the transition between aggregative and particulate fluidization. Chemical Engineering Science,1974,29:1205-1210
    [37]Harrison D, Davidson J F, De K J W. On the nature of aggregative and particulate fluidization. Transactions of the Institution of Chemical Engineering Science, 1961,39:202-211
    [38]Foscolo P U, Gibilaro L G. A fully predictive criterion for the transition between particulate and aggregative fluidization. Chemical Engineering Science,1984,39: 1667-1675
    [39]Liu D, Kwauk M, Li H Z. Aggregative and particulate fluidization-the two extremes of a continuous spectrum. Chemical Engineering Science,1996,51(17): 4045-4063
    [40]Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity. AIChE Journal,1996,12:610-612
    [41]刘得金.超临界流体流态化:[博士学位论文].北京:中国科学院化工冶金研究所,1994
    [42]任聪静,王靖岱,阳永荣,等.颗粒与分布板的碰撞信号分析及其流化状态的识别.化学学报,2008,59(4):875-880
    [43]Geldart D, Harnby N, Wong A C. Fluidization of cohesive powders. Powder technology,1984,37:25-37
    [44]Scuzzarella A, Simons S J R, Hills C D, et al. Investigation on assisted fluidization of a cohesive powder. Chemical Engineering Research and Design, 2005,83(A11):1319-1324
    [45]Silva-Moris V A, Rocha S C S. Development of a vibrofluidized bed and fluid-dynamic study with dry and wet adipic acid. Brazilian Journal of Chemical Engineering,2003,20(4):423-434
    [46]Song L Y, Zhou T, Yang J S. Fluidization behavior of nano-particles by adding coarse particles. Advance Powder Technology,2009,20(4):366-370
    [47]Zeng P, Zhou T, Chen G Q, et al. Behavior of mixed ZnO and SiO2 nano-particles in magnetic field assisted fluidization. China Particuology,2007,5: 169-173
    [48]Li H, Legyos R, Brorion C M H, et al. Hydrodynamic Behavior of Aeroyel Powders in High-velecity Fluidized Beds. Powder Technology,1990,60:121-129
    [49]华彬,胡黎明,李春忠.超细颗粒流态化过程的研究.华东理工大学学报,1994,20(3):294-299
    [50]Dutta A., Dullea L. Evaluation of a novel plate tube distributor in fine powder fluidization. A lChE Symposium Series,1992,88(289):137-148
    [51]Kusakabe K, Kuriyama T, Morooka S. Fluidization of fine particles at reduced pressure. Powder Technology,1989,58:125-130
    [52]唐洪波,赵珺.微细粉体在振动流化床中团聚行为的研究.化学工业与工程,1996,13(3):6-10
    [53]王亭杰,汪展文,金涌,等.振动波在流化床中的传播行为.化工学报,1996,47(6):718-726
    [54]靳海波,张济宇,赵增立,等.振动流化床床层均匀流化行为.化工冶金,1999,20(3):247-254
    [55]Mawatari Y, Ikegami Y, Tatemoto, et al. Prediction of Agglomerate Size for Fine Particles in a Vibro-fluidized Bed. Jounal of Chemical Enginnering of Japan, 2003,36(3):277-283
    [56]Jose M V, Antonio C. Effect of Vibration on Agglomerate Particulate Fluidization. AIChE J.,2006,52(5):1705-1714
    [57]Mawatari Y., Tatemoto Y., Noda K. Prediction of minimum fluidization velocity for vibrated fiuidized Bed. Powder Technology,2003,131:66-70
    [58]Marring E, Hoffmann A C, Janssen L P B M. The effect of vibration on the fluidization behaviour of some cohesive powders. Powder Technology,1994,79: 1-10
    [59]Liu H, Guo Q J. Fluidization in combined acoustic-magnetic fied for mixtures of ultrafine particles. China Particuology,2007,5:111-115
    [60]Eccles E R A, Mujumdar A S. Bubble phenomena in aerated vibrated beds of small particles. Drying Technology,1997,15:95-116.
    [61]Wang Y, Wang T J, Yang Y, et al. Resonance characteristics of a vibrated fluidized bed with a high bed hold-up. Powder Technology,2002,127:196-202
    [62]Gupta R, Mujumdar A S. Recent developments in fluidized bed drying. In: Mujumdar, A. eds. Advances in Drying. Hemisphere,1983,2:155-192
    [63]Tatemoto Y, Mawatari Y, Yasukawa T, et al. Numerical simulation of particle motion in vibrated fluidized bed. Cheminal Engineering Science,2004,59(2): 437-447
    [64]Tatemoto Y, Mawatari Y, Noda K. Numerical simulation of cohesive particle motion in vibrated fiuidized bed. Cheminal Engineering Science,2005,60: 5010-5021
    [65]Mawatari Y, Koide T, Tatemoto Y, et al. Effect of particle diameter on fluidization under vibration. Powder Technology,2002,123:6-74
    [66]Noda K, Mawatari Y, Tatemoto Y, et al. Flow patterns of fine particles in a vibrared fiuidized bed under atmospheric or reduced pressure. Powder Technology,1998,99:11-14
    [67]Kuipers N J M, Stamhuis E J. Fluidization of potato strarch in a stirred vibrating fluidized Bed. Chemical Engineering Science,1996,51(11):2727-2732
    [68]Alavi S, Caussat B. Experimental study on fiuidization of micronic powders. Powder Technology,2005,157:114-120
    [69]Alavi S, Joffin N, Verelst M, et al. Crystallization of microscopic Y2O3 powders by different techniques of fluidization at high temperature. Cheminal Engineering Jounnal,2006,125(1):25-33
    [70]Gundogdu O, Koenders M A, Wakeman R J, et al. Permeation through a bed on a vibrating medium:theory and experimental results. Chemical Engineering Science,2003,58:1703-1713
    [71]Xu C, Zhu J. Parametric study of fine particle fluidization under mechanical vibration. Powder Technology,2006,161:135-144
    [72]Valverde J M, Castellanos A. Effect of vibration on agglomerate particulate fluidization. AIChE Jounal,2006,52(5):1705-1714
    [73]Valverde J M, CasteUanos A, Quintanilla S, et al. Agglomerate shrinkage and bubbling stimulation on vibrated APF beds. Fifth world congress on particle technology(CD), florida, USA,2006, TWD26
    [74]Valverde J M, Quintanilla M A S, Castellanos A, et al. The setting of fine cohesive powders. Europhysics Letters,2001,54:329-334
    [75]Mawatari Y, Tsunekawa M, Tatemoto Y, et al. Favorable vibrated fluidization conditions for cohesive fine particles. Powder Technology,2005,154:54-60
    [76]唐洪波,赵珺.微细粉振动流化床的团聚模型.高校化学工程学报,1998,12(1):76-80
    [77]陈建平,汪展文,金涌,等.细颗粒振动流化床行为的二维观察.高校化学工程学报,1996,10(1):41-44
    [78]Barletta D, Donsi G, Giovanna F, et al. Vibration propagation in a gas fluidized bed of a fine aeratable FCC powder. Fifth worldcongress on particle technology(CD), Florida, USA,2006, TWD26
    [79]Nam C H, Pfeffer R, Dave R N, et al. Aerated vibrofluidization of silica nanoparticles. AIChE Jounal,2004,50:1776-1785
    [80]Bai D, Jin Y, Yu Z, et al. The Axial Distribution of the Cross-Sectional Averaged Voidagein Fast Fluidized Beds. Powder Technology,1992,71:51-58
    [81]Zhou J, Grace J R, Qin S, et al. Voidage Profiles in a Circulating Fluidized Bed of Square Corss-Section. Chemical Engineering Science,1994,49:3217-3226
    [82]Zhou J, Grace J R, Lim C J, et al. Particle Velocity Profilesin a Circulating Fluidized Bed of Square Cross-Section. Chemical Engineering Science,1995,50: 237-244
    [83]Morooka S, Kusakabe K, Kobata A, et al. Fluidization state of ultrafine powders. Journal of Chemical Engineering of Japan,1988,21:41-46
    [84]Li H, Legros R, Brereton C M H, et al. Hydrodynamic behaviour of aerogel powders in high-velocity fluidized beds. Powder Technology,1990,60:121-129
    [85]Zhu C, Liu G, Yu Q, et al. Sound-assisted fluidization of nanoparticle agglomerates. Powder Technology,2004,141:119-123
    [86]Yu Q, Dave R N, Zhu C, et al. Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE Jounal,2005,51:1971-1979
    [87]Jenneson P M, Gundogdu O. In-situ X-ray imaging of nanoparticle agglomeration in fluidized beds. Applied Physics Letters,2006,88:034103
    [88]周涛著.黏性颗粒聚团流态化及应用.北京:化学工业出版社,2009
    [89]Pacek A W, Nienow A W. Resonance characteristics of a vibrated fluidized Bed. Powder Technology,1990,60:145-153
    [90]Halloran J W A. Effect of particle diameter on fluidization under vibration. Advances in Ceramics,1984,9:67-71
    [91]Hatano H, Matsuda S, Takeuchi H, et al. Local Interactive Paterns of Dispersed and Swarm Particles in a Circulating Fluidized-Bed Riser. Industrial and Engineering Chemistry Research,1996,35:4360-4365
    [92]Lackermeier U, Rudnick C, Werther J, et al. Visualization of Flow Structures inside a Circulating Fluidized Bed by Means of Laser Sheet and Image Processing. Powder Technology,2001,114:71-83
    [93]Horio M, Morishita K, Tachibana O, et al. Solid Distribution and Movement in Circulating Fluidized Beds. In:Basu P, Large J F (eds.), Circulating Fluidized Bed TechnologyⅡ, Toronto, Pergamon Press,1988:147-154
    [94]Sharma A K, Tuzla K, Matsen J, et al. Parametric Effects of Particle Size and GasVelocity on Cluster Characteristicsin Fast Fluidized Beds. Powder Technology,2000,111:114-122
    [95]Moon S J, Kevrekidis I G, Sundaresan S. Particle simulation of vibrated gas-fluidized beds of cohesive fine powders. Industrial & Engineering Chemical Research,2006,45(21):6966-6977
    [96]Yan A J, Manyele S V, Parssinen J H, et al. The Interdependence of Micor and Macro Flow Ftructures under a High-Flux Flow. In:Grace J R, Zhu J X & Hugo de Lasa(eds.), Proceedings of 7th Intenrational circulating Fluidized Beds Conference, Canadian Society for Chemical Engineering, Otawa,2002:357-364
    [97]Ishii H, Nakajima T, Horio M. The Clustering Annular flow Model of Circulating Fluidized Beds. Jounal Cheminal Engineering of Japan,1989,22 (5):484-490
    [98]Lin Q, Wei F, Jin Y. Transient Density Signal Analysis and Two-Phase Micro-Structure Flow in Gas-Solids Fluidization. Cheminal Engineering Science,2001,56:2179-2189
    [99]钱贵华,李静海,孙国刚.循环流化床中流动结构的动态变化.化工冶金,1997,18(1):43-48
    [100]Vanden M T, Tadrist L. Flow Structuersin a Circulating Fluidized Bed. In:Grace J R, Zhu J X,& Hugo de Lasa(eds.), Proceedings of 7th Inter. Circulating Fluidized Beds Conf., Canadian Society for Chemical Engineering, Ottawa, 2002,217-224
    [101]Berault R W, Ludlow C J, Yue P C. Cluster Particle Number and Granular Temperatuer for Cork Particles at the Wall in the Riser of a CFB. Powder
    Technology,2004,149:68-77
    [102]Xu C, Zhu J. Experimental and theoretical study on the agglomeration arising from fluidization of cohesive particles-effects of mechanical vibration. Cheminal Engineering Science,2005,60:6529-6541
    [103]Li J, Wen L, Ge W, et al. Dissipative Structure in Concurernt-up Gas-Solid Flow. Cheminal Engineering Science,1998,55 (19):3367-3379
    [104]Horio M, Ishii H, Nishimuro M. On the Nature of Turbulent and Fast Fluidized Beds. Powder Technology,1992,70:229-236
    [105]Bolton L W, Davidson J F. Recirculation of Particlesin Fast Fluidized Risers. In: Basu P & Large J F (eds.), Circulating Fuidized Bed Ⅱ, Oxford:Pergamon Press,1988:139-146
    [106]Senior R C, Berreton C. Modelling of Circulating Fluidized Bed Solids Flow and Distribution. Cheminal Engineering Science,1992,47:281-296
    [107]Rhodes M J, Mineo H, Hirama T. Particle Motion at the Wall of Circulating Fluidized Bed. Powder Technology,1992,70:207-214
    [108]毕晓涛,祝京旭,金涌,等.快床中颗粒凝聚形态的分类与讨论.第六届全国流态化会议论文集,武汉:华中理工大学,1993:162-165
    [109]Zevenhoven R. Near Wall Particle Velocity and Concentration Measurements in Circulating Fluidized Beds in Relationto Heat Transfer. In:Proceedingsof the 15th Int.Conf. on Fluidized Bed Combustion, Savannah, A merican Society of Mechanical Engineers,1999, Paper No. FBC99-0097
    [110]Levy E K, Celeste B. Combined effects of mechanical and acoustic vibrations on fluidization of cohesive powder. Powder Technology,2006,163:41-50
    [111]Grifith A E, Louge M Y. The Scalling of Cluster Velocity at the Wall of Circulating Fluidized Bed Risers. Cheminal Engineering Science,1998,53(13): 2475-2477
    [112]Manyele S V, Parssinen J H, Zhu J X. Characterizing Particle Aggregates in a High-Density and High-Flux CFB Riser. Cheminal Engineering Jounal,2002, 88:151-161
    [113]Lim C N, Gilbertson M A, Harrison A J L. Charactersation and control bubbling behavior in gas-solid fluidized beds. Control Enginnering Practice,2009,17: 67-79
    [114]Wank J R, George S M, Weimer A W. Vibro-fluidization of fine boron nitride powder at low pressure. Powder Technology,2001,121:195-204
    [115]Zhou T, Li H Z. Estimation of Agglomerate Size for Cohesive Particles during Fluidization. Powder Technology,1999,101:57-62
    [116]Zhou T, Li H Z. Force Balance Modelling for Agglomerating Fuidization of Cohesive Particles. Powder Technology,2000,111:60-65
    [117]Iwadate Y, Horio M. Prediction of Agglomerate Size in Bubbling Fuidized Beds of Group C Powders. Powder Technology,1998,100:223-236
    [118]Horio M, Iwadate Y. The Prediction of Sizes of Agglomerates Formed in Fluidization Beds. In:Preprint for the 5th World Congress of Chemical Engineering. San Diego, California.1996
    [119]Matsuda S, Hatano H, Muramoto T, et al. Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE Jounal,2004,50:2763-2771
    [120]Guo Q J, Yang X P, Shen W Z, et al. Agglomerate size in an acoustic fluidized bed with sound assistance. Cheminal Engineering and Process,2007,46:307-313
    [121]Valverde J M, Quintanilla M A S, Castellanos A, et al. The settling of fine cohesive powders. Europhysics Letters,2001,54:329-334
    [122]Castellanos A, Valverde J M, Quintanilla M A S. Agglomeration and sedimentation in gas-fluidized beds of cohesive powders. Physical Review E, 2001,64:041304
    [123]Valverde J M, Castellanos A. Fluidization of nanoparticles:A simple equation for estimating the size of agglomerates. Cheminal Engineering Jounal,2008, 140:296-304
    [124]Valverde J M, Castellanos A. Fluidization, bubbling and jamming of nanoparticle agglomerates. Cheminal Engineering Science,2007,62:6947-6956
    [125]Valverde J M, Quintanilla M A S, Castellanos A, et al. Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases. AICHE Jounal, 2008,54(1):86-103
    [126]Xu C, Cheng Y, Zhu, J. Fine particle fluidization-effects of mechanical/acoustic vibration. In:Arena, L., Chirone, R., Miccio, M.,Salatino, P. (Eds.), Fluidization Ⅺ. Present and Future for Fluidization Engineering. ECI, New York, USA, 2004:627-634
    [127]Zhou T, Kage H, Funaoka S, et al. The bubble behavior in a New-type horizontal Vibro-Fluidized Bed. Jounal of Cheminal Engineering of Japan,2002, 35(8):737-743
    [128]Yang J S, Zhou T, Song L Y. Agglomerating vibro-fluidization behavior of nano-particles. Advance Powder Technology,2009,20:158-163
    [129]Guo Q, Wang M, Li Y, et al. Fluidization of ultrafine particles in a bubbling fluidized bed with sound assistance. Cheminal Engineering Technology,2005, 28(10):1117-1124
    [130]Guo Q, Li Y, Wang M, Shen W, Yang C. Fluidization characteristics of SiO2 nano-particles in an acoustic fluidized bed. Cheminal Engineering Technology, 2006,29(1):78-86
    [131]Kono H O, Huang C C, Morimoto E, et al. Segregation and agglomeration of type C powders from homogeneously aerated type A-C powder mixtures during fluidization. Powder Technology,1987,53:163-168
    [132]戴兴国.贮矿空间内散体矿岩的压力理论与流动机理的研究:[博士学位论文].长沙:中南工业大学,1990
    [133]Daleffe R V, Ferreira M C, Freire J T. Effects of binary particle size distribution on the fluid dynamic behavior of fluidized vibrated vibrofluidized beds. Brazilian Jounal of Cheminal Engneering,2008,25(1):83-94
    [134]Yang S C. Segregation of cohesive powders in a vibrated granular bed. Cheminal Engineering Science,2006,61:6180-6188
    [135]Wang T J, Jin Y, Tsutsumi A, et al. Energy Transfer Mechanism in a Vibrating Fluidized Bed. Cheminal Engineering Jounal,2000,78(3):115-123
    [136]Timoshenko S P, Goodier J N. Theory of Elasticity. New York:McGraw-Hill, 1970
    [137]Mori S, Wen C Y. Estimation of Bubble Diameter in Gaseous Fluidized Beds. AIChE Jounal,1975,21:109-115
    [138]Fayed M E, Otten L. Handbook of Powder Science and Technology. New York: Van Nostrand Reinhold,1984
    [139]Wang H, Yang J S, Zhou T, et al. Model for Calculation of Agglomerate Sizes of Nanoparticles in a Vibro-fluidized Bed. Cheminal Engineering & Technology, 2010,33(3):388-394
    [140]Morse P M, Ingard K U. Theoretical Acoustics. New York:McGraw-Hill,1968
    [141]Rumpf H. The strength of granules and agglomerates Agglomeration. London: Interscience Publishers,1962:379-418
    [142]Israelachvili J N. Intermolecular and Surface Forces. London:Academic Press, 1985
    [143]Derjaguin B.V. Friction and adhesion Ⅳ. The theory of adhesion of small particles. Kolloid Zeits.1934,69:155-164
    [144]Jaraiz E, Kiruma S, Levenspiel O. Vibrating beds of fine particles:estimation of interparticle forces from expansion and pressure dropexperiments. Powder Technology,1992,72:23-30
    [145]Krupp H. Particle Adhesion:Theory and Experiment, Advances in Collloid and Interface Science, New York:Elsevier,1967,1:111-120
    [146]李凤生.超细粉体技术.北京:国防工业出版社,2000
    [147]李光亮.有机硅高分子化学.北京:科学出版社,1998
    [148]邓祥义,胡海平.纳米粉体材料的团聚问题及解决措施.化工进展,2002,21(10):761-787
    [149]杨春光,乔爱平,侯金飚,等.纳米粉体团聚的原因及解决方法.山西化工,2003,23(1):56-58
    [150]Luis F H, Julie L, Michelle D, et al. Aggregayion behavior of nanoparticles in fluidized beds. Powder Technology,2005,160:149-160
    [151]Grace J R, Tuot J. A Theory for Cluster Formation in Vertically Conveyed Suspensions of Intermediate Dnesity. Transactions of the Institution of Chem. Eng.,1979,57:49-54
    [152]Shintaro T, Isao M, Takeo K. Motion of particle agglomerate involving interp-article force in dilute suspension. Powder Technology,2008,184:232-240
    [153]Suzuki A, Takahashi H, Tanaka T. Behaviour of a particle bed in the field of vibration Ⅲ. Mixing of particles in a vibrating vessel. Powder Technology, 1968,2(2):78-81
    [154]Gutman R. Vibrated bed of powders. Part 1.A theoretical model for the vibrated bed. Transactions of the Institution Chemical Engineers,1976,54:174-183
    [155]Tomas J. Adhesion of ultrafine particle-A micromechanical approach. Chemical Engineering Science,2007,62:1977-2010
    [156]Deen N G, Van M, Vander M A, et al. Review of discrete particle modeling of fluidized beds. Chemical Engineering Science,2007,62:28-44
    [157]Michael W W, Christine M H. Square-well model for cohesion in fluidized beds. Chemical Engineering Science,2006,61:4511-4527