非均相非平衡可压流动的建模与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据国家自然科学基金项目《激波与可燃堆积粉尘相互作用》(批准号:19772018)和《流动及其机理的DSMC/EPSM混合算法研究》(批准号:19902021)以及国家高技术研究发展计划863项目《稀薄气体及过渡区RCS射流对气动的干扰特性研究》(批准号:2002AA726050)赋予的研究内容,在对国内外相关非均相非平衡流动建模与算法研究调研的基础上,选择了非均相流中的气固两相流和气体热化学非平衡流两类具有代表性的流动,用以探索满足Boltzmann方程输运特性的非均相非平衡可压流的流动规律,旨在寻求对这类复杂流动研究行之有效的模型和数值求解方法。
     首先,针对连续介质范畴的可压稠密气固两相流的特点,引入颗粒粒化温度概念,构建适合于可压两相流的双流体模型,建立了统一的气固两相流控制方程。尔后从分析颗粒相在真空等情况下的波系传播特征着手,推导了颗粒相的近似黎曼算子,构造出能用于可压稠密气固两相非等熵流动的分步Roe格式,数值模拟了激波在一定厚度的惰性堆积粉尘床中传播及诱导粉尘颗粒运动的过程,给出了流场细致结构和流场的动态过程。同时将计算结果与实验进行比较,证实模型与算法的有效性,为解决可压稠密气固且存在间断界面的两相流问题提供了有效的研究途径。
     其次,针对高空稀薄条件下过渡区气固两相流的流动特征以及DSMC方法的要求,通过宏观物理量的细观表达和气固两相本质一致的速度分布函数,建立了基于宏观物理量描述的气固相互作用与单个模拟粒子运动状态之间的联系,构建了适用于DSMC方法的气固相互作用的热力学模型和颗粒碰撞模型。并通过引入颗粒粒化温度,给出了颗粒相的来流和固壁边界条件的数学描述。在此基础上,对有气固两相横向喷流干扰的二维有限平板高超声速流场进行了数值模拟。由于DSMC方法的物理模拟本质使其能够较为容易地引入更真实的模型实现对复杂的物理化学过程的描述,因此本文工作为应用DSMC方法解决过渡区含化学反应等传质传热现象的气固两相流动提供了新的研究方法。
     再者,鉴于DSMC方法和EPSM方法所具有的粒子模拟本质以及各自在计算包含稀薄与连续混合流动时所表现的优势和不足,本文应用Knudsen(克努森)数和Bird定义的连续介质模型失效参数作为流态控制参数,给出了复杂流场中稀薄/连续不同流态的判断依据,研究了稀薄区使用DSMC方法、连续流区使用EPSM方法的合理性,自动高效地实现了稀薄/连续复杂流场的DSMC/EPSM分区计算。应用DSMC/EPSM混合算法,数值模拟了无厚度有限平板的横向喷流干扰、有厚度有限平板的横向喷流干扰和轴对称平头圆柱的逆向喷流干扰流场,分析了不同来流克努森数和喷流马赫数下的流场结构及气动干扰特性,揭示了过渡区喷流干扰的稀薄气体效应。
     最后,本文发展了仅适用于整数自由度能量分布的EPSM算法,使其不但能处理振动能不完全激发状念下的热力学非平衡问题,还能处理化学反应流动问题。同时,应用改进的DSMC/EPSM混合算法,数值模拟了稀薄流过渡区有横向喷流干扰的二维有限平板和有逆向喷流干扰的平头圆柱高超声速化学反应流场,探讨了高温气体化学反应效应对流场结构及喷流气动干扰特性的影响。
According to the requirements of the NSFC Project (Grant No. 19772018) and (Grant No. 19902021) and the National 863 Program (Grant No.2002AA726050), and based on the investigation of models and algorithms about inhomogeneous and non-equilibrium flows, two typical kinds of these flows: gas-solid two-phase flows and thermal chemical non-equilibrium gas flows, are chosen to study the properties of compressible inhomogeneous and non-equilibrium flows which are governed by the Boltzmann equation for trying to find the feasible models and numerical methods to solve these complicated flow problems.Firstly, the two-fluid model and the unified governing equations for dense compressible gas-solid flows are established on the concept of granular temperature which is used to represent the properties of this flow. Approximate Riemann solver of solid phase is deduced from the characteristics of wave propagating in the varied conditions including the vacuum, and the algorithm of Roe's fractional step scheme is constructed to solve non-isentropic dense compressible gas-solid flows. Numerical simulation of the shock-induced fluidization of inert powder layers is performed, the results show the detailed structure and the evolving process of the flow field. It is also experimentally proved that the model and the algorithm are valid, so the work of this paper can supply an effective method to describe the dense compressible two-phase flow with strong discontinuity surfaces.Secondly, analyzing the properties of gas-solid flow in the transitional region of rarefied gas and the requirements of the direct simulation Monte Carlo (DSMC) method, the relationship is set up between the gas-solid interaction based on the macro physical parameters and the single simulation particle's kinetic states via the micro-expression of the macro physical parameters, each coherent velocity distribution function of gas phase and solid phase is given in the unified form. The mechanical and thermal models of gas-solid interaction and the models of particle-particle collision are also constructed. The numerical disposition of the boundary conditions of solid phase is performed in the form of the granular temperature. Numerical solutions are obtained for the case of gas-solid transverse jet from a two-dimensional flat plate interacting with rarefied external hypersonic flows. As the more real model can be easily inducted to the DSMC method for solving physical chemical flow due to the physical simulation essence of the DSMC method, the work of this paper may provide a new approach to describe the gas-solid flow with chemical reactions in the transitional region.Thirdly, considering the particle simulation essential characteristics of the DSMC method and the equilibrium particle simulation method (EPSM), and each advantage and disadvantage in simulating mixed rarefied and continuum flows, the local Knudsen number Kn and Bird's
    
    breakdown parameter P are adopted as the physical and numerical criteria that identify the boundary between continuum and rarefied computational domains. Rationality that the DSMC method is implemented in rarefied region, and the EPSM method in continuum region is verified, the hybrid DSMC/EPSM code is presented to automatically divide zones in continuum/rarefied flows using the controlling parameters Kn and P. Simulations are performed for the cases of transverse jet from two-dimensional flat plate with non-thickness and thickness, inverse jet from flat-nosed cylinder interacting with rarefied external flows. The structure of flow field and the aerodynamic properties along with the varied Knudsen number and jet Mach number are analyzed in details, and the rarefied gas effects of the jet interaction are embodied in the transitional region.Lastly, the EPSM code, that is initially only used for integral degrees of free
引文
[1] 黄祖洽,丁鄂江.输运理论.北京:科学出版社,1987
    [2] Horio M, Iwadate Y, Sugaya T. Powder Tech, 1998, 96:148-157
    [3] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994
    [4] Ge W, Li J. In Circulating Fluidized Bed Technology V(Eds. Kwauk M, Li J), Science Press, Beijing, 1996, 260-266
    [5] 郭烈锦.两相与多相流动力学.西安:西安交通大学出版社,2002
    [6] Marble F E. Dynamics of a gas containing small solid particles. London: Pergamon Press, 1963, 5th AGARD Combustion and Propulsion Colloquium
    [7] Ishii M. Thermo-fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris: 1975
    [8] Pai S I. Two-phase flow. Vieweg-Verlag, Braunschweig: 1977
    [9] Savage S B, Jeffrey D J. The stress tensor in a granular flow at high shear rates. J Fluid Mech, 1981, 110:255-272
    [10] Chapman S, Cowling T G. The mathematical thebry of non-uniform gases. Cambridge University Press, 1970
    [11] Jenkins J T, Mancini F. Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth nearly elastic,circular disks. J Applied Mech, 1987, 54: 27-34
    [12] Lun C K. K, Savage S B. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. J Applied Mech, 1987, 54:47-53
    [13] Ogawa S, Umemura A, Oshima N. On the equations of fully fluidized granular materials. Z angew Math Phys, 1980, 31:482-493
    [14] Hopkins M A, Shen H H. Constitutive relations for a planar, simple shear flow of rough disks. Int J Engng Sci, 1986, 24(11): 1717-1730
    [15] Gidaspow D. Multiphase flow and fluidization-continuum and kinetic theory descriptions. New York: Academic Press, 1994
    [16] Boemer A, Qi H, Renz U. Int J Multiphase Flow, 1997, 23(5): 927-944
    [17] 刘大有.建立两相流方程的动力论方法.力学学报,1987,19(3)
    [18] Lourenco L, Reithmuller M L, Essers J-A. The kinetic model for gas-particle flow and its numerical inplementation. Conwentry, England: In International Conference on the Physical Modeling of Multiphase Flow, 1983, 501-513
    [19] Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc Roy Soc, 1954, A255:49-63
    [20] Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J Fluid Mech, 1983, 130:187-202
    [21] Lun C K K, Savage S B, Jeffrey D J, Chepurniy N. Kinetic theories for granular flow: inelastic particles in Couette flow and singly inelastic particles in a general flow field. J Fluid Mech, 1984, 140: 223-256
    
    [22] Shahinpour M, Ahmadi G. A kinetic theory for the rapid flow of rough identical spherical particles and the evolution of fluctuation: advances in the mechanics and the flow of granular materials II. Switzerland: Andermannsdorf Trans Tech Pub (eds. Shahinpour M.), 1983,641-667
    [23] Johnson P C, Jackson R. Frictional-Collisional constitutive relations for granular materials,with application to plane shearing. J Fluid Mech, 1987, 176: 67-93
    [24] Sinclair J L, Jackson R. Gas-particle flow in a vertical pipe with particle-particle interactions. J AICHE, 1989, 35: 1473-1486
    [25] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. J AICHE, 1990, 36: 523-538
    [26] Jenkins J T, Mancini F. Phys Fluids A, 1989, 1: 2050
    [27] Zamankhan P. Phys Rev E, 1995, 52: 4877
    [28] Brey J J, Dufty J W, Kim C S, Santos A. Phys Rev E, 1998, 58: 4638
    [29] Garzo V, Dufty J W. Phys Rev E, 1999, 59: 5895
    [30] Brey J J, Ruiz-Montero M J, Cubero D. Europhys Lett, 1999, 48: 359
    [31] Jenkins J T, Richman M W. J Fluid Mech, 1988, 192: 313
    [32] Hopkins M A, Shen H H. A Monte Carlo solution for rapidly shearing granular flows based on the kinetic theory of dense gases. J Fluid Mech, 1992, 244: 477-491
    [33] Chou C S, Richman M W. Physica A, 1998, 259: 430
    [34] Chou C S. Physica A, 2001, 290: 341
    [35] SelaN, Goldhirsch I, Noskowicz S H. Phys Fluids, 1996, 8: 2337
    [36] Arnarson B, Willits J T. Phys Fluids, 1998, 10: 1324
    [37] Willits JT, Arnarson B. Phys Fluids, 1999, 11: 3116
    [38] FeitosaK, MenonN. cond-mat/0111391
    [39] Clelland R, Hrenya C M. Phys Rev E, 2002, 65: 031301
    [40] Garzo V, Dufty J W. Phys Fluids, 2002, 14: 1476
    [41] Garzo V, Dufty J W. Phys Rev E, 1999, 60: 5706
    [42] Montanero Jose Maria, Garzo Vicente. Rheological properties in a low-density granular mixture. Physica A, 2002, 310: 17-38
    [43] Montanero Jose Maria, Garzo Vicente. Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Granular Matter, 2002, 4: 17-24
    [44] Brey J J, Ruiz-Montero M J, Cubero D. Homogeneous cooling state of a low-density granular flow. Phys Rev E, 1996, 54: 3664-3671
    [45] Popken L, Cleary P W. Comparison of kinetic theory and discrete element schemes for modeling granular Couette flows. Berichte der Arbeitsgruppe Technomathematik, 1998, 198
    [46] Frezzotti A. Monte Carlo simulation of the uniform in a dense rough sphere fluid. Physica A, 2000, 278:161-180
    
    [47] Vrhovac S B, Arsenovic D, Belic A. Transport theory of granular swarms. Physical Review E, 2002, 66:1302
    [48] Hoomans B P B, Kuipers J A M, Briels W J, et al. Chem Eng Sci, 1996, 51(1): 99-118
    [49] 欧阳洁,李静海.模拟气固两相流动非均匀结构的颗粒运动分解轨道模型.中国科学(B辑),1999,29(1):29-38
    [50] Horio M, Iwadate Y, Mikami T, et al. Beijing: In 6th China-Japan Symposium on Fluidization (eds. Jin Y, Li J, Mori S, et al.), 1997, 1-6
    [51] Iwadate Y, Horio M. New York: in Proceedings of the 9th International Engineering Foundation Conference on Fluidization (eds. Fan L S, Knowlton T M.), 1998, 294-300
    [52] Tsuji Y, Kawaguchi T, Tanaka T. Powder Tech, 1993, 77(1): 79-87
    [53] Kuipers J A M, Van Swaaij W P M. Rev Chem Eng, 1997, 13(3): 1-118
    [54] Gera D, Gautan M, Tsuji Y, et al. Powder Tech, 1998, 98:38-47
    [55] Nieuwland J J, Van Sint Annaland M, Kuipers, et al. Hydrodynamic modeling of gas/particle flows in riser reactors. J AICHE, 1996, 42(6): 1569
    [56] Samuelsberg A, Hjertager B H. Computational modeling of gas/particle flow in a riser. J AICHE, 1996, 42:1536-1546
    [57] 郭印诚,陈新国,徐春明.运用稠密气体理论建立气粒两相流流动模型.化学反应工程与工艺,1995,15(4):416-423
    [58] 陆慧林,刘文铁,孙永力等.稠密气固两相湍流流动的实验和数值模拟.力学学报,2000,32(4):385-391
    [59] GoldshteinA, Shapiro M. J Fluid Mech, 1995, 282:75
    [60] Savage S B. J Fluid Mech, 1988, 194:457
    [61] Goldshtein A, Shapiro M, Gutfinger C. J Fluid Mech, 1996, 316:29
    [62] Kamenetsky V, Goldshtein A, Shapiro M, Degani D. Phys Fluids, 2000, 12:3036
    [63] Shusaku Harada. Wave propagation in a dynamic system of soft granular materials. Phys Rev E, 2002, 67:1305
    [64] Sommerfeld M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 2001, 27(10): 1829-1858
    [65] Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidzed beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Tech, 1998, 95:254-264
    [66] Bouilard J X, Lyczkowski R W, Gidaspow D. J AICHE, 1989, 35(6): 908-922
    [67] Gidaspow D. Appl Mech Rev, 1986, 39(1): 1-23
    [68] Richard Saurel, Remi Abgrall. A multiphase Godunov method for compressible multi-fluid and multiphase flows. J Comput Phys, 1999, 150:425-467
    [69] Yang-Yao Niu. The advection upwind splitting method to solve a compressible two-fluid model. Intemational Journal for Numerical Methods in Fluids, 2001, 36(1)
    [70] Coquel G, Amine K E, Godlewski E, Perthame B, Rascle P. A numerical method using upwind schemes for the resolution of two-phase flows. J Comput Phys, 1997, 136:278-288
    
    [71] Toumi, Kumbaro A. An approximate linearized Riemann solver for two-fluid model. J Comput Phys, 1996, 124:286-300
    [72] Sainsaulieu L. Finite-volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver. J Comput Phys, 1995, 121:1-28
    [73] Raviart P A. A non-conservative hyperbolic system modeling spray dynamics, Part Ⅰ: Solution of Riemann problem. Mathematical Models and Methods in Applied Sciences, 1995, 5:297-333
    [74] Abgrall R. Generalization of Roe's Riemann solver to mixtures of perfect gas. Rech Aerospat, 1988, 6(1)
    [75] Karni S. Multi-component flow calculations by a consistent primitive algorithm. J Comput Phys, 1994, 112:31-43
    [76] Abgrall R. How to prevent pressure oscillations in multi-component flow calculations: A quasi-conservative approach. J Comput Phys, 1996, 125:150
    [77] Karni S. Hybrid multi-fluid algorithms. SIAM J Sci Comput, 1996, 17:1019
    [78] Jenny P, Mueller B, Thomann H. Correction of conservative Euler solvers for gas mixtures. J Comput Phys, 1997, 132:91
    [79] Shyue K M. An efficient shock-capturing algorithm for .compressible multi-component problems. J Comput Phys, 1998, 142:208-242
    [80] Stadtke H, Franchello G, Worth B. Towards a high resolution numerical simulation of transient two-phase flows. Lyon, France: Third International Conference Multiphase Flow, 1998,
    [81] Laure Combe, Jean-Mare Herard. Finite volume algorithm to compute dense compressible gas-solid flows. J AIAA, 1999, 37(3): 337-345
    [82] Yang-Yao Niu. On some simple and robust Riemann solvers for compressible two-phase flows. 2001, AIAA Paper 2001-2647
    [83] Toro E F. Restoration of the contact surface in the HLL-Riemann solver. Shock Wave, 1994, 4(25): 34
    [84] Niu Y Y, Liou M S. Numerical simulation of dynamics stall using upwind scheme and dual time stepping. J AIAA, 1999, 36:1386-1392
    [85] Edwards Jack R, Deming Mao. Development of low-diffusion flux-splitting methods for dense gas-solid flows. 2001, AIAA Paper 2001-2649
    [86] Liou M S. Progress towards an improved CFD method: AUSM+. 1995, AIAA Paper 1995-1701
    [87] Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations. Computers Fluids, 1997, 26(6): 635-657
    [88] 曾卓雄,胡春波,姜培正,亢力强.密相、湍流、可压、气固两相流理论及在管道中的应用.空气动力学学报,2001,19(1):109-118
    [89] 曾卓雄,胡春波,姜培正等.计算两相流的一种改进方法.推进技术,2002,23(1):33-35
    [90] Yonemura S, Tanaka T, Tsuji Y. In Gas-Solid Flows, ASME, 1993, 166:303-309
    
    [91] Tanaka Toshitsugu, Yonemura Shigeru, Tsuji Yutaka. Effects of particle properties on the structure of clusters. New York: ASME Gas-Particle Flows American Society of Mechanical Engineers, Fluids Engineering Division, 1995,228:297-302
    [92] Tanaka T, Yonemura S, Kiribayashi K, Tsuji Y. Cluster formation and paricle-induces instaility in gas-solid flows predicted by the DSMC method. JSME Int.J.,Series B,Fluids and Thermal Eng., 1996, 39(2): 239-245
    [93] Berman Y, Tamir A. Coalescene model of particles in coaxial impinging streams. J Chem Eng, 1996, 74:822-833
    [94] 刘敏,张会强,郭印诚等.稠密气固流动中的格子—确定性轨道模型.清华大学学报,2003,43(2):246-249
    [95] Sun Q, Li J H. Hong Kong: In Asia-Pacific Chemical Reaction Engineering Symposium, 1999, 593-600
    [96] 孙其诚,李静海.气体拟颗粒模型.化工冶金,1999,20(3)
    [97] 陈熙.动力论及其在传热与流动研究中的应用.北京:清华大学出版社,1996
    [98] Yen S M. Monte Carlo solutions of nonlinear Boltzmann equations for problems of heat transfer in rarefied gases. International Journal of Heat Mass Transfer, 1970, 14:1865-1869
    [99] Nordsieck A, Hicks B L. Monte Carlo evaluation of the Boltzmann collision integral. Academic Press Rarefied Gas Dynamics(ed.by Brundin C L), 1967, 675-710
    [100] Kogan M N. Rarefied Gas Dynamics. Plenum Press, 1969
    [101] Haviland J K, Lavin M L. Applications of the Monte Carlo method to heat transfer in a rarefied gas. Phys Fluids, 1962, 5:1399-1405
    [102] Alder B J, Wainwright T E. Studied in molecular dynamics. Journal of Chem. Physics, 1957, 27:1208-1209
    [103] Bird G A. Molecular Gas Dynamics. Oxford: Claredon Press, 1976
    [104] Bird G A. Approach to translational equilibrium in a rigid sphere gas. Phys Fluids, 1963, 6:1518-1519
    [105] Bird G A. Shock wave structure in a rigid sphere gas. Ac.Press Rarefied Gas Dynamics(ed.by J H de Lesuw), 1965, 1:216-222
    [106] 吴其芬,陈伟芳.高温稀薄气体热化学非平衡流动的DSMC方法.国防科技大学出版社,1999
    [107] Moss J N, Price J M, Dogra V K, Hash D B. Comparison of DSMC and experimental results for hypersonic external flow. 1995, AIAA Paper 95-2028
    [108] 沈青.稀薄气体动力学.北京:国防工业出版社,2003
    [109] Hash D B, Hasson H A. A decoupled DSMC/Navier-Stokes analysis of transitional flow. 1996, AIAA Paper 96-0353
    [110] Lumpkin F E, Stuart P C, LeBeau G J. Enhanced analyses of plume impingement during Shuttle-Mir docking using a combined CFD and DSMC methodology. 1996, AIAA Paper 96-1877
    [111] Hash D B, Hasson H A. Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods. Journal of Thermophysics and Heat Transfer, 1996, 10(2): 242-249
    [1
    
    [112] Wadsworth D C, Erwin D A. One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows. 1990, AIAA Paper 90-1690
    [113] Wadsworth D C, Erwin D A. Two-dimensional hybrid continuum/particle approach for rarefied hypersonic flows. 1992, AIAA Paper 92-2975
    [114] Delgado-Buscalioni R, Coveney P V. Continuum-particle hybrid coupling for mass, momentum and energy transfers in unsteady fluid flow. Phys Rev E, 2003, 67: 046704
    [115] Glass C E. Numerical study of rarefied hypersonic flow interacting with continuum jet. 2000, NASA/TP-2000-210551
    [116] Hash D B, Hasson H A. A hybrid DSMC/Navier-Stokes solver. 1995, AIAA Paper 95-0410
    [117] Bird G A. Rarefied gas dynamics. Charlottesville, V A: In the 12th International Symposium on RGD, 1980
    [118] Vincenti W G, Kruger C H. Introduction to physical gas dynamics. Wiley, New York: 1965
    [119] 刘大有.二相流体动力学.北京:高等教育出版社,1993
    [120] Olim M, Ben-Dor G, Mond M, Igra O. A general attenuation law of moderate planar shock waves propagating into dusty gases with relatively high loading ratios of solid particles. Fluid Dynamics Research, 1990, 6:185-199
    [121] Rayevsky D, Ben-Dot G. Shock wave interaction with a thermal layer. J AIAA, 1991, 30(4): 1135-1139
    [122] Ben-Dor G, Rayevsky D. Shock wave interaction with a high-denstity step-like layer. Fluid Dynamics Research, 1994, 13: 261-279
    [123] Sakakita H, Haviland J K. Study on the interaction between a powder layer and a shock wave. Kagoshima, Japan: In: Proc. 18th Int. Symp. Space Technology and Science, 1992, 142-146
    [124] Kuhl A L, Reichenbach H, Ferguson R E. Shock interactions with a dense-gas wall layer. Sendai, Japan: At the 18th International Symposium on Shock Waves, 1991, 159-166
    [125] Deardorff J W. On the magnitude of the subgrid scale eddy coefficient. J Comput Phys, 1971, 7(120): 133
    [126] 刘大有.再论二相流基本方程—关于固相碰撞应力的讨论.中国科学(A辑),1998,28(1):72-79
    [127] Saffman P G. The lift on a small sphere in a slow shear flow. J Fluid Mech, 1965, 22:385-400
    [128] 范宝春.两相系统的燃烧、爆炸和爆轰.北京:国防工业出版社,1998
    [129] Buffard T, Herard J M. A conservative fractional step method to solve non-isentropic Euler equations. Comput Methods Appl Mech Engrg, 1997, 144:199-225
    [130] Toro E F. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, 1997
    
    [131] 朱自强等.应用计算流体力学.北京:北京航空航天大学出版社,1998
    [132] Eldighidy S M, Chen R Y, Comparin R A. Deposition of suspensions in the entrance of a channel. J Fluid Eng, 1977, 365
    [133] Hui K, Haft P K, Ungar J E, Jackson R. Boundary conditions for high-shear grain flows. J Fluid Mech, 1984, 145: 223
    [134] 范宝春,赵振平,雷勇.激波与超细堆积粉尘相互作用的流场实验显示.实验力学,2000,15(4):416-420
    [135] 李洁,任兵,陈伟芳.激波对密度间断层干扰及界面效应的数值模拟.国防科技大学学报,2001,23(2):47-51
    [136] 陆守香,范宝春.激波与可燃粉尘相互作用的实验研究.实验力学,1997,16(1):18-22
    [137] Epstien P S. On the resistance experienced by spheres in their motion through gases. Phys Rev, 1924, 24:710
    [138] Baines M J, Williams I P, Asebiomo A S. Resistance to the motion of a small sphere moving through a gas. Mon Not R Astron Soc, 1965, 130:63
    [139] Waldmann L Z. Uber die Kraft eines inhomogenen gases auf kleine suspendierte Kugeln. Z Naturforsch A, 1959, 14:589
    [140] Talbot L, Cheng R K, Schefer R W, Willis D R. Thermophoresis of particles in a heated boundary layer. J Fluid Mech, 1980, 101:737
    [141] Lees L. A kinetic theory description of rarefied gas flows. Pasadena, CA: California Institute of Technology, 1959, GALCIT Hypersonic Research Project Memo No. 51
    [142] Gallis M A, Torczynski J R, Rader D J. An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method. Physics of Fluids, 2001, 13(11): 3482-3492
    [143] Zhang J, Goldstein D B, Gimelshein N, Gimelshein S, Levin D, Varghese R AIAA paper, 2001, 2001-2767
    [144] 徐钟济.蒙特卡罗方法.上海:上海科学技术出版社,1985
    [145] Kakn h. Application of Monte-Carlo. AECU-3259
    [146] 黄琳.分子动力论原理及数值方法若干应用研究:[博士学位论文].国防科学技术大学研究生院,1999
    [147] Boyd I D. Phys Fluids A, 1990, 2(447): 452
    [148] 陈伟芳.热化学非平衡稀薄气体流动的DSMC方法研究:[博士学位论文].国防科学技术大学研究生院,1997
    [149] Borgnakke C, Larsen P S. Statistic collision model for Monte-Carlo simulation of polyatomic gas mixture. J Comput Phys, 1975, 18
    [150] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994
    [151] Tartabini P V, Wilmoth R G, Rault D F G. Direct Simulation Monte Carlo calculation of a jet interaction experiment. Journal of Spacecraft and Rockets, 1995, 32(1): 75-83
    [152] Rault D F G, Cestero F J, Shane R W. Spacecraft aerodynamics during aerobraking maneuver in planetary atmospheres. 1996, AIAA Paper 96-1890
    [1
    
    [153] Shane R W, Rault D F G, Tolson R H. Mars Global Surveyor aerodynamics for maneuvers in Martian atmosphere. 1997, AIAA Paper 97-2509
    [154] 唐伟.导弹侧向喷流工程计算模型研究.第十一届全国高超声速气动力(热)学术交流会议文集,2001,
    [155] Pullin D I. Direct simulation methods for compressible ideal gas flow. J Comput Phys, 1980, 34:231-244
    [156] Macrossan M N. Some developments of the equilibrium particle simulation method for the direct simulation of compressible flows. 1995, NASA-CR-198175
    [157] 吴明巧.稀薄气体流动的DSMC/EPSM混合算法研究:[硕士学位论文].国防科学技术大学研究生院,2001
    [158] Boyd Iain D, Gang Chen. Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys Fluids, 1995, 7(1): 210-219
    [159] Moss J N, Rault D F G, Price J M. DMCS of Hypersonic Viscous Interactions Including Separations. J AIAA, 1993, 160:209-220
    [160] Peake D J, Tobak M. Three-dimensional Interactions and Vortical Flows With Emphasis on High Speeds. 1980, NASA Technical Memorandum 81169
    [161] 张鲁民等.载人飞船返回舱空气动力学.北京:国防工业出版社,2002
    [162] Allen Spencer. Optimal control thruster location for endoatmospheric interceptors. 1993, AIAA Paper 93-2639
    [163] 林炳秋,高听欣.垂直喷流与外流干扰的计算方法.空气动力学学报,2001,19(3):364-368
    [164] Gimelshein S F, Alexeenko A A, Levin D A. Modeling of the interaction of a side jet with a rarefied atmosphere. Journal of Spacecraft and Rockets, 2002, 39(2): 168-176
    [165] 欧阳水吾,谢中强.高温非平衡空气绕流.北京:国防工业出版社,2001
    [166] Miner E W, Lewis C H. Hypersonic ionizing air viscous shock-layer flows over nonanalytic blunt bodies. NASA CR-2550
    [167] Benson S W, Fueno T. Journal of Chemical Physics, 1962, 36(1597): 1607
    [168] Bird G A. Simulation of multi-dimensional and chemically reacting flows. Rarefied Gas Dynamics (eds. Campargue R.), 1979, 1:365
    [169] Bird G A. Monte Carlo simulation in an engineering context. Progress in Astro and Aero, 1981, 74: 239
    [170] 陈伟芳,吴明巧,任兵.DSMC/EPSM混合算法研究.计算流体力学,2003,20(3):274-278
    [171] 吴明巧,陈伟芳,任兵.气体化学反应流动的DSMC/EPSM混合算法研究.计算力学学报,2003,20(5):564-567