低压控制与保护电器智能化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能电网是当今世界电力系统发展变革的最新动向和发展趋势。智能化电器是智能电网非常重要的组成部分,智能电网的建设势必带动智能化电器的发展。
     为了满足智能电网对智能化电器的要求,提高低压电器智能化技术研究水平。本文对交流接触器、电动机保护器、控制与保护集成电器(CPIS)的智能化技术进行了深入研究,从而为提升低压电器智能化研究水平做出积极贡献。主要研究内容如下:
     一、本文从研究意义与背景的角度介绍了智能电网的概念及特点,阐述了智能化电器与智能电网的关系,并分别从智能控制、智能保护、智能控制与保护集成三个方面介绍了智能控制与保护电器,电器智能优化设计技术,电器动态测试技术等研究概况与现状。
     二、通过对电磁系统的不同优化方法,特别是遗传算法和人工鱼群优化算法的优缺点进行分析,采用基于遗传算法的人工鱼群优化算法进行低压电器电磁系统的优化设计。本文详细介绍了基于遗传算法的人工鱼群优化算法的基本特点、计算思路、计算方法,以及该算法在本文中的应用。将该算法应用于本文各种电磁电器的优化设计中,取得了良好的效果,为各种电器实现相应功能奠定了基础。
     三、对采用图像处理的电器动态特性测试装置的图像处理技术进行深入的研究,提出图像处理技术的改进方法,提高了测试装置的应用效率。本文详细介绍了基于图像与改进处理方法的电器动态测试技术和电器动态测试过程图像处理的步骤、方法及注意事项。利用该测试装置对本文所设计的各种电器进行动态测试,验证了优化设计的可行性。
     四、提出适应统一坚强智能电网,具有智能化功能设计、运行(包括控制、保护与调节)与测量的电器智能化技术新思路。本文研究实现了包括智能优化设计、稳定可靠的零电流分断控制、首开相基本零电压接通、状态检测与故障诊断、节能、通信、准确的动态特性测量等交流接触器智能化的关键技术,从而大幅提高了交流接触器智能化研究水平。
     本文通过零电流分断原理、零电流分断失败原因的分析,采用智能优化算法对电磁动作机构进行优化设计,实现了动作机构快速释放,从而大幅度减小机构分散性对三相触头特别是首开相触头零电流分断准确性与稳定性的影响,提高了零电流分断的可靠性,从而大幅提高了交流接触器智能化研究水平。
     本文提出分相智能交流接触器方案,并对三相触头不同步智能交流接触器与分相智能交流接触器进行比较分析。
     五、采用智能优化设计算法对铁心斜极面的交流电磁系统进行深入地设计与分析。通过对平极面和斜极面铁心交流接触器在不同斜角度下的吸力特性进行计算与分析,提出了智能斜极面交流接触器的结构方案。该方案与平极面相比,其用铜量与用铁量大幅减小,而且具有更好的动态特性与更高的零电流分断准确性与稳定性,从而充分表现了斜极面交流电磁系统的优越性,为铁心斜极面电磁系统的广泛应用奠定基础。
     六、介绍了智能电动机控制与保护电器的组成与电动机保护技术的现状,重点对智能电动机保护技术与智能电动机控制与保护电器的研制进行了深入的探讨,并开发了智能电动机保护器产品。
     七、提出了基于快速电磁斥力机构,以桥式双断点触头系统接触器结构为本体的分相智能控制与保护集成电器的物理模型。该电器模型实现了接触器频繁操作、电动机保护与短路故障保护等功能与结构的集成。
     本文重点介绍了触头系统电动斥力与快速电磁机构斥力的计算方法,对短路故障状态下触头系统电动斥力与快速电磁斥力进行仿真。在基于电流形态小波与电源电压变化率的短路故障早期检测基础上,对该电器在不同短路电流、不同参数情况下多种机械力与电磁力综合作用的动触头位移轨迹进行了仿真与分析。从而在该物理模型的基础上,建立了基于电流形态小波与电源电压变化率的短路故障早期检测技术、基于快速电磁斥力机构的综合机械与电磁原理的触头短路故障快速动作并限流的数学模型。
     仿真研究表明,该智能控制与保护集成电器技术具有非常好的限流特性,从而为研发高性能的智能控制与保护集成电器奠定理论基础。
Smart grid is the latest and development trends of the world's power systemdevelopment evolution. Intelligent electrical apparatus is a very important part of the smartgrid. The construction of the smart grid is bound to lead the development of the intelligentelectrical apparatus.
     In order to improve the intelligent technology level of low voltage electrical apparatusand meet the requirements of smart grid, the intelligent technology of AC contactors,motor protection, control and protective integrated switching devices (CPIS) are studieddeeply in this paper, so as to make a positive contribution to enhance the intelligent levelfor low voltage electrical apparatus.
     This dissertation mainly contains the following aspects:
     1) From the point of view of the research significance and background, this paperintroduces the concept and characteristics of smart grid. The relationship between smartgrid and intelligent electrical apparatus is presented in detail. The research situation aboutCPS, intelligent optimization design technology, and dynamic testing technology aresummed up from three aspects of intelligent control, intelligent protection, intelligentcontrol and protection integration respectively.
     2) After comparing the advantages of the different electromagnetic systemoptimization methods, the artificial fish swarm optimization algorithm based on geneticalgorithm is used in the low-voltage electromagnetic system optimization design. Thegeneral feature, calculation ideas, calculation method and the application of the algorithmis presented in detail. The new algorithm is applied to the optimization design of all kindsof electromagnetic appliances and good results are obtained. It lays the foundation forvarious appliances to achieve the appropriate basis functions.
     3) The paper investigates the image processing technology thoroughly that electricalapparatus dynamic characteristics testing device based on. The improvement methods ofthe image processing technology are proposed to improve the utilization efficiency oftesting device. The electrical apparatus dynamic testing technology and process based onabove method are elaborated as well as the image processing procedure, method and theattention matters. The dynamic characteristics of all kinds of appliances designed in thispaper are tested with the test device, and the feasibility of optimization design is verified.
     4) The new ideas of intelligent technology for electrical apparatus with the function of intelligent design, operation and measurement to adapt the unified strong smart grid areproposed. The researches realize the key technology of AC contactor including intelligentoptimization design, stable and reliable zero-current break, first open phase’s zero-voltageclose, state detection and fault diagnosis, life prediction, saving energy, communicationsand accurate measurement of dynamic characteristic, etc. As a result, the research level ofAC contactor intelligent is improved significantly.
     The principle of zero-current break and the cause of break failure are analyzed in thispaper. The intelligent optimization algorithm is used for the optimized design ofelectromagnetic motion mechanism to realize the rapid release. It can reduce the impact ofmechanical disparity on accuracy and stability of the zero-current break of three-phasecontactor, especially the first open phase contact, so that the reliability of zero-currentbreak is improved. Consequently, the AC contactor intelligent research level is improvedremarkably.
     The technical scheme of split-phase intelligent AC contactor is put forward in thisthesis. The compare and analysis of intelligent AC contactor with three-phaseasynchronous contactor and split-phase intelligent ac contactor is made also.
     5) The intelligent optimization design method is used to design and analyze deeply theelectromagnetic system of inclined surface iron core. After the thorough calculation andanalysis of suction characteristics between flat and inclined surface iron core in differentangles, the structure scheme of intelligent AC contactor with inclined face is put forward.The coil and core volume of intelligent inclined surface AC contactor can be saved greatly.Its dynamic characteristics are better and the reliability and stability of zero-current breakare higher. The new scheme has superiority and it will provide the foundation for theinclined surface core extremely extensive application in the future.
     6) The composition of intelligent motor control and protection appliance is introducedas well as the present situation of motor protecting technology. The intelligent motorprotecting technology and the development of intelligent motor control and protectionappliance are discussed intensively, and the intelligent motor protector product isdeveloped.
     7) The integrated electrical apparatus physical model of split-phase intelligent controland protection is proposed, which is based on fast electromagnetic repulsion mechanismand takes the contactor with the double-break and bridge contact structure system as themain body. This appliance model realizes the function and structure integration ofcontactor operation frequently, motor protection and short circuit fault protection.
     This dissertation highlights the calculation methods for electromotive repulsion incontactor system and fast repulsion driver, and carried on the simulation the repulsionforce under the short-circuit fault condition. Based on the short-circuit fault early detectioncombining current morphological wavelet with power supply voltage gradient, thedisplacement characteristics of movable contact affected by a combination of mechanicalforce and electromagnetic force under the conditions of different short-circuit current anddifferent parameters are simulated and analyzed. As a result, the mathematical models ofcontactor with short-circuit fault quick action and current limiting combined withmechanical and electromagnetic principle is established on the basis of the physical model.This mathematical models are based on short-circuit fault early detection technology of thecurrent morphological wavelet combined with power supply voltage gradient and fastelectromagnetic repulsion mechanism.
     The simulation research shows that the integrated electrical apparatus technology ofintelligent control and protection has excellent current limiting characteristic. It will set upthe theory foundation for developing integrated intelligent control and protection electricalapparatus with high performance.
引文
[1]尹天文,张扬,柴熠.智能电网为低压电器发展带来新机遇[J].低压电器,2010,(2):1-4,56.
    [2]陈德桂.智能电网与低压电器智能化的发展[J].低压电器,2010,(5):1-6,48.
    [3]胡学浩.智能电网—未来电网的发展态势[J].电网技术,2009,33(14):1-5.
    [4]刘颖异,陈德桂,纽春萍,季良.带电压反馈的智能接触器动态特性及触头弹跳的仿真与研究[J].中国电机工程学报,2007,27(30):20-25.
    [5]许志红,张培铭.智能交流接触器动态吸合过程研究[J].中国电机工程学报,2007,27(18):108-113.
    [6]许志红,张培铭.智能交流接触器零电流分断控制技术[J].电工电能新技术,2002,21(4):54-57.
    [7]许志红,张培铭.智能交流接触器全过程动态优化设计[J].中国电机工程学报,2005,26(3):14-16.
    [8]许志红.交流接触器智能化控制与设计技术的研究及实现:[博士学位论文].福建:福州大学,2005.
    [9]郑昕,许志红,张培铭.智能交流接触器自适应零电流分断的分析与实现[J].电工电能新技术,2005,24(3):77-80.
    [10]杨明发.基于定子绕组三维温度场模型的异步电动机保护技术的研究:[博士学位论文].福建:福州大学,2010.
    [11]连理枝.关于电动机保护型断路器的正确选用[J].电工技术杂志,2002,(6):53-56.
    [12]胡景泰,朱文灏,冯明哲,等.新型多功能集成电器的研究[J].电工技术杂志,2002,(9):41-43.
    [13]胡景泰,朱文灏,曾萍,等.可通信智能化控制与保护开关电器的发展与应用[J].低压电器,2004,(8):37-41.
    [14]曾萍,胡景泰.新型电器—多功能集成化的“KB0系列控制保护开关”[J].电气传动,2001(6):49-52.
    [15]陈德桂.控制与保护开关的进展[J].低压电器,2008,(9):1-4.
    [16]王丹利.SDMK1智能型控制与保护开关电器[J].低压电器,2006,(5):48-50,61.
    [17]陆俭国,苏秀苹.电器电磁系统可靠性优化设计理论与应用[M].北京:机械工业出版社,2003.
    [18]王健.基于Game理论的电器电磁机构多目标优化设计技术的研究:[硕士学位论文].天津:河北工业大学,2003.
    [19]陈丽安.低压保护电器的短路故障早期检测及实现的研究:[博士学位论文].福建:福州大学,2004.
    [20] Osama A. Mohammed, Dong C. Park, Fuat G. üler, et al.Design optimizationof electromagnetic devices using artificial neural networks[J].IEEE Trans.onMagnetics,1992,Vol.28,No.5:2805-2807.
    [21] Wu Qing,Shen Xueqin,Yang Qingxin,et al.Using Wavelet Neural Networks for theOptimal Design of Electromagnetic Devices[J].IEEE Trans.on Magnetics,1997,Vol.33,No.2:1928-1930.
    [22]沈雪勤,吴清.基于小波变换的前馈神经网络在电器优化中的应用[J].河北工业大学学报,1996,25(1):60-66.
    [23]康立山,谢云,尤矢勇,等.非数值并行算法(第一册):模拟退火算法[M].北京:科学出版社,1994.
    [24] JSimkin,C W Trowbridge.Optimizing electromagnetic devices combining direct searchmethods with simulated annealing[J].IEEE Trans.on Magnetics,1992,Vol.28,No.2:1545-1548.
    [25] Osama A. Mohammed, Riaz S. Merchant, Fuat G. üler.Utilizing Hopfield neuralnetworks and an improved simulated Annealing procedure for design optimization ofelectromagnetic devices[J].IEEE Trans.on Magnetics,1993,Vol.29,No.6:2404-2406.
    [26] Osama A. Mohammed, Riaz Merchant, Fuat G. üler.An intelligent system for designoptimization of electromagnetic devices[J].IEEE Trans.on Magnetics,1994,Vol.30,No.5:3633-3636.
    [27]孙建中,白凤仙,孙艳霞,等.智能化模拟退火算法及其在电磁装置优化设计中的应用[J].电工电能新技术,1997,16(4):20-23.
    [28]罗恒廉,李智华,费鸿俊.模拟退火法在电磁系统参数优化设计中的应用[J].电工技术杂志,1999,(3):34-36.
    [29]析斌健,汪镭,吴启迪.蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现[J].同济大学学报(自然科学版).2002,(1):82-87.
    [30] Janson S, Merkle D.On Enforced Convergence of ACO and its Implementation on theReconfigurable Mesh Architecture Using Size Reduction Tasks[J]. Jounrnal ofsupercomputing,2003,Vol.26,No.3:221-238.
    [31] Gutjahr W J. ACO algorithms with guaranteed conergence to the optimalsolution[J].Information Processing Letters,2002,Vol.82,No.3:145-153.
    [32]许志红,张培铭.基于蚁群算法的智能交流接触器优化设计[J].电工电能新技术,2005,24(3):9-12.
    [33] G.Fuat üler,Osama A.Mohammed,Chang-Seop Koh.Utilizing genetic algorithms forthe optimal design of electromagnetic devices[J].IEEE Trans.on Magnetics,1994,Vol.30,No.6:4296-4298.
    [34] Dong-Joon Sim,Hyun-Kyo Jung,Song-Yop Hahn,et al.Application of Vector OptimizationEmploying Modified Genetic Algorithm to Permanent Magnet Motor Design[J].IEEETrans.on Magnetics.1997,Vol.33,No.2:1888-1891.
    [35] Dong-Joon Sim,Dong-Hyeok Cho,Jang-Sung Chun,et al.Efficiency Optimization ofInterior Permanent Magnet Synchronous Motor using Genetic Algorithms[J].IEEETrans.on Magnetics.1997,Vol.33,No.2:1880-1883.
    [36]缪希仁,张培铭.多目标动态优化高级遗传算法及其在智能化电磁电器设计中的应用研究[J].电工技术学报,1999,14(4):27-30,20.
    [37]缪希仁,张培铭,许志红.基于软测量与遗传算法优化的电磁电器设计技术[J].电工电能新技术,2003,22(1):14-16,76.
    [38]缪希仁.电磁电器智能设计与测试技术的研究:[博士学位论文].福州:福州大学,2000.
    [39]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [40]李晓磊,路飞,田国会,等.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67.
    [41]李晓磊.一种新型的智能优化方法_人工鱼群算法:[博士学位论文].浙江:浙江大学,2008.
    [42]陈德为.基于图像测试与分析的智能交流接触器动态测试与设计技术:[博士学位论文].福建:福州大学,2009.
    [43] W.Tarczynski,T.Hejman,D.Smugala.Computer-controlled testing system forinvestigating the dynamic characteristics of contactors with A.C.electromagnetdrives[J].Measurement,2003,(33):313-323.
    [44] Masayoshi Wada,Hiroshi Yoshimoto,Yujiro Kitaide.Dynamic Analysis and Simulationof Electromagnetic Contactors with AC Solenoids[J].IEEE,2002,2745-2751.
    [45]许志红,张培铭.基于神经网络的智能交流接触器分断过程设计模型的建立[J].电工电能新技术,2005,24(4):46-49.
    [46]吴启迪,汪镭.反馈式神经网络智能控制[M].上海:上海科技教育出版社,2004.
    [47] John W McBride. An experimental investigation of contact bounce in medium dutycontacts[J].IEEE Trans.on Components,Hybrids and Manufacturing Technology,1991,Vol.14,No.2:319-326.
    [48] Yoshihiro Kawase,Osamu Miyatani,Tadashi Yamaguchi,et al.Numerical analysis ofdynamic characteristics of electromagnets using3-D finite element method with edgeelements[J].IEEE Trans on Magnetics,1994, Vol.30,No.5:,3248-3251.
    [49] Gollee R,Gerlach G.An FEM-Based method for analysis of the dynamic behavior ofAC contactors[J].IEEE Trans on Magnetics,2000,Vol.36,No.4:1337-1340.
    [50]费鸿俊,张冠生.电磁机构动态分析与计算[M].北京:机械工业出版社,1993.
    [51]方鸿发,廖原.交直流接触器及继电器电气参数微机测试装置的研制[J].机床电器,1996,(5):12-16.
    [52]杜基隆.接触器特征参数测试仪[J].机床电器,2002,(6):13-16.
    [53]缪希仁,张培铭.光机电电磁电器动态测试装置的研制[J].电工电能新技术,2001,(4):19-24.
    [54]陈德为,张培铭.采用高速摄像机的智能交流接触器控制及其测试装置的研制[J].电工电能新技术,2009,28(3):58-61,72.
    [55]王浩.四种智能算法的比较研究[J].火力与指挥控制,2008,33(增刊):71-75.
    [56]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [57] Tarczynski W., Hejman T.,Smugala D..Computer-controlled testing system forinvestigating the dynamic characteristics of contactors with A.C.electromagnetdrives,Measurement2003,No.33:313-323.
    [58] Wada Masayoshi,Yoshimoto Hiroshi,Kitaide Yujiro. Dynamic Analysis and Simulationof Electromagnetic Contactors with AC Solenoids,2002,IEEE,2745-2751.
    [59]鲍光海,张培铭.基于高速摄像机的电磁电器动态特性测试及其图像处理的研究[J].南昌大学学报(工科版),2009,31(3):376-380.
    [60]隋雪莉,梅园.基于中值滤波的指纹增强算法[J].现代电子技术,2009,32(10):107-109.
    [61]王艳侠,张有会,康振科,等.基于×字形窗口的自适应中值滤波算法[J].现代电子技术,2010,(10):90-92.
    [62]龚声蓉,刘纯平,王强,等.数字图像处理与分析[M].北京:清华大学出版社,2006.
    [63]李瑶,齐维毅,张浩华,等.一种微孔图像质心坐标的计算方法[J].沈阳师范大学学报(自然科学版),2009,27(3):316-318.
    [64]朱佳娜,徐晓秋,王燕军,等.基于图像处理的孔隙坐标的非接触测量系统研究[J].传感器与检测技术,2006,28(3):158-159.
    [65]周宁等.ANSYS_APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社,2007.
    [66]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [67]阎昭文等.ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006.
    [68]博弈创作室.APDL参数化在限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004.
    [69]陈德桂.低压电器智能化的新技术[J].低压电器,2008,(1):1-5,33.
    [70]李遒若,张媛.探讨电能质量事故电压跌落问题[J].山西电力,2008,(增刊1):70-73,80.
    [71] P. Andrada, G. Navarro, J.I. Perat. A new power supply system for AC contactorride-through [C].9th Electrical Power Quality and Utilization,2007:1-5.
    [72]赵文东,胡玉贵,倪传国.电压跌落的危害分析及控制措施J].移动电源与车辆,2007,(1):30-32.
    [73]张风平,哈新智,帅安文,等.晃电不停机的解决方案[J].化工自动化及仪表,2007,34(1):86~88.
    [74]邸书玉,孟亚男,李颖卓,等.抗晃电问题的研究[J].吉林化工学院学报,2002,19(1):40-41.
    [75]鲍光海,吴功祥,张培铭.带通信的智能型磁力起动器[J].江苏电器,2005,(2):5-8.
    [76]张颖.智能化可通信无弧电动机起动器无弧起动与通信功能的实现:[硕士学位论文].福建:福州大学,2006.
    [77]陈德桂.低压电器智能化发展的几个动态[J].低压电器,2007,(1):1-5.
    [78]王金贵.一种斜极面的电磁铁[J].机床电器2002,(5):11-16.
    [79]许志红,颜毅鹏,张培铭.基于神经网络的电动机绕组温升预测研究[J].电机与控制学报,2005,9(6):558-561.
    [80]淡淑恒,王季梅,闫静,等.采用电流变化率判断短路电流的新型限流熔断器[J].低压电器,1998,39(2):10-14.
    [81] J.C.Das.Limitations of fault-current limiters for expansion of electricaldistribution systems[J].IEEE Trans. on Industry Applications,1997,Vol.33,No.4:1073-1082.
    [82] Alex Y.Wu,Yuexin Yin.Fault-current limiter applications in medium and high voltagepower distribution systems[J]. IEEE Trans. on Industry Applications,1998, Vol.34,No.1:236-242.
    [83]章良栋,刘为,岑文辉,等.一种新型短路电流限制器的研究[J].电力系统自动化,1997,21(7):15-18.
    [84]陈丽安,张培铭,缪希仁.基于小波变换的低压系统短路故障的早期预测[J].电工技术学报,2003,18(2):91-94.
    [85] Chen Li’an, Zhang Peiming.Detection and Protection of Short Circuit Fault Basedon Morphology wavelet[J]. Proceedings of the2005IEEE/PES Transmission andDistribution Conference and Exhibition:Asia and Pacific,August14-18,2005,Dalian,China.
    [86] Timo Mutzel, Frank Berger, Michael Anheuser. New Algorithm for ElectronicShort-Circuit Detection[J]. Proceedings of the fifty-second ieee holm conference,2006:42-43.
    [87]郑昕.低压配电系统短路电流快速分断控制实现的研究:[硕士学位论文].福建:福州大学,2006.
    [88]陈晓宁.高压智能操作断路器的可视化仿真及神经网络控制[D]:[博士学位论文].西安:西安交通大学,2000.
    [89]张冠生.电器理论基础[M].北京:机械工业出版社,1997.
    [90] Kawase Y,Mori H,Ito S.3-D element analysis of electrodyanmic repulsion forcesin stationary electric contacts taking into account asymmetric shape. IEEETransactions on Magnetics,1997,Vol.33,No.2:1994~1999.
    [91]张敬菽,陈德桂等.低压断路器操作机构的动态仿真与优化设计[J].中国电机工程学报,2004,24(3):102~107
    [92]杨武,荣命哲,王小华等.考虑电动力效应的高压断路器动力学特性仿真分析[J].中国电机工程学报,2003,23(5):103~107
    [93]纽春萍,陈德桂,张敬菽,等.电动斥力作用下低压断路器分断特性的研究[J].电工技术学报,2005,20(7):34-38.
    [94]李兴文,陈德桂,刘洪武,等.触头间电动斥力的三维有限元分析[J].高压电器,2004,40(1):53-55.
    [95]孙海涛,陈德桂,刘庆江.低压断路器触头系统电动斥力的计算[J].低压电器,2002,(8):3-5,13.
    [96]张敬菽,陈德桂,刘洪武,等.计及电动斥力效应的低压塑壳断路器机构动力学仿真[J].西安交通大学学报,2004,38(4):343-347.
    [97]李兴文,陈德桂,李志鹏,等.考虑触头间电流收缩影响的低压塑壳断路器中电动斥力分析[J].电工技术学报,2004,19(10):1-5.
    [98]张凯,苏秀苹,王峰.限流式断路器触头的电动斥力分析[J].低压电器,2007,(3):13-16.
    [99]张凯.基于ANSYS有限元分析的电器触头系统电动力的研究:[硕士学位论文].河北:河北工业大学,2006.
    [100]李兴文,陈德桂,向洪岗,等.低压塑壳断路器中电动斥力的三维有限元非线性分析与实验研究[J].中国电机工程学报,2004,24(2):150-155.
    [101]李博,董恩源,李晓玮,等.基于ANSYS的高速斥力机构的分析与实验[J].电气开关,2006,(4):40-43.
    [102]王子建,何俊佳,尹小根,等.基于电磁斥力机构的10kV快速真空开关[J]电工技术学报,2009,14(11):68-75.
    [103]娄杰,李庆民,孙庆森,等.快速电磁推力机构的动态特性仿真与优化设计[J]到中国电机工程学报,2005,25(16):23-29.
    [104]李庆民,刘卫东,徐国政,等.高压快速转换开关的研制[J].高压电器,2003,39(6):6-7.
    [105]董恩源,李博,邹积岩,等.超高速斥力机构与永磁机构的实验性能对比分析[J].高压电器,2007,43(2):125-126.
    [106]李庆民,刘卫东,钱家骊.电磁推力机构的一种分析方法[J].电工技术学报,2004,19(2):20-24,40.
    [107] Ito S,Takato Y,Kawase Y,et al. Numerical analysis of electromagnetic forcesin low voltage AC circuit breakers using3-D finite element method taking intoaccount eddy currents. IEEE Transactions on Magnetics,1998,Vol.34,No.5:2597~2600.
    [108] Ansys Corporation.ANSYS电磁场分析指南.2000.
    [109] Ansys Corporation.ANSYS耦合场分析指南.2002.
    [110]曹鹏飞,金雪丰,任志刚.用于直流快速开关的电磁斥力机构仿真及优化设计[J].船电技术,2009,29(9):13-16.
    [111]李博.高速斥力机构及故障电流快速监控装置的研究:[硕士学位论文].辽宁:大连理工大学,2006.