管式质子导体固体氧化物燃料电池的制备及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)是一种不需要经过热循环过程将化学能直接转化成电能的高效、环保的能量转换系统,具有高能量转换效率、全固态结构、无污染和多种燃料气体广泛适应性等优点。SOFC的构型和电极微结构可以极大地影响SOFC系统的性能和可靠性;固体电解质及电极的性能也对SOFC将化石能源的能量直接转化为电能的效率有很大影响。本论文在第一章介绍了SOFC的基本原理,目前国内外的研发现状和发展趋势,着重综述了管式SOFC制备技术和质子导体材料问题。从SOFC产业化角度,探索研制了在中低温下适宜YSZ基的管式SOFC(第三章);发展了适于规模化生产的低成本制备技术——浆料浸渍法,成功实现了YSZ及质子导体电解质薄膜化制备(第三章,第五章),有效的改善了质子导体材料的性质(第四章);特别是采用浸渍成型-共烧结方法制备了基于BZCYYb电解质的质子导体SOFC,在中温下取得了目前国际文献报道的最高功率输出性能(第五章)。论文所取得的主要成果和创新点可归纳如下:
     1.采用相转换(Phase inversion)方法制备了阳极支撑的Ni-YSZ|YSZ|LSM-SDC管式SOFC,较好的控制了电池的微观结构;对浸渍工艺与阳极厚度的线性关系,造孔剂含量与阳极孔隙率及电导率的关系进行了系统研究;对全电池的电化学性能在实际燃料电池的工作条件下进行了评估。以3 vo1%湿度的氢气为燃料,空气为氧化剂,在800,750,700,650,600,550和500℃下,最大输出功率密度为0.752,0.646,0.522,0.395,0.277,0.180和0.105 W cm-2;欧姆电阻为0.22,0.24,0.27,0.33,0.40,0.84和1.76Ωcm2,界面极化电阻为0.37,0.51,0.70,0.92,1.14,1.86和3.34Ωcm2(均在电池在开路下测得)。高的输出功率和低的欧姆电阻及界面极化电阻表明相转换方法非常适于YSZ基管式SOFC的制备,这种设备简单的工艺在进一步降低SOFC的造价方面也具有实际应用的潜力。
     2.采用固相反应(Solid State Reaction)方法制备了BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)质子导体材料,并对氧化铈(CeO2)和氧化锆(ZrO2)颗粒尺度、烧结次数、烧结温度等对BZCYYb材料的性质进行了系统研究。X射线衍射(XRD)表明微米尺度氧化铈和纳米尺度氧化锆制备的BZCYYb质子导体材料具有典型的钙钛矿结构,拉曼(Raman)光谱表明BZCYYb质子导体材料为正交晶体结构;BZCYYb质子导体材料经机械压片,在1500℃烧结处理5小时之后具有致密的微结构,扫描电子显微镜(SEM)表明只有封闭的针孔存在;阿基米德方法(Archimedes method)表明致密度为96.6%,收缩率为24.0%;四探针法测试表明BZCYYb质子导体材料具有很高的质子电导率,并且,质子电导率与测试温度具有很好的线性关系。X射线衍射及拉曼光谱表明BZCYYb质子导体材料在1100℃烧结2次后,可以使固相反应更加完全,BZCYYb材料的质子电导率相比在1100℃烧结1次的材料的质子电导率提高了~15%。BZCYYb质子导体材料的制备温度以1100℃最佳,在1000℃制备过程中BaCO3未反应完全,在1200℃制备后有过烧结现象,在1100℃制备的BZCYYb材料质子电导率比制备温度为1000和1200℃的提高~30%和~35%。
     3.采用浸渍成型(Dip Coating)方法制备了Ni-BZCYYb|BZCYYb管式SOFC,分别采用纯氧离子导体材料、氧离子和质子导体混合材料为阴极测试了电池性能,电池在中温区域的输出功率密度都为国际文献报道最高值,欧姆电阻及界面极化电阻都为国际文献报道最小值,在中低温高功率管式SOFC领域具有很好的实际应用前景。开路电压接近理论值能斯特方程计算值,表明BZCYYb电解质非常致密,没有任何裂纹、缺陷和开孔;非常低的欧姆电阻,表明BZCYYb电解质薄膜厚度在满足致密度的同时,有效地提高了质子和氧离子传导;很低的界面极化电阻,表明BZCYYb电解质薄膜和多孔电极之间的结合非常好,没有明显的分层、裂纹和缺陷,从而有效地增加了三相界面(Three Phase Boundaries, TPBs)区域;非常高的输出功率密度,表明电池在中温高功率领域具有很好的实际应用前景;纯氧离子导体阴极和氧离子和质子导体混合阴极的电池,阻抗谱及输出功率密度相似,表明阴极材料组成不是氧离子和质子在电池中传输的的主要限制条件。
Solid oxide fuel cell (SOFC) is an efficient, green energy conversion device. It can convert the fossil energy directly into electrical power without any thermal cycling. SOFC has attraeted wide spread attention due to its high energy conversion efficiency, solid-state structure, clean pollution-free, and awide range of adaptability of fuel gases, etc. The efficiency of SOFC convert chemical energy to electrical energy mainly depends on the electrolyte and electrode performance. The design of cell architecture and electrode microstructure may greatly influence the performance and reliability of SOFC systems. This thesis focuses on fabrieation, improvement and characterization of tubular SOFC. The optimization of electrolyte and electrode are both studied. In the first chapter, this paper introduces the fundamental principles of SOFC, the present researeh status and developing trend. On the base of analyzing the development of SOFC, we fabrieate and investigate a new process forYSZ-based cells for intermediate temperature application (in Chapter 3); developed a cost effeetive and mass produetion proeess to fabrieate YSZ and high temperature proton Conduetor membranes (in Chapter 3 and Chapter 5); effectively improved the nature of the proton conductor material (Chapter 4); particularly, the proton conductors were prepared by sintering of SOFC membrane, the maximum power output performance were achieved at the intermediate temperature of the international literature of (in Chapter 5); and new proton conducting materials have been studied (in Chapter 6). The main achievements and innovations in this paper are summarized as follows:
     1. We reported our findings in fabrication of anode-supported SOFCs with well controlled microstructures using a simple phase-inversion with dip-coating process. The effect of dip-coating on anode support thickness and the amount of pore former on the porosity and electrical conductivity of the anode supports were systematically studied. Furthermore, anode-supported full cells were fabricated and their electrochemical performances were evaluated under practical fuel cell operating conditions. When the pore former was increased to 6 wt%, the porosity of the anode was increased to~46.9%, while the conductivity was reduced to~578-462 S cm-1 in the temperature range studied. The electrochemical performance was evaluated in a single cell with a configuration of~240μm Ni-YSZ|10μ.m YSZ|20μm LSM-SDC. Peak power density reached 752,646,522,395,277,180 and 277 mW cm-2 at 800, 750,700,650,600,550 and 500℃, respectively, when hydrogen was used as fuel and ambient air as oxidant, which reached to the industry's level of Acumenirics Corporation. The Ohmic resistance (RΩ) was 0.22,0.24,0.27,0.33,0.40,0.84 and 1.76 Qcm2, while the interfacial polarization resistance (Rp) was 0.37,0.51,0.27, 0.70,0.92,1.14 and 3.34Ωm2, respectively, at 800,750,700,650,600,550 and 500℃. The high performance and low resistance of the cells indicate that the tubular SOFC has a good potential for practical applications.
     2. The BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb) proton conductor materials were prepared by solid-state reaction method, showing very high proton conductivity under 750℃, indicating the application of the high-power output SOFC at low temperature. The particle sizes of ceria and zirconia, sintering times and sintering temperature on the BZCYYb performance have been systematically studied. X-ray diffraction (XRD) show that the micrometer scale and nanoscale cerium oxide zirconia prepared BZCYYb proton conductor material has a typical perovskite structure; Raman spectra show that BZCYYb proton conductor material orthogonal crystal structure; BZCYYb proton conductor pellets were dense by mechanical pressure and sintered at 1500℃for 5 hours; scanning electron microscopy (SEM) show that there is only closed pinhole in the pellets; Archimedes method showed that the density was 96.6%, and shrinkage ratio was 24.0%; four-probe method showed that the BZCYYb proton conductor has a high proton conductivity. In addition, the proton conductivity which measured under different atmosphere has a good linear relationship with the test temperatures. XRD and Raman spectroscopy showed that BZCYYb proton conductor was pure due to complete solid state reaction when sintered at 1100℃for two times; the proton conductivity of BZCYYb which sintered at 1100℃for two times were increased~15% than those which sintered for once. The best sinter temperatue is 1100℃for BZCYYb, the reaction of BaCO3 was not completely at 1000℃; the over sintering phenomena was exist at 1200℃; the proton conductivities of BZCYYb which sintered at 1100℃were increased~30% and~35% than those which the sinter temperature was 1000 and 1200℃.
     3. We reported a simple and cost-effective process for fabrication of tubular SOFCs with different cathodes, achieving much higher performance than those previously reported. The combination of dip coating and co-firing has produced tubular proton-conducting SOFCs with unique microstructure and superior cell performance. The precursors of tubular cells were with the configuration of~200nm Ni-BZCYYb|~10 nmBZCYYb. The high OCV values indicate that the gas leakage through the electrolyte was negligible and the prepared electrolyte is very dense without any cracks or pinholes. It is expected that optimization of the anode-electrolyte interface microstructure will decrease the anode polarization by increasing the three phase boundaries (TPBs) length. The high performances indicating that the tubular SOFCs based on proton and oxide ion mixed conductor electrolyte have a great potential for practical applications. The impedance spectra and output power density of the tubular SOFC which brushed with pure oxygen ion conductor cathode and oxygen ions proton conductor cathode were similar, demonstrating that the cathode material composition is not the main constraints for oxygen ions and protons transmission.
引文
[1]Z.R.Wang, J.Q.Qian, S.R.Wang et al. Improvement of Anode-Supported Solid Oxide Fuel Cells. Solid State Ionics 2008,(179):27-32.
    [2]N.Q.Minh, T.Takahashi. Science and Technology of Ceramics Fuel Cells. Elsevier publishing,Amsterdam,The Netherlands.1995:283-296.
    [3]S.C.Singhal, H.Iwahara.Tubular Solid Oxide Fuel Cells.Proceedings of the Third International Symposium on Solid Oxide Fuel Cells. The Electrochemical Society. 1993:665-677.
    [4]A.B.Stambouli, E.Traversa.Fuel Cell, an Alternative to Standard Sources of Energy. Renewable and Sustainable Energy Reviews.2002,6:297-306.
    [5]S.P.Badwal, K.Forgerin. The 2nd International Fuel Cell Conference. Kobe, Japan.1996:221~224.
    [6]X.Guo, R.Waser. Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors:Acceptorr-Doped Zirconia and Ceria.Progress in Materials Science. 2006,51(2):151~210
    [7]Badwal S.P.S., Ciacchi F T, Milosevic D.S, Candia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation. Solid State Ionics,2000,136:91-99.
    [8]Chen K.F., Tian Y.T., Lu Z., Ai N., Huang X.Q., Su W.H. Behavior of 3 mol%Yttria-Stabilized Tetragonal Zirconia Polycrystal Film Prepared by Slurry Spin Coating. Journal of Power Sources,2009,186:128-132.
    [9]Arai H, Kunisaki T, Shimizu Y, Seiyama T. Electrical Properties of Calcia-Doped Ceria with Oxygen Ion Conduction. Solid State Ionics,1986,20:241-248.
    [10]奥海尔.燃料电池基础.电子工业出版社.2007:1-4.
    [11]Guan X F,Zhou H P,Wang Y,et al.Preparation and Properties of Gd3+ and Y3+ Co-Doped Ceria-Based Electrolytes for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds,2008,464(1-2):310-316.
    [12]Prasad D.H., Son J.W., Kim B.K. et al. Synthesis of Nano-Crystalline Ce0.9Gd0.1O1.95. Electrolyte by Novel Sol-Gel Thermolysis Process for IT-SOFCs. Journal of the European Ceramic Society,2008,28(16):3107-3112.
    [13]H.Yahiro, Y.Baba, K.Eguchi et al. High Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte. Journal of the Electrochemical Society. (135):2077~2080.
    [14]Y.D. Zhen. A.I.Y Tok, S.P. Jiang et al. Fabrication and Performance of Gadolinia-Doped Ceria-Based Intermediate-Temperature Solid Oxide Fuel Cells. Journal of Power Sources.2008,178(1):69~74.
    [15]H.Itoh, Y.Hiei, T.Yamamoto et al. Optimized Mixture Ration in YSZ-Supported Ni-YSZ Anode Material for SOFC. Electrochemica Society Proceedings.2001,16(7):751~757.
    [16]Muralidharan P, Jo S H,Kim D K. Electrical Conductivity of Submicrometer Gadolinia-Doped Ceria Sintered at 1000 degrees C Using Precipitation-Synthesized Nanocrystalline Powders. Journal of the American Ceramic Society, 2008,91(10):3267-3274.
    [18]Huang K Q, Feng M, Goodenough J B. Synthesis and Electrical Properties of Dense Ce0.9Cd0.1O1.95 Ceramics.Journal of the American Ceramic Society, 1998,81(2):357-362.
    [19]Zhang X G, Deces-Petit C, Yick S, Robertson M, Kesler 0, Maric R, Ghosh D. A Study on Sintering aids for Sm0.2Ce0.8O1.9 Electrolyte. Journal of Power Sources, 2006,162(1):480-485.
    [20]Im J M, You H J, Yoon Y S, Shin D W. Synthesi Nano-crystalline Gd0.1Ce0.9O2-x for IT-SOFC by Aerosol Flame Deposition. Ceramics International, 2008,34(4):877-881.
    [21]毛宗强.燃料电池.化学工业出版社.2005:11~19.
    [22]S.C.Singhal, Science and Technology of Solid Oxide Fuel Cells. Materials Research Society Bulletin,2000,3(25):16~21.
    [23]Tschope A. Interface defect chemistry and effective conductivity in polycrystalline cerium oxide. Journal of Electroceramics.2005,14:5-23.
    [24]C.A.Forbes. Status of Major Tubular Solid Oxide Fuel Cell Demonstrations, PowerGen International.Las Vegas, USA.2001,12:11~13.
    [25]S.C.Singhal. Advance in Solid Oxide Fuel Cell Technology, Solid State Ionics, 2000,(135):305~313.
    [26]T.Suzuki, T.Yamaguchi, Y.Fujishiro,et al. Development of Cube-Type SOFC Stacks Using Anode-Supported Tubular Cells. Journal of Power Sources.2008, (175):68~74.
    [27]Y.Liu, S.I.Hashimoto, H.Nishino,et al. Fabrication and Characterization of Micro-Tubular Cathode-Supported SOFC for Intermediate Temperature Operation. Journal of Power Sources.2007,(174):95~102.
    [28]T.Yamaguchi, S.Shimuzu, T.Suzuki,et al. Fabrication and Evaluation of Cathode-Supported Small Scale SOFCs. Materials Letters.2008,(62):1518~1520.
    [29]K.Yamaji, H.Kishimoto, Y.Xiong,et al. Performance of Anode-Supported SOFCs Fabricated with EPD Techniques. Solid State Ionics.2004,(175) 165~169.
    [30]S.D.Souza, S J.Visco, L.C.D. Jonghe. Thin Film Solid Oxide Fuel Cell with High Performance at Low-temperature. Solid State Ionics.1997,98(1-2):57~61.
    [31]于兴文,黄学杰,陈立泉.固体氧化物燃料电池研究进展.电池,2002,32(2):110-112.
    [32]L.Zhou, M.J.Cheng, B.L.Yi, et al. Performance of an Anode-Supporte Tubular Solid Oxide Fuel Cell(SOFC)Under Pressurized Conditions. Electrochimica Acta. 2008,(53):5195~5198.
    [33]D.H.Dong, M.F.Liu, K.Xie,et al. Improvement of Cathode-Electrolyte Interfaces of tubular solid oxide fuel cells by Fabricating Dense YSZ Electrolyte Membranes with Indented Surfaces. Journal of Power Sources.2008, (175):201-205.
    [34]D.H.Dong, J.F.Gao, X.Q.Liu, et al. Fabrication of Tubular NiO/YSZ Anode-Support of Solid Oxide Fuel Cell by Gelcasting. Journal of Power Sources. 2007,(165):217~223.
    [35]R.N.Basu, C.A.Randall, M.J.Mayo. Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition. Journal of the American Ceramic Society.2001,(84):33~40.
    [36]D.H.Dong, M.F.Liu, Y.C.Dong,et al. Improvement of the Performances of Tubular Solid Oxide Fuel Cells by Optimizing Co-Sintering Temperature of the NiO/YSZ Anode-YSZ Electrolyte Double Layers. Journal of Power Sources. 2007,(171):495~498.
    [37]傅献彩,沈文霞,姚天扬.物理化学.高等教育出版社,1990:152~300
    [38]Kharton V.V., Marques F.M.B., Atkinson A. Transport properties of solid oxide eleetrolyte ceramics:a brief review. Solid State Ionies,2004,174:135~149
    [39]林维明,马紫峰.燃料电池系统.北京:化学工业出版社,1996.
    [40]T.Alston, K.Kendall, M.Palin,et al. A 1000-cell SOFC Reactor for Domestic Cogeneration. Journal of Power Sources,1998,71(1-2):271~274.
    [41]H.Takeuchi, A.Ueno, M.Kuroishi, et al. Development of Tubular Type SOFC Module.Proceedings of the 8th International Symposium Solid Oxide Fuel Cells (SOFC Ⅷ). The Electrochemical Society Proceedings, Pennington,NJ,2003:70~77.
    [42]S.P.S.Badwal, K.Foger. Materials for Solid Oxide Fuel Cell. Materials Forum Master.1997,(21):187~224.
    [43]Jue, J.F., J. Jusko, and A.V Virkar, Electrochemical Vapor-Deposition of CeO2-Kinetics of Deposition of a Composite,2-Layer Electrolyte. Journal of the Electrochemical Society,1992.139(9):p.2458-2465.
    [44]Gerhard-Anderson R,Nowick A S.Ionic Conductivity of CeO2 with Trivalent Dopants of Different Ionic Radii. Solid State Ionics,1981,5:547-550.
    [45]Kilner J A.Fast Anion Transport in Solids. Solid State Ionics,1983,8:201-207.
    [46]J.H.Kim, GM.Choi. Mixed Ionic and Electronic Conductivity of (ZrO2)0.92(Y2O3)0.08. Solid State Ionics.2000,130(3~4):157~168.
    [47]M.Mogensen, N.M.Sammers, GA.Tompsett. Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria. Solid State Ionics.2000, 129(1~4):63~94.
    [48]T.Kudo, H.Obayashi. Mixed Electrical Conductuion in the Fluorite-Type Ce1-xGdxO2-x/2. Journal of the Electrochemical Society.1976,123(3):415~419
    [49]M.Godickemeier, K.Sasaki, L.J.Gauckler. Electrochemical Characteristics of Cathodes in Solid Oxide Fuel Cells Based on Ceria Electrolytes. Journal of the Electrochemical Society.1997,144(5):1635~1646.
    [50]M.Godickemeier, L.J.Gauckler. Engineering of Solid Oxide Fuel Cells with Ceria-Based Electrolytes. Journal of the Electrochemical Society.1998,145(2):
    [51]RinguedeA, Bronine D, Frade J R.Reaction Mechanism of Ni Pattern Anodes for Solid Oxide Fuel Cells. Solid State Ionics,2002,146:219-224.
    [52]Gunji A, Wen C, Otomo J, Kobayashi T,et al. Carbon Deposition Behaviour on Ni-ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells. Journal of Power Sources,2004,131:285-289.
    [53]Zhang X G, Ohara S, Okawa H, et al. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte with Fe2O3, Co2O3, and NiO Anode Materials. Solid State Ionics, 2001,139:145-152.
    [54]Craciun R, Park S, Gorte R J, et al. Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells.Journal of the Electrochemical Society, 1999,146:4019-4022.
    [55]Park S, Vohs J M, Gorte R J.Direct Oxidation of Hydrocarbons in a Solid oxide Fuel Cell. Nature,2000,404:265-267.
    [56]Suzuki M, Sasaki H,Otoshi S. Development of Ru/ZrO2 SOFC Anode. The Second International Symposium on Solid Oxide Fuel Cells, Athens, Greece,1991:585-591.
    [57]Jeffrey W Fergus. Oxide Anode Materials for Solid Oxide Fuel Cells. Solid State Ionics,2006,177:1529-1541.
    [58]Jiang S P. Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells:A Review. Journal of Materials Science, 2008,43(21):6799-6833.
    [59]C.Milliken, S.Guruswamy, A.Khandkar. Evaluation of Ceria Electrolyte in Solid Oxide Fuel Cells Electric Power Generation, Journal of the Electrochemical Society. 1999,146(3):872~882
    [60]Azad A M, Larose S, Akbar S A. Bismuth Oxide-Based Solid Electrolytes for Fuel Cells. Journal of Materials Science,1994,29(16):4135-4151.
    [61]Sammes N M, Tompsett G A, Nafe H, Aldinger F. Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity.Journal of the European Ceramic Society,1999,19(10):1801-1826.
    [62]Takahashi T, Iwahara H, Esaka T. High Oxide Ion Conduction in Sintered Oxide of Syetem Bi2O3-M2O5. Journal of the Electrochemical Society, 1977,124(10):1563-1569.
    [63]刘江,陈广玉,何岚鹰,黄向东,苏文辉.带有YSZ保护膜的Bi2O3基固体电解质燃料电池的制备及其性能分析.电源技术,1995,19(1):9-12.
    [64]Feng M, Goodenough J B. Improved Oxide Ion Electrolytes. Solid State Ionics IV,1994 Nov 28-Dec 01, BOSTON M A.,1994,369:333-342.
    [65]Georges S, Salaun M. Redox Cycling and Metastability of La2Mo2O9-Based Ceramics. Solid State Ionics,2008,178(37-38):1898-1906.
    [66]Huang J B, Mao Z Q, Yang L Z,et al. SDC-Carbonate Composite Electrolytes for Low-Temperature SOFCs. Electrochemical and Solid State Letters, 2005,8(9):A437-A440.
    [67]Wang Z W, Cheng M J, Dong Y L, Zhang M, Zhang H M. Investigation of LSM1.1-ScSZ Composite Cathodes for Anode-Supported Solid Oxide Fuel Cells. Solid State Ionics,176 (2005)2555-2561.
    [68]Zhang J D, Ji Y, Gao H B, et al. Composite Cathode La0.6Sr0.4Co0.2Fe0.8O3-δ-Sm0.1Ce0.9O1.95-δ Ag for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds,2005,395(1-2):322-325.
    [69]Larramendi R, Ortiz N, Lopez R, Larramendi J I, Rojo T. Structure and Impedance Spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3-δ Thin Films Grown by Pulsed Laser Deposition. Journal of Power Sources,2007,171:747-753.
    [70]Chang C L, Hsu C S, Hwang B H. Unique Porous Thick Sm0.5Sr0.5CoO3 Solid Oxide Fuel Cell Cathode Films Prepared by Spray Pyrolysis. Journal of Power Sources,2008,179(2):734-738.
    [71]Yan A Y, Yang M, Hou Z F,e t al. Investigation of Ba1-xSrxCo0.8Fe0.2O3-δ as Cathodes for Low-Temperature Solid Oxide Fuel Cells Both in the Absence and Presence of CO2. Journal of Power Sources,2008,185(1):76-84.
    [72]Horita T, Ishikawa M, Yamaji K,et al. Cation Diffusion in (La,Ca)CrO3 Perovskite by SIMS. Solid State Ionics,1998,108(1-4):383-390.
    [73]Smeacetto F, Salvo M, Ferraris A,et al. Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supportbd-Electrolyte in Planar SOFCs. Journal of the European Ceramic Society,2008,28(13):2521-2527.
    [74]D.Sarantaridis, A.Atkinson. Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes:A Review. Fuel Cells.2007,(3):246-258.
    [75]贺天民,裴力,吕喆,等.管式YSZ电解质的制备及其在固体氧化物燃料电池中的应用.功能材料.2001,32(1):55~56.
    [76]Nowick A S, Du Y, Liang K C. Solid State Ionics,1999,125:303-311
    [77]Matsushita E, Tanase A. Solid State Ionics,1997,97:45-50
    [78]Kreuer KD. Chem. Mater.,1996,8:610-641
    [79]Lorenzo Malavasi, Craig A. J. Fisher, M. Saiful Islam. Oxide-ion and proton conducting electrolyte materials for clean energy applications:structural and mechanistic features. Chem. Soc. Rev.,2010,39,4370-4387.
    [80]Emiliana Fabbri, Daniele Pergolesi, Enrico Traversa. Electrode materials:a challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater.11(2010)044301.
    [1]Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 2009;326:126-9.
    [2]] Liu MF, Gao JF, Dong DH, Liu XQ, Meng GY. Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. Int J Hydrogen Energy 2010;35:10489-94.
    [3]S.C.Singhal. Advance in Solid Oxide Fuel Cell Technology, Solid State Ionics, 2000,(135):305-313.
    [4]奥海尔.燃料电池基础.电子工业出版社.2007:1-4.
    [5]毛宗强.燃料电池.化学工业出版社.2005:11~19.
    [6]于兴文,黄学杰,陈立泉.固体氧化物燃料电池研究进展.电池,2002,32(4):302-306.
    [7]Subhash C.Singhal, Kevin Kendall主编.韩敏芳,蒋先锋译.高温固体氧化物燃料电池——原理、设计和应用.科学出版社.2006:52-55.
    [8]YD. Zhen. A.I.Y. Tok, S.P. Jiang et al. Fabrication and Performance of Gadolinia-Doped Ceria-Based Intermediate-Temperature Solid Oxide Fuel Cells. Journal of Power Sources.2008,178(1):69~74.
    [9]Zhang X G, Deces-Petit C, Yick S, Robertson M, Kesler O, Maric R, Ghosh D. A Study on Sintering aids for Sm0.2Ce0.8O1.9 Electrolyte. Journal of Power Sources, 2006,162(1):480-485.
    [10]S.D.Souza, S.J.Visco, L.C.D. Jonghe. Thin Film Solid Oxide Fuel Cell with High Performance at Low-temperature. Solid State Ionics.1997,98(1-2):57~61.
    [1]Wang YZ, Yoshiba F, Kawase M, Watanabe T. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC. Int J Hydrogen Energy 2009;34:3885-93.
    [2]Zhan ZL, Barnett SA. An octane-fueled solid oxide fuel cell. Science 2005;308:844-7.
    [3]Basu RN, Sharma AD, Dutta A, Mukhopadhyay J. Processing of high-performance anode-supported planar solid oxide fuel cell. Int J Hydrogen Energy 2008;33:5748-54.
    [4]Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature 2001;414:345-52.
    [5]Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 2009;326:126-9.
    [6]Leng YJ, Chan SH, Khor KA, Jiang SP. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int J Hydrogen Energy 2004;29:1025-33.
    [7]Zhang SQ, Bi L, Zhang L, Yang CL, Wang HQ, Liu W. Fabrication of cathode supported solid oxide fuel cell by multi-layer tape casting and co-firing method. Int J Hydrogen Energy 2009;34:7789-94.
    [8]Zuo CD, Zha S.W, Liu ML, Hatano M, Uchiyama M. Ba(Zr0.iCe0.7Y0.2)O3-δ as an electrolyte for Llow-temperature solid-oxide fuel cells. Adv. Mater.2006;18:3318-20.
    [9]Yang L, Zuo CD, Wang SZ, Cheng Z, Liu ML. A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv Mater 2008;20:3280-3.
    [10]Fu XZ, Melnik J, Low QX, Luo JL, Chuang KT, Sanger AR, Yang QM. Surface modified Ni foam as current collector for syngas solid oxide fuel cells with perovskite anode catalyst Int J Hydrogen Energy 2010;35:11180-7.
    [11]Bai YH, Liu J, Wang CL. Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique. Int J Hydrogen Energy 2009;34:7311-5.
    [12]Barzi YM, Ghassemi M, Hamedi MH. Numerical analysis of start-up operation of a tubular solid oxide fuel cell. Int J Hydrogen Energy 2009;34:2015-25.
    [13]Li CX, Li CJ, Guo LJ. Performance of a Ni/Al2O3 cermet-supported tubular solid oxide fuel cell operating with biomass-based syngas through supercritical water. Int J Hydrogen Energy 2010;35:2904-8.
    [14]Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Impact of anode microstructure on solid oxide fuel cells. Science 2009;325:852-5.
    [15]Kim SD, Hyun SH, Moon J, Kim JH, Song RH. Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. J Power Sources 2005; 139:67-72.
    [16]Yang CL, Li W, Zhang SQ, Bi L, Peng RR, Chen CS, Liu W. Fabrication and characterization of an anode-supported hollow fiber SOFC. J Power Sources
    2009;187:90-2. [17] Yang CL, Jin C, Chen FL. Micro-tubular solid oxide fuel cells fabricated by phase-inversion method. Electrochem Commun 2010;12:657-60.
    [18]Yang NT, Tan XY, Ma ZF. A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. J Power Sources 2008;183:14-9.
    [19]Akhtar N, Decent SP, Kendall K. A parametric analysis of a micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC), Int J Hydrogen Energy (2010), doi:10.1016/j.ijhydene.2010.10.032
    [20]Suzuki T, Funahashi Y, Hasan Z, Yamaguchi T, Fujishiro Y, Awano M. Fabrication of needle-type micro SOFCs for micro power devices. Electrochem Commun 2008;10:1563-6.
    [21]Suzuki T, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J Power Sources 2006; 160:73-7.
    [22]Tan X Y,Tan S P,Teo W K,et al.Polyvinylidene Fluoride(PVDF)Hollow Fibre Membranes for Ammonia Removal From Water. Journal of Membrane Science,2006,271(1-2):59-68.
    [23]Qin J J,Chung T S.Effect of Dope Flow Rate on the Morphology,Separation Performance, Thermal and Mechanical Properties of Ultrafiltration Hollow Fibre Membranes. Journal of Membrane Science,1999,157(1):35-51.
    [24]Blanco J F,Sublet J,Nguyen Q T,Schaetze P.Formation and Morphology Studies of Different Polysulfones-Based Membranes Made by Wet Phase Inversion Process. Journal of Membrane Science,2006,283:27-37.
    [25]Tan X Y,Liu S M,Li K.Preparation and Characterization of Inorganic Hollow Fiber Membranes. Journal of Membrane Science,2001,188(1):87-95.
    [26]Liu L H,Tan X Y,Liu S M.Yttria Stabilized Zirconia Hollow Fiber Membranes. Journal of the American Ceramic Society,2006,89(3):1156-1159.
    [27]Liu Y T,Tan X Y,Li K.SrCe0.95Yb0.05O3-α(SCYb)Hollow Fibre Membrane:Preparation, Characterization and Performance. Journal of Membrane Science,2006,283(1-2):380-385.
    [28]P.Lenormand,D.Caravaca,C.Laberty-Robert,et al.Thick Films of YSZ Electrolyte by Dip-Coating Process. Journal of the European Ceramic Society. 2005,(25):2643~2646.
    [29]F.Mauvy,P.Lenormand,C.Lalanne,et al.Electrochemical Characterization of YSZ Thick Films Deposited by Dip-Coating Progress. Journal of Power Sources. 2007,(171)783~788.
    [30]BVDerjaguinandLDLandau, A.RU.,14(1941).
    [31]E.J.W.Verwey, J.T.h.G.O., TheoryoftheStabilityofLyoPhobieColloids, Elsevier, Amsterdam,1948.
    [32]Liu MF, Gao JF, Dong DH, Liu XQ, Meng GY. Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. Int J Hydrogen Energy 2010;35:10489-94.
    [33]Liu SM, Gavalas GR. Oxygen selective ceramic hollow fiber membranes. J Membr Sci 2005;246:103-8.
    [34]Jin C, Yang CH, Chen FL. Effects on microstructure of NiO-YSZ anode support fabricated by phase-inversion method. J Membr Sci 2010:363:250-5.
    [35]Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of microtubular SOFCs with multilayered electrolyte. Electrochem Solid St 2008; 11:B87-90.
    [36]S. Liu, M. Liu, Z. Shao, J.C. Diniz da Costa, Z.P. Xu, From chelating precursor to perovskite oxides and hollowfibermembranes, J. Am. Ceram. Soc.2007;90:84-91.
    [37]A. Kleinert,A. Feldhoff, T. Schiestel, J. Caro,Novel hollowfibremembrane reactor for the partial oxidation of methane, Catal. Today 2006; 118:44-51.
    [1]O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, Y. Nakamura, Electrical conductivity of stabilized zirconia with ytterbia and scandia, Solid State Ionics 79 (1995) 137-142.
    [2]Iwahara,H., T.Esaka,H.Uehid, N.Maeda. Proton conduction in sintered oxides and its application to steam electrolrsis for hydrogen production. Solid State Ionies, 1981.3-4:P.359-363.
    [3]A. Smirnova, G. Crosbie, E. Ellwood, Application of Fourier based transforms to impedance spectra of small diameter tubular solid oxide fuel cells, JES 148 (2001) 610-615.
    [4]M. Okamoto, Y. Akimune, K. Furuya, M. Hatano, M. Yamanaka, M. Uchiyama, Phase transition and electrical conductivity of scandiastabilized zirconia prepared by spark plasma sintering process, Solid State Ionics 176 (7/8) (2005) 675-680.
    [5]O. Yamamoto, Solid oxide fuel cells:fundamental aspects and prospects, Electrochim. Acta 45 (15/16) (2000) 2423-2435.
    [6]S.J. Skinner, J.A. Kilner, Oxygen ion conductors, Mater. Today 6 (3) (2003) 30-37.
    [7]M. Hirano, T. Oda, K. Ukai, Y. Mizutani, Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on stability of crystal phase and electrolyte properties, Solid State Ionics 158 (2003) 215-223.
    [8]Tanigushi,N., K.Hatoh, J. Niikura., T.Gamo. Proton conduetive properties of the cubic phase of BaTiO3 and BaTiO3. Solid State Ionies,1997.97(1-4):P.39-44.
    [9]Y. Mizutani, M. Tamura, M. Kawai, O. Yamamoto, Development of highperformance electrolyte in SOFC, Solid State Ionics 72 (1994) 271-275.
    [10]D. Lee, I. Lee, Y. Jeon, R. Song, Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC, Solid State Ionics 176 (11/12) (2005) 1021-1025.
    [11]C.Varanasi, C. Juneja, C. Chen, B.Kumar, Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia, J. Power Sources 147 (1/2) (2005) 128-135.
    [12]M. Hirano, T. Oda, K. Ukai, Y. Mizutani, Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties, Solid State Ionics 158 (2003) 215-223.
    [13]C. Haering, A. Roosen, H. Schichl, M. Schn"oller, Degradation of the electrical conductivity in stabilised zirconia systems. Part Ⅰ. Yttria-stabilized zirconia, Solid State Ionics 176 (3/4) (2005) 253-259.
    [14]C. Haering, A. Roosen, H. Schichl, M. Schn"oller, Degradation of the electrical conductivity in stabilised zirconia system. Part Ⅱ. Scandia-stabilized zirconia, Solid State Ionics 176 (3/4) (2005) 261-268.
    [1]Z.L. Zhan, S.A. Barnett, Science 308 (2005) 844.
    [2]T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Science 325(2009)852.
    [3]L. Yang, S.D. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Science 326 (2009) 126.
    [4]C.D. Zuo, S.W. Zha, M.L. Liu, M. Hatano, M. Uchiyama, Adv. Mater.18 (2006) 3318.
    [5]L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, Adv. Mater.20 (2008) 3280.
    [6]D. Ding, Z.B. Liu, L. Li, C.R. Xia, Electrochem Commun 10 (2008) 1295.
    [7]K. Kendall, Int. J. Appl. Ceram. Technol.7 (2010) 1.
    [8]N. Droushiotis, U. Doraswami, D. Ivey, M.H.D. Othman, K. Li, G. Kelsall, Electrochem. Commun.12 (2010) 792.
    [9]J. Ding, J. Liu, J Power Sources 193 (2009) 769.
    [10]F. Zhao, C. Jin, C.H. Yang, S.W. Wang, F.L. Chen, J Power Sources 196 (2011) 688.
    [11]L. Zhao, X.Z. Zhang, B.B. He, B.B. Liu, C.R. Xia, J Power Sources 196 (2011) 962.
    [12]S. Barison, M. Battagliarin, T. Cavallin, S. Daolio, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, R. Gerbasi, Fuel Cells 8 (2008) 360.
    [13]Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, Chem. Mater.21 (2009) 2755.
    [14]F. Iguchi, T. Tsurui, N. Sata, Y. Nagao, H. Yugami, Solid State Ionics 180 (2009) 563.
    [15]L. Yang, C.D. Zuo, M.L. Liu, J Power Sources 195 (2010) 1845.
    [16]Y.H. Bai, J. Liu, H.B. Gao, C. Jin, J Alloy Compd 480 (2009) 554.
    [17]Y.H. Bai, J. Liu, C.L. Wang, In J Hydrogen Energ 34 (2009) 7311.
    [18]M.F. Liu, J.F. Gao, D.H. Dong, X.Q. Liu, G.Y. Meng, In J Hydrogen Energ 35(2010)10489.
    [19]C.L. Yang, C. Jin, F.L. Chen, Electrochem Commun 12 (2010) 657.