脂肪干细胞联合TGF-β3负载的PLGA支架修复软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     软骨损伤在临床上十分常见,其治疗长期以来一直是骨科领域的热点、难点问题。成年人发生软骨损伤后,由于自然修复的软骨组织为纤维软骨而非功能性的透明软骨,因而不可避免出现渐进性退变,最终导致骨关节炎的发生。目前对于软骨缺损的治疗措施主要是疼痛控制、手术干预和软骨移植,但这些治疗方法的远期疗效并不理想。在这种情况下,作为一种可选择的替代疗法,以干细胞为基础的组织工程方法为软骨缺损的修复开辟了一条全新的途径。一般来讲,利用组织工程方法进行软骨缺损的修复需要具备三个主要条件:第一,足够数量、功能正常、具有成软骨分化能力的种子细胞;第二、具有良好生物相容性、可无毒降解、合适空隙大小和孔隙率的三维支架;第三、调节种子细胞增殖、分化,并维持其表型特征的细胞因子。
     脂肪间充质干细胞(adipose-derived mesenchymal stem cells, AMSCs)是来自中胚层的成体干细胞,由于其相比其他成体干细胞来源充足、取材方便、提取时对机体损伤小,与骨髓间充质干细胞(bone-marrow mesenchymal stem cells, BMSCs)具有相似的生物学特征和分化潜能,以及优于BMSCs的增殖能力,现已成为一种理想的种子细胞来源,也是当前研究的热点。聚乳酸-聚羟乙酸共聚物(poly-lactic-co-glycolic acid, PLGA)作为被美国食品和药品管理局(Food And Drug Administration, FDA)批准可以用于人体的组织工程支架材料,以其良好的生物相容性,来源广泛、容易获得且可大批量生产,其空间结构、大体形态、机械强度、降解时间等都能预先设计和调控等优点,已成为在组织工程中应用最广泛的支架材料。转化生长因子-β (transforming growth factor β, TGF-β)是一种细胞生长和细胞外基质合成的多功能调节器,它可以促进软骨细胞增殖,增加蛋白多糖和二型胶原合成,而且还能减少软骨胶原酶的表达和分泌。有研究认为TGF-β3相比于TGF-β1具有更强的诱导间充质干细胞向软骨分化的能力,而且TGF-β3同时还有抑制炎症反应和促进金属蛋白酶组织抑制剂表达的作用。
     虽然AMSCs已经被证实具有修复软骨缺损的作用,但应用非诱导的AMSCs进行软骨缺损修复的研究尚显不足,而且非诱导的AMSCs在植入体内后是否能长期存活以及是否通过直接分化为软骨细胞对缺损部位进行修复,这些问题都尚不明确。目前尚没有应用AMSCs联合TGF-β3负载的双层PLGA进行全层软骨缺损修复的研究报道。在本研究中,我们在体外实验的相关研究结果基础上,用超顺磁氧化铁(superparamagnetic iron oxide, SPIO)作为示踪剂,用SPIO标记的AMSCs联合TGF-β3负载的双层PLGA三维支架构筑AMSCs/TGF-β3/PLGA复合体,观察其对兔全层关节软骨缺损修复的效果,并用核磁共振成像(magnetic resonance imaging, MRI)对植入的AMSCs进行活体内追踪,观察其存活和分布情况,同时用普鲁士蓝染色检测新生的软骨细胞是否由植入的AMSCs直接分化而来。
     本研究主要分三部分:(1)首先进行兔AMSCs的分离、培养和SPIO标记;体外检测MRI对SPIO标记的AMSCs探测的敏感性。同时利用致孔剂浸出技术制作双层PLGA三维支架。结果显示SPIO可以高效的标记AMSCs;在被标记的AMSCs达到足够的浓度的时候,可以被MRI敏感的追踪到。电镜扫描(scanning electron microscopy, SEM)结果证实:利用致孔剂浸出技术可以成功制作满足组织工程需要,具有适合孔径大小的双层PLGA三维支架。(2)检测TGF-β3对体外培养的AMSCs增殖、分化的影响。根据实验结果可以认为TGF-β3浓度在10ng/ml时,短期内对体外单层培养的AMSCs的增殖没有影响。用TGF-β3对体外单层和三维培养的AMSCs进行诱导可以增加二型胶原(Collagen type Ⅱ),聚糖蛋白(Aggrecan)和SOX-9(SRY-related HMG box9, SOX-9)在基因和蛋白水平的表达,这种作用呈时间依赖性,但三维培养条件下相比单层培养更有利于促进它们在基因和蛋白水平的表达。(3)在前两部分的基础上,用AMSCs/TGF-β3/PLGA复合体对兔子全层软骨缺损模型进行修复,观察其修复效果,AMSCs在体内的存活情况以及新生软骨细胞是否直接由其分化而来。结果表明AMSCs/TGF-β3/PLGA复合体可有效修复关节软骨缺损;AMSCs在植入体内12周后仍然有部分存活,但新生的软骨细胞并非由植入体内的AMSCs直接分化而来。
     第一部分AMSCs的超顺磁氧化铁标记和双层PLGA支架的制作
     目的:观察MRI对SPIO标记的AMSCs探测的敏感性以及致孔剂浸出技术能否成功制作符合软骨组织工程需要的合适孔径大小的作双层PLGA三维支架。
     方法:用含SPIO为25μg/ml的培养基培养AMSCs,24h后进行普鲁士蓝染色,光镜下观察AMSCs被SPIO标记的情况,胰酶消化收集细胞,用PBS重悬细胞,分别检测细胞浓度在5×104,1x105,5×105,1×106/ml时MRI对被标记细胞的敏感性。用明胶颗粒作为致孔剂,利用致孔剂浸出技术制作双层PLGA支架。
     结果:用含SPIO为25μg/ml的培养基对AMSCs进行培养,AMSCs可以被高效标记,标记率接近100%。在被标记的AMSCs浓度达到1×105/ml时,MRI即可探测信号的改变,1×106/ml时T2加权像上呈现黑色。SEM扫描结果表明利用致孔剂浸出技术可成功制作具有大、小两层微孔,孔径分别在2001×m和400μm左右的符合组织工程需要的双层PLGA三维支架。
     结论:SPIO可以高效标记AMSCs并被MRI追踪到。以明胶作为致孔剂利用致孔剂浸出技术可成功制作符合组织工程需要的双层PLGA三维支架。
     第二部分TGF-P3对体外培养的AMSCs增殖、分化的影响
     目的:观察TGF-β3对体外培养的AMSCs增殖、分化的影响。
     方法:取成年新西兰兔腹股沟部皮下脂肪,用酶消化、梯度离心、贴壁培养法对兔AMSCs进行分离、培养。取第三代AMSCs,用含不同浓度的TGF-P3(0,1,5,10,20,50ng/ml)培养基进行培养,CCK-8方法检测不同浓度TGF-β3在第1、3、7天对AMSCs增殖的影响。用10ng/ml TGF-β3诱导AMSCs,分别于诱导后7天和14天,免疫荧光观察Collagen type Ⅱ的表达情况;实时定量聚合酶链反应(real-time quantitative polymerase chain reaction, RT-qPCR)法检测细胞中Aggrecan, Collagen type Ⅱ, SOX-9基因的表达,western blot法检测细胞中Aggrecan, Collagen type Ⅱ, SOX-9蛋白的表达。
     结果:用含不同浓度TGF-β3的培养基培养1、3天后,均对AMSCs的增殖均没有影响,7天后,除10ng/ml浓度组对AMSCs的增殖没有影响外,其余浓度均明显抑制了AMSCs的增殖。免疫荧光结果显示用10ng/ml的TGF-β3诱导7天后,AMSCs表达Collagen type Ⅱ,第14天荧光信号强度显著高于第7天,单纯低血清培养基培养AMSCs14天后也有少量的Collagen type Ⅱ表达。RT-qPCR和western blot结果表明用TGF-P3对体外单层和三维培养的AMSCs进行诱导可以增加Collagen type Ⅱ, Aggrecan和SOX-9在基因和蛋白水平的表达,这种作用呈时间依赖性,三维培养条件下三者在基因和蛋白水平的表达显著高于单层培养。
     结论:10ng/ml的TGF-β3短期内对体外培养的AMSCs的增殖没有影响。TGF-β3可诱导AMSCs向软骨分化,呈时间依赖性,三维培养优于单层培养。
     第三部分AMSCs/TGF-β3/PLGA复合体修复关节软骨缺损的动物实验研究
     目的:观察AMSCs/TGF-β3/PLGA复合体对兔子全层关节软骨缺损模型的修复作用及AMSCs在这一过程中的作用和机制。
     方法:取64只新西兰大白兔,在股骨髁髌股关节部位制作关节软骨缺损模型。随机分为4组,每组16只,分别为缺损组(Defect组),PLGA组,TGF-β3/PLGA组,AMSCs/TGF-β3/PLGA组。各组分别于术后第6周和第12周对32只兔的膝关节进行MRI扫描后处死,并收取包含修复组织的股骨髁,进行形态学、组织学观察。并用RT-qPCR和western法检测修复组织中Aggrecan, SOX-9, Collagen type Ⅰ, Ⅱ and X在基因和蛋白水平的表达。
     结果:MRI扫描结果提示在AMSCs/TGF-p3/PLGA复合体植入部位,术后第6周和第12周都可探测到明显的低信号改变。普鲁士蓝染色显示术后第6周时在新生软骨层和软骨下骨层均有蓝染颗粒,而在第12周只有软骨下骨层有蓝染颗粒,而新生软骨层未见蓝染颗粒。AMSCs、TGF-03均可促进软骨缺损的修复,这种作用是通过在基因和蛋白水平调节Aggrecan, SOX-9, Collagen type Ⅰ, Ⅱ and X的表达呈现,具有时间依赖性。PLGA自身对软骨缺损修复的效果并不明显。
     结论:AMSCs/TGF-p3/PLGA复合体可有效修复全层关节软骨缺损。AMSCs在植入缺损部位后可以长期存活并促进软骨修复,但新生的软骨细胞并非由植入的AMSCs直接分化而来,AMSCs可能通过释放某些细胞生长因子促进软骨缺损的修复。
Introduction
     Cartilage injury is very common in clinical practice, all along, the treatment for it is a the hot and difficult problem in the field of orthopaedics. Self-healing cartilage tissue after injury in adult is fibrocartilage, but not hyaline cartilage which has function, thus inevitably appears progressive degeneration, eventually leading to the occurrence of osteoarthritis. The current treatments for cartilage defects are mainly focus on pain control, surgical intervention, and cartilage transplantation, but these can not yield satisfactory long-term efficacy. In this case, as an alternative treatment, mesenchymal stem cells based tissue engineering has emerged as a promising approach for cartilage defect repair. Three main conditions are needed for repair cartilage defect:First, sufficient number of properly functioning seed cells and chondrogenic capacity. Second, a three-dimensional scaffold with biocompatible, non-toxic degradation, suitable gap size and porosity. Third, cytokines which could adjust the seed cell differentiation and proliferation, and maintain their phenotypic.
     Adipose-derived mesenchymal stem cells (AMSCs) are adult stem cells originating from the mesoderm, because AMSCs are convenient of obtaining, adequate sources and small injury on body compared with others adult stem cells, similar biological characteristics and differentiation potential with bone-marrow mesenchymal stem cells (BMSCs), better proliferative capacity than BMSCs, AMSCs have become an ideal source of seed cells and research hotspot. As a three-dimensional scaffold which has been approved for human tissue engineering by the Food And Drug Administration (FDA) of American, poly-lactic-co-glycolic acid (PLGA) due to its advantages at good biocompatibility, wide source, easy to obtain and capable of mass production, more over, the space structure, general form, mechanical strength and degradation time of its could be design and control in advance, so it has become the most widely used in tissue engineering extracellular matrix material. Transforming growth factor-β (TGF-β) is a multifunctional regulator of a cell growth and extracellular matrix synthesis, it can promote the proliferation of chondrocytes increased proteoglycan and type Ⅱ collagen synthesis, but also to reduce the expression and secretion of the cartilage collagenase. The effect of TGF-β3inducing mesenchymal stem cells (mesenchymal stem cell, MSCs) differentiate to chondrocytes is better than TGF-β1, more over, TGF-β3could inhibit the inflammatory response and promote tissue inhibitor of metalloproteinase expression.
     Although AMSCs have been shown to have effects in the repair of cartilage defects, however, the studies which using non-induced AMSCs to repair full-thickness cartilage defects are still insufficient, whether non-induced AMSCs could be long-term survival after being implanted in the body and whether AMSCs repair cartilage defect by differentiating to chondrocytes derectly, these issues are unclear. Currently, no author has reported using AMSCs combined with TGF-β3-loaded PLGA scaffolds for the restoration of cartilage defects. In the present study, we based on the related research results of experiments in vitro, used superparamagnetic iron oxide (SPIO) labeled AMSCs combined with TGF-β3-loaded PLGA to design a AMSCs/TGF-β3/PLGA construct to repair the full-thickness cartilage defect model of rabbit and magnetic resonance imaging(MRI) to track the SPIO labeled AMSCs in vivo, observe their survival and distribution, at the same time, prussian blue staining to detect whether the new neo-chondrocytes were differentiated from implanted AMSCs directly.
     The study is mainly divided into three parts:(1) rabbit AMSCs isolation, culture, labeled by SPIO, then, to detect the sensitivity of MRI tracking SPIO-labeled AMSCs. Using a porogen leaching technology to fabricate bilayer PLGA scaffold. The results showed that AMSCs could be efficiently labeled by SPIO, MRI could track SPIO-labeled AMSCs sensitively when the concentration of cells was sufficient. The study confirmed the bilayer PLGA scaffold could be fabricate by porogen leaching technology. A bilayer PLGA scaffold which with suitable pore size for tissue engineering could be successfully produced by porogen leaching techniques.(2) investigation the effects of TGF-P3on the proliferation and differentiation of AMSCs in vitro. The results of present study showed that when the concentration of TGF-β3at lOng/ml, it had no effect on the proliferation of AMSCs in a short term. Treating AMSCs with TGF-β3in vitro could increase the espression of Collagen type II, Aggrecan and SRY-related of HMG box9(SOX-9) at gene and protein levels whether monolayer culture or three-dimensional culture in a time-dependent manner, but three-dimensional culture could promote the expression of them more efficient when compared to monolayer culture.(3) on the basis of the previous two parts, the AMSCs/TGF-β3/PLGA constructs were used to repair the full-thickness cartilage defects of rabbit models, investigation the regeneration effects of them and the survival and distribution of implanted AMSCs as well as whether the neo-chondrocytes were differentiated from implanted AMSCs directly. The results showed that the AMSCs/TGF-β3/PLGA constructs could effective repair the articular cartilage defects. The AMSCs were still survival partly after12weeks being implanted in vivo, but the neo-chondrocytes were not differentiated from the AMSCs directly.
     Part1SPIO-labeling of AMSCs and fabrication of bilayer PLGA scaffold
     Objective:To observe the sensitivity of MRI on SPIO-labeled AMSCs and whether the porogen leaching technology could produced a three-dimensional bilayer PLGA scaffold with suitable pore sizes for cartilage tissue engineering.
     Methods:Culturing AMSCs with medium containing25μg/ml SPIO for24hour, then, did prussian blue staining and observed the mark effect by light microscopy. The AMSCs were trypsinized, collected, resuspended in PBS, the sensitivity of MRI were observed when the concentrations SPIO-labeled AMSCs were5x104,1x105,5x105,1x106/ml. A bilayer PLGA scaffold with different pore size was fabricated by a porogen-leaching technique with gelatin particles as the porogen.
     Results:Culturing AMSCs with medium containing25μg/ml SPIO, the AMSCs could be marked efficiently, the rate of labeled AMSCs was nearly100%. When the cells concentration at1x105/ml, MRI could track the signal change, when the cells concentration at1x106/ml, presented a significant black signal on T2-weighted images. SEM photographs revealed that the bilayer PLGA scaffold possessed macropores and micropores. The average pore sizes of the micropores and macropores in the scaffold were about200μm and400μm, which are suitable for tissue engineering needs.
     Conclusions:The AMSCs could be marked efficiently by SPIO and tracked by MRI in vitro. A bilayer PLGA scaffold which is suitable for tissue engineering could be successfully produced using gelatin as porogen by porogen leaching technology.
     Part2The effects of TGF-β3on the proliferation and differentiation of AMSCs in vitro
     Objective:Observation of the effects of TGF-β3on the proliferation, differentiation of AMSCs in vitro.
     Methods:Adipose tissue was isolated from the groin area of adult New Zealand rabbits by enzyme digestion gradient centrifugation and adhesive culture methods. The third generation of AMSCs were used, the method of CCK-8was used to detect the effect of different concentrations (0,1,5,10,20,50ng/ml) of TGF-β3on the proliferation AMSCs at the1,3,7day respectively. lOng/ml TGF-β3was used to induce the differentiation of AMSCs, at the7and14days after induction, immunofluorescence staining was used to observe the expression of Collagen type Ⅱ. Real-time quantitative polymerase chain reaction (RT-qPCR) and western-blot methods were used to the expression of Aggrecan, Collagen type Ⅱ, SOX-9at gene and protein levels respectively.
     Results:After one or three days induced by different concentrations of TGF-β3, each concentration had no effect on the proliferation of AMSCs, but at7th day, all the concentrations of TGF-P3inhibited the proliferation of AMSCs, except lOng/ml. The immunofluorescence showed that after induction of TGF-β3seven days, the expression of Collagen type Ⅱ could be detected by immunofluorescence,14th day of the fluorescence signal intensity was significantly higher than7th day. Further, it can be seen that the AMSCs cultured by low serum culture medium also had a small amount of Collagen type II expression. RT-qPCR and western blot results showed that inducing by TGF-β3could increase the espression of Collagen type Ⅱ, Aggrecan and SOX-9at gene and protein levels in a time-dependent manner, the genes and proteins expression of the three were significantly higher in three-dimensional culture than that in monolayer culture.
     Conclusions:When the concentration of TGF-β3was10ng/ml, it had no effect on the proliferation of AMSCs in a short term. TGF-β3could promote AMSCs differentiating to chondrocytes in a time-dependent manner, three-dimensional culture was more efficient than monolayer culture.
     Part3The restore of articular cartilage defects using AMSCs/TGF-p3/PLGA constructs in animal models
     Objective:Observation the repair effects of AMSCs/TGF-β3/PLGA constructs on rabbit full-thickness articular cartilage defects and the effects and mechanisms of AMSCs in this process.
     Methods:Full-thickness defects were created surgically on the femoropatellar groove of the knee joints of64rabbits. The rabbits were randomly divided into four groups: Defect group, PLGA group, TGF-β3/PLGAgroup and AMSCs/TGF-β3/PLGA group.32rabbits took SEM scanning, then sacrificed at6or12weeks after surgery and the restored tissues were retrieved for morphology, histological observation. RT-qPCR and western-blot methods were used to the expression of Aggrecan, SOX-9, Collagen type I, Ⅱ and X at gene and protein levels respectively.
     Results:MRI confirmed that there still had survival AMSCs in the repair tissue at6weeks and12weeks after surgery, low signal change can be detected in T2-weight images. Prussian blue staining showed that the neo-cartilage layer and subchondral bone layer all had blue particles at6th week, but at12th week the blue particles existed only in the subchondral bone layer, while the neo-cartilage layer no blue particles. TGF-β3and AMSCs could promote the restore, these effects of them were exerted by regulating the expression of Aggrecan, SOX-9, Collagen type Ⅰ, Ⅱ and X at gene and protein levels in a time-dependent manner. The effect of PLGA itself in the process was no obvious.
     Conclusions:The AMSCs/TGF-β3/PLGA constructs could repair the full-thickness articular cartilage defects effectively. AMSCs could be survival after implanted in the defect by a long-term and promote cartilage repair effects, but the neo-chondrocytes were not differentiated from the AMSCs directly, AMSCs maybe promote cartilage defect repair by releasing some cell growth factors.
引文
[1]O'Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am 1998;80(12):1795-1812.
    [2]Michael A, Pasquale R, Daniel AG. Defining the challenge:The basic science of articular cartilage repair and response to injury. Sports Med Arthr 2003;11(3):168-181.
    [3]Bedi A, Feeley BT, Williams RJ 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am 2010;92(4):994-1009.
    [4]Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75(4):532-553.
    [5]Aulin C, Jensen-Waern M, Ekman S, Hagglund M, Engstrand T, Hilborn J, Hedenqvist P. Cartilage repair of experimentally 11 induced osteochondral defects in New Zealand White rabbits. Lab Anim 2013;47(1):58-65.
    [6]何森,张其清。关节软骨组织工程的研究进展。国际生物医学工程杂志2007;30(4):249-351,1505-1507.
    [7]Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement:results at second-look arthroscopic surgery. Am J Sports Med 2012;40(12):2725-2730.
    [8]Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Gr(?)ntvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004;86(3):455-464.
    [9]Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 2004; 86(Suppl 1):65-72.
    [10]Schindler OS. Cartilage repair using autologous chondrocyte implantation techniques. J Perioper Pract 2009;19(2):60-64.
    [11]Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts:results in the patellofemoral joint. Clin Orthop Relat Res 2005;(437):176-185.
    [12]Bonzani IC, Campbell JJ, Knight MM, Williams A, Lee DA, Bader DL, Stevens MM.Dynamic compressive strain influences chondrogenic gene expression in human periosteal cells:a case study. J Mech Behav Biomed Mater 2012; 11:72-81.
    [13]Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, Nakamura M, Suzuki S. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest 2006;86(5):445-457.
    [14]Yang SL, Harnish E, Leeuw T,Dietz U, Batchelder E, Wright PS, Peppard J, August P, Volle-Challier C, Bono F, Herbert JM, Izpisua Belmonte JC. Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis. Protein Cell 2012;3(12):934-942.
    [15]Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Joint Surg Br 2005; 87(4):445-459.
    [16]Keeney M, Lai JH, Yang F. Recent progress in cartilage tissue engineering. Curr Opin Biotechnol 2011;22(5):734-740.
    [17]Hunziker EB. Articular cartilage repair:basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10(6):432-463.
    [18]Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep 2012;39(5):5683-5689.
    [19]Rodriguez-Merchan EC. The treatment of cartilage defects in the knee joint: microfracture, mosaicplasty, and autologous chondrocyte implantation. Am J Orthop (Belle Mead NJ) 2012;41(5):236-239.
    [20]Magne D, Vinatier C, Julien M, Weiss P, Guicheux J. Mesenchymal stem cell therapy to rebuild cartilage. Trends Mol Med.2005;11(11):519-526.
    [21]Landis WJ, Jacquet R, Hillyer J, Zhang J, Siperko L, Chubinskaya S,Asamura S, Isogai N. The potential of tissue engineering in orthopedics. Orthop Clin North Am 2005;36(1):97-104.
    [22]Sun W, Lal P. Recent development on computer aided tissue engineering-a review. Comput Methods Programs Biomed 2002;67(2):85-103.
    [23]Oldershaw RA. Cell sources for the regeneration of articular cartilage:the past, the horizon and the future. Int J Exp Pathol 2012;93(6):389-400.
    [24]Gardner OF, Archer CW, Alini M, Stoddart MJ. Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 2013;28(1):23-42.
    [25]Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 2013;55(3):309-318.
    [26]Kokai LE, Rubin JP, Marra KG. The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 2005;116(5):1453-1460.
    [27]Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology.2004;41(3-4):389-399.
    [28]Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24(5):1294-1301.
    [29]Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 2013;15(3):330-343.
    [30]Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng 2001;7(2):211-228.
    [31]Lee RH,Kim B, Choi I, Kim H,Choi HS, Suh K,Bae YC,Jung JS. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004;14(4-6):311-324.
    [32]Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005;129(1):118-129.
    [33]Rada T, Reis RL, Gomes ME. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 2009;15(2):113-125.
    [34]Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res 2011;469(10):2706-2715.
    [35]Cheng T, Yang C, Weber N, Kim HT, Kuo AC. Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis. Biochem Biophys Res Commun 2012;426(4):544-550.
    [36]Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 2010;38(9):2896-2909.
    [37]Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-betal in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 2001;19(4):738-749.
    [38]Kramer J, Bohrnsen F, Schlenke P, Rohwedel J. Stem cell-derived chondrocytes for regenerative medicine. Transplant Proc 2006;38(3):762-765.
    [39]Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA. TGF-β as a therapeutic target in high grade gliomas-promises and challenges. Biochem Pharmacol 2013;85(4):478-485.
    [40]Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:differentiation-dependent gene expression of matrix components. Exp Cell Res 2001;268(2):189-200.
    [41]Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM, Chang YH, Hu YC. Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A 2012;18(19-20):2114-2124.
    [42]Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels:influence of collagen type Ⅱ extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 2006;93(6):1152-1163.
    [43]Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MR Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998;4(4):415-428.
    [44]Huang AH, Stein A, Tuan RS, Mauck RL. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 2009;15(11):3461-3472.
    [45]Hoi-Yan Cheung, Kin-Tak Lau, Tung-Po Lu David Hui. A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B:Engineering 2007;38(3):291-300.
    [46]Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, Ji J, Ouyang HW. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials 2013;34(3):713-723.
    [47]Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, Elisseeff JH. Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 2012;18(23-24):2497-2506.
    [48]Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 2012;33(7):2016-2024.
    [49]Wu X, Ren J, Li J. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine. Cytotherapy 2012;14(5):555-562.
    [50]Abarrategi A, Lopiz-Morales Y, Ramos V, Civantos A, Lopez-Duran L, Marco F, Lopez-Lacomba JL. Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 2010;95(4):1132-1141.
    [51]Henrionnet C, Wang Y, Roeder E, Gambier N, Galois L, Mainard D, Bensoussan D, Gillet P, Pinzano A. Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture. Biomed Mater Eng 2012;22(4):209-218.
    [52]Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-325.
    [53]Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004;22(5):560-567.
    [54]Mehlhorn AT, Zwingmann J, Finkenzeller G, Niemeyer P, Dauner M, Stark B, Sudkamp NP, Schmal H. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 2009; 15(5):1159-1167.
    [55]Qi, Y; Feng, G; Huang, Z; Yan, W. The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy. Mol Biol Rep 2013; 40(3):2733-2740.
    [56]Stabi KL, Bendz LM. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann Pharmacother 2011;45(12):1571-1575.
    [57]Ishimoto Y, Hattori K, Ohgushi H. Articular cartilage regeneration using scaffold. Clin Calcium 2008;18(12):1775-1780.
    [58]Lopez MJ, Spencer ND. In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods Mol Biol 2011;702:37-46.
    [59]Li H, Xu Y, Fu Q, Li C. Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture. Tissue Eng Part A 2012;18(17-18):1760-1770.
    [60]Arbab AS,Yocum GT, Kalish H, Jordan EK, Anderson SA,Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004;104(4):1217-1223.
    [61]Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229(3):838-846.
    [62]El Haj AJ, Glossop JR, Sura HS, Lees MR,Hu B, Wolbank S,van Griensven M, Redl H, Dobson J. An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling. J Tissue Eng Regen Med.2012;doi: 10.1002/term.1636.
    [63]Wei Y, Hu H, Wang H, Wu Y, Deng L, Qi J. Cartilage regeneration of adipose-derived stem cells in a hybrid scaffold from fibrin-modified PLGA. Cell Transplant 2009; 18(2):159-170.
    [64]Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 2010;31(34):8964-8973.
    [65]Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M.Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005;26(20):4273-4279.
    [66]Park JS, Shim MS, Shim SH, Yang HN, Jeon SY, Woo DG, Lee DR, Yoon TK, Park KH. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-β3. Biomaterials 2011;32(32):8139-8149.
    [67]Li WJ,Tuli R, Okafor C,Derfoul A,Danielson KG, Hall DJ,Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26(6):599-609.
    [68]Zellin G, Beck S, Hardwick R, Linde A. Opposite effects of recombinant human transforming growth factor-beta 1 on bone regeneration in vivo:effects of exclusion of periosteal cells by microporous membrane. Bone 1998;22(6):613-620.
    [69]Mara CS, Sartori AR, Duarte AS, Andrade AL, Pedro MA, Coimbra IB. Periosteum as a source of mesenchymal stem cells:the effects of TGF-β3 on chondrogenesis. Clinics (Sao Paulo) 2011;66(3):487-492.
    [70]de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000;19(5):389-394.
    [71]Park H,Temenoff JS,Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 2007;28(21):3217-3227.
    [72]Kim M, Erickson IE, Choudhury M, Pleshko N, Mauck RL. Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J Mech Behav Biomed Mater 2012;11:92-101.
    [73]Hui W, Cawston T, Rowan AD. Transforming growth factor beta 1 and insulin-like growth factor 1 block collagen degradation induced by oncostatin M in combination with tumour necrosis factor alpha from bovine cartilage. Ann Rheum Dis 2003;62(2):172-174.
    [74]Furumatsu T, Asahara H. Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama 2010;64(6):351-357.
    [75]徐亮,杨述华,田宏涛。脂肪干细胞在体外特定培养液中向软骨细胞表型的分化。中国组织工程研究与临床康复2007;11(10):1805-1807.
    [76]Ciorba A, Martini A. Tissue engineering and cartilage regeneration for auricular reconstruction. Int J Pediatr Otorhinolaryngol 2006;70(9):1507-1515.
    [77]Bhosale AM, Richardson JB. Articular cartilage:structure, injuries and review of management. Br Med Bull 2008;87:77-95.
    [78]Hunter DJ. Pharmacologic therapy for osteoarthritis--the era of disease modification. Nat Rev Rheumatol 2011;7(1):13-22.
    [79]Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum 1998;41(8):1331-1342.
    [80]Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique:Surgical technique. J Bone Joint Surg Am 2006;88(suppl 1):294-304.
    [81]De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003;174(3):101-109.
    [82]Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12):4279-4295.
    [83]Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004;320(3):914-919.
    [84]Fonte P, Soares S, Costa A, Andrade JC, Seabra V, Reis S, Sarmento B. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter 2012;2(4):329-339.
    [85]Sciore P, Boykiw R, Hart DA. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res 1998;16(4):429-437.
    [86]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25(4):402-408.
    [87]Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF, Madry H. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum 2007;56(1):158-167.
    [88]Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials 2009;30(14):2683-2693.
    [89]Novince CM,Entezami P, Wilson CG,Wang J,Oh S,Koh AJ,Michalski MN, Sinder BP, Kozloff KM, Taichman RS, McCauley LK. Impact of proteoglycan-4 and parathyroid hormone on articular cartilage. J Orthop Res 2013;31(2):183-190.
    [90]Andreasen PA, Kj(?)ller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis:a review. Int J Cancer 1997;72(1):1-22.
    [91]Ouzzine M, Venkatesan N, Fournel-Gigleux S. Proteoglycans and cartilage repair. Methods Mol Biol 2012;836:339-355.
    [92]Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alphal(Ⅱ) collagen gene. Mol Cell Biol 1997;17(4):2336-2346.
    [93]Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater 2005;14(9):23-32.
    [94]付勤,王勇,于冬冬,王广斌,宫树一,贺明。外源性TGF-β1及IGF-1诱导大鼠脂肪干细胞向软骨细胞分化的实验研究。中国骨质疏松杂志2007;13(12):848-853.
    [95]张强,安荣泽.王兆杰,刘凡凡,袁晓洪,杨晋。兔软骨基质支架与脂肪干细胞的生物相容性。中国组织工程研究与临床康复2008;12(49):9731-9734.
    [96]Takao M, Uchio Y, Kakimaru H, Kumahashi N, Ochi M. Arthroscopic drilling with debridement of remaining cartilage for osteochondral lesions of the talar dome in unstable ankles. Am J Sports Med 2004;32(2):332-336.
    [97]Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003;278(42):41227-41236.
    [98]John N, Cinelli P, Wegner M, Sommer L. Transforming growth factor β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 2011;29(4):689-699.
    [99]Moioli EK, Hong L, Guardado J, Clark PA, Mao JJ. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells. Tissue Eng 2006;12(3):537-546.
    [100]Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing:a proof of concept study. Lancet 2010;376(9739):440-448.
    [101]Bouffi C, Thomas O, Bony C, Giteau A, Venier-Julienne MC, Jorgensen C, Montero-Menei C, Noel D. The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials 2010;31(25):6485-6493.
    [102]Schlichting K, Schell H, Kleemann RU, Schill A, Weiler A, Duda GN, Epari DR. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 2008;36(12):2379-2391.
    [103]Blaber SP, Hill CJ, Webster RA, Say JM, Brown LJ, Wang SC, Vesey G, Herbert BR. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS One 2013;8(1): e52997.
    [1]O'Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am 1998;80(12):1795-1812.
    [2]Emans PJ, Jansen EJ, van Iersel D, Welting TJ, Woodfield TB, Bulstra SK, Riesle J, van Rhijn LW, Kuijer R. Tissue-engineered constructs:the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med 2012;doi: 10.1002/term.1477.
    [3]Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75(4):532-553.
    [4]何森,张其清。关节软骨组织工程的研究进展。国际生物医学工程杂志2007;30(4):249-351.
    [5]Lee KB, Wang VT, Chan YH, Hui JH. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid-a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore 2012;41(11):511-517.
    [6]Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 2012;470(8):2261-2267.
    [7]van der Linden MH, Saris D, Bulstra SK, Buma P. Treatment of cartilaginous defects in the knee:recommendations from the Dutch Orthopaedic Association. Ned Tijdschr Geneeskd.2013;157(3):A5719.
    [8]Redler LH,Caldwell JM, Schulz BM,Levine WN. Management of articular cartilage defects of the knee. Phys Sportsmed 2012;40(1):20-35.
    [9]Keeney M, Lai JH, Yang F. Recent progress in cartilage tissue engineering. Curr Opin Biotechnol 2011;22(5):734-740.
    [10]Chajra H, Rousseau CF, Cortial D, Ronziere MC, Herbage D, Mallein-Gerin F, Freyria AM. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng 2008;18(Suppl 1):S33-45.
    [11]Danisovic L, Varga I, Zamborsky R, Bohmer D. The tissue engineering of articular cartilage:cells, scaffolds and stimulating factors. Exp Biol Med (Maywood) 2012;237(1):10-17.
    [12]Landis WJ, Jacquet R, Hillyer J, Zhang J, Siperko L, Chubinskaya S, Asamura S, Isogai N. The potential of tissue engineering in orthopedics. Orthop Clin North Am 2005;36(1):97-104.
    [13]Diaz-Flores L Jr, Gutierrez R, Madrid JF,Acosta E, Avila J, Diaz-Flores L, Martin-Vasallo P. Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Front Biosci (Schol Ed) 2012;4:1275-1294.
    [14]Chiang H, Liao CJ, Hsieh CH, Shen CY, Huang YY, Jiang CC. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthritis Cartilage 2013;21(4):589-598.
    [15]Oldershaw RA. Cell sources for the regeneration of articular cartilage:the past, the horizon and the future. Int J Exp Pathol 2012;93(6):389-400.
    [16]Gardner OF, Archer CW, Alini M, Stoddart MJ. Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 2013;28(1):23-42.
    [17]Dhollander AA,Verdonk PC, Lambrecht S,Verdonk R, Elewaut D,Verbruggen G, Almqvist KF. Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human matureallogenic chondrocytes. Am J Sports Med 2012;40(1):75-82.
    [18]Dhollander AA, Huysse WC, Verdonk PC, Verstraete KL, Verdonk R, Verbruggen G, Almqvist KF. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair. Eur J Radiol 2010;75(1):72-81.
    [19]Bonzani IC, Campbell JJ, Knight MM, Williams A, Lee DA, Bader DL, Stevens MM.Dynamic compressive strain influences chondrogenic gene expression in human periosteal cells:a case study. J Mech Behav Biomed Mater 2012; 11:72-81.
    [20]Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, Nakamura M, Suzuki S. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest 2006;86(5):445-457.
    [21]Coutts RD, Woo SL, Amiel D, von Schroeder HP, Kwan MK. Rib perichondrial autografts in full-thickness articular cartilage defects in rabbits. Clin Orthop Relat Res 1992;(275):263-273.
    [22]Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327-359.
    [23]Seo S, Na K. Mesenchymal stem cell-based tissue engineering for chondrogenesis. J Biomed Biotechnol 2011;2011:806891.
    [24]Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2005;2:8.
    [25]Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002;10(3):199-206.
    [26]Kohei T, Gouping C, Takashi U, Takeo M, Tetsuya T. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater Sci Eng:C 2004;24(3):391-396.
    [27]Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003;22(1):81-91.
    [28]Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng 2001;7(2):211-228.
    [29]Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K,Kano Y, Ozaki M,Noguchi Y, Sakai D,Kudoh T, Kawamoto K,Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 2013;55(3):309-318.
    [30]Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 2004;41(3-4):389-399.
    [31]Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24(5):1294-1301.
    [32]Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 2013; 15(3):330-343.
    [33]Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005;129(1):118-129.
    [34]Rada T, Reis RL, Gomes ME. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 2009;15(2):113-125.
    [35]Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells:perspectives from stem cell biology and molecular medicine. J Cell Physiol 2013;228(5):938-944.
    [36]Lopez-Ruiz E, Peran M, Cobo-Molinos J, Jimenez G, Picon M, Bustamante M, Arrebola F, Hernandez-Lamas MC, Delgado-Martinez AD, Montanez E, Marchal JA. Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells. Osteoarthritis Cartilage 2013;21(1):246-258.
    [37]Wei Y, Hu H, Wang H, Wu Y, Deng L, Qi J. Cartilage regeneration of adipose-derived stem cells in a hybrid scaffold from fibrin-modified PLGA. Cell Transplant 2009;18(2):159-170.
    [38]Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg 2004;113(2):585-594.
    [39]Nathan S, Das De S, Thambyah A, Fen C, Goh J, Lee EH. Cell-based therapy in the repair of osteochondral defects:a novel use for adipose tissue. Tissue Eng 2003;9(4):733-744.
    [40]Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (AMSCs) taken from the same donors. Tissue Eng 2007;13(4):659-666.
    [41]Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue:a patient-matched comparison. J Orthop Res 2005;23(6):1383-1389.
    [42]Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type Ⅰ collagen-hydrogel forcartilage engineering. Injury 2013;44(4):540-549.
    [43]Gao X, Usas A, Lu A, Tang Y, Wang B, Chen C, Li H, Tebbets JC, Cummins JH, Huard J. BMP2 is superior to BMP4 for promoting human muscle derived-stem cell mediated bone regeneration in a critical size calvarial defect model. Cell Transplant 2012;doi:10.3727/096368912X658854.
    [44]Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development 2002;129(12):2987-2995.
    [45]Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 2006;54(2):433-442.
    [46]Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage:cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78(5):721-733.
    [47]Sekiya I, Muneta T, Koga H, Nimura A, Morito T, Shimaya M, Mochizuki T, Segawa Y, Sakaguchi Y, Tsuji K, Ichinose S. Articular cartilage regeneration with synovial mesenchymal stem cells. Clin Calcium 2011;21(6):879-889.
    [48]De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44(8):1928-1942.
    [49]Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro:activation by BMP-2 and BMP-4. Mech Dev 2000;92(2):193-205.
    [50]Kramer J, Klinger M, Kruse C, Faza M, Hargus G, Rohwedel J. Ultrastructural analysis of mouse embryonic stem cell-derived chondrocytes. Anat Embryol (Berl) 2005;210(3):175-185.
    [51]Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP, Bishop AE, Polak JM. Chondrogenic differentiation of human embryonic stem cells:the effect of the micro-environment.Tissue Eng 2006;12(6):1687-1697.
    [52]Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A. Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant 2004; 13(4):331-336.
    [53]Perera JR, Jaiswal PK, Khan WS. The potential therapeutic use of stem cells in cartilage repair. Curr Stem Cell Res Ther 2012;7(2):149-156.
    [54]Kawamura K, Chu CR, Sobajima S, Robbins PD, Fu FH, Izzo NJ, Niyibizi C. Adenoviral-mediated transfer of TGF-betal but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol 2005;33(8):865-872.
    [55]Bagaria V, Patil N, Sapre V, Chadda A, Singrakia M. Stem cells in orthopedics: current concepts and possible future applications. Indian J Med Sci 2006;60(4):162-169.
    [56]Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 2006;27(22):4069-4078.
    [57]Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res 2011;469(10):2706-2715.
    [58]Cheng T, Yang C, Weber N, Kim HT, Kuo AC. Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis. Biochem Biophys Res Commun 2012;426(4):544-550.
    [59]Kramer J, Bohrnsen F, Schlenke P, Rohwedel J. Stem cell-derived chondrocytes for regenerative medicine. Transplant Proc 2006;38(3):762-765.
    [60]Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 2010;38(9):2896-2909.
    [61]Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-betal in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 2001;19(4):738-749.
    [62]Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26(6):599-609.
    [63]Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 2007;28(21):3217-3227.
    [64]Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C. In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 2010;31(23):5953-5965.
    [65]Qi BW, Yu AX, Zhu SB, Zhou M, Wu G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med (Maywood) 2013;238(1):23-30.
    [66]Jin XB, Sun YS, Zhang K, Wang J, Ju XD, Lou SQ. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo. Acta Pharmacol Sin 2007;28(5):663-671.
    [67]刘铁,李峰,游洪波,陈安民。转染转化生长因子-β3对前软骨干细胞增殖及向成软骨方向分化的影响。中华创伤杂志2009;25(3):356-360.
    [68]黄志刚,李峰,游洪波,陈安民。转化生长因子-β3诱导大鼠前软骨干细胞成软骨分化的量效作用。中华医学杂志2008;32(3):185-187.
    [69]Park JS, Shim MS, Shim SH, Yang HN, Jeon SY, Woo DG, Lee DR, Yoon TK, Park KH. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated infibrin gels containing TGF-β3. Biomaterials 2011;32(32):8139-8149.
    [70]Thorpe SD, Buckley CT,Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. The response of bone marrow-derived mesenchymal stem cells to dynamic compre ssion following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 2010;38(9):2896-2909.
    [71]Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:differentiation-dependent gene expression of matrix components. Exp Cell Res 2001;268(2):189-200.
    [72]Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels:influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 2006;93(6):1152-1163.
    [73]Goessler UR, Bugert P, Bieback K, Deml M, Sadick H, Hormann K, Riedel F. In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett 2005;10(2):345-362.
    [74]Goldberg AJ, Lee DA, Bader DL, Bentley G. Autologous chondrocyte implantation. Culture in a TGF-beta-containing medium enhances the re-expression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture. J Bone Joint Surg Br 2005;87(1):128-134.
    [75]Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16(21):2813-2828.
    [76]Blumenfeld I, Laufer D, Livne E. Effects of transforming growth factor-beta 1 and interleukin-1 alpha on matrix synthesis in osteoarthritic cartilage of the temporo-mandibular joint in aged mice. Mech Ageing Dev 1997;95(1-2):101-111.
    [77]de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000; 19(5):389-394.
    [78]Hui W, Cawston T, Rowan AD. Transforming growth factor beta 1 and insulin-like growth factor 1 block collagen degradation induced by oncostatin M in combination with tumour necrosis factor alpha from bovine cartilage. Ann Rheum Dis 2003;62(2):172-174.
    [79]Technau A, Froelich K, Hagen R, Kleinsasser N. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 2011; 13(3):310-317.
    [80]Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 2006;54(4):1222-1232.
    [81]Huang AH, Stein A, Tuan RS, Mauck RL. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 2009;15(11):3461-3472.
    [82]Urist MR. Bone:formation by autoinduction. Science 1965;150(3698):893-899.
    [83]Mont MA, Jones LC, Elias JJ, Inoue N, Yoon TR, Chao EY, Hungerford DS. Strut-autografting with and without osteogenic protein-1:a preliminary study of a canine femoral head defect model. J Bone Joint Surg Am 2001,83(7):1013-1022.
    [84]Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T. Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 2007;25(4):950-960.
    [85]Chen HC, Sung LY, Lo WH, Chuang CK, Wang YH, Lin JL, Hu YC. Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther 2008;15(4):309-317.
    [86]Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D'Augusta DA, Beckwith K, Morris EA. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 2000;82(2):151-160.
    [87]Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 2003;48(2):430-441.
    [88]Matsumoto T, Kubo S, Meszaros LB, Corsi KA, Cooper GM, Li G, Usas A, Osawa A, Fu FH, Huard J. The influence of sex on the chondrogenic potential of muscle-derived stem cells:implications for cartilage regeneration and repair. Arthritis Rheum 2008;58(12):3809-3819.
    [89]Diekman BO, Estes BT, Guilak F. The effects of BMP6 overexpression on adipose stem cell chondrogenesis:Interactions with dexamethasone and exogenous growth factors. J Biomed Mater Res A 2010;93(3):994-1003.
    [90]Grande DA, Mason J, Light E, Dines D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 2003;85(Suppl 2):111-116.
    [91]Mandl EW, Jahr H, Koevoet JL, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ. Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol 2004;23(4):231-241.
    [92]Mastrogiacomo M, Cancedda R, Quarto R. Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage 2001;9(Suppl A):S36-40.
    [93]Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 2010;16(3):1009-1019.
    [94]Darling EM, Athanasiou KA. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res 2005;322(3):463-473.
    [95]周新社,戴戎,汤亭亭,胡诞宁,周建生,肖玉周。bFGF对人关节软骨细胞增殖和凋亡的影响。解剖与临床2004;9(4):235-237.
    [96]Fujimoto E, Ochi M, Kato Y, Mochizuki Y, Sumen Y, Ikuta Y. Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage. Arch Orthop Trauma Surg 1999;119(3-4):139-145.
    [97]Jenniskens YM, Koevoet W, de Bart AC, Weinans H, Jahr H, Verhaar JA, DeGroot J, van Osch GJ. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2. Osteoarthritis Cartilage 2006;14(11):1136-1146.
    [98]Pei M, Seidel J, Vunjak-Novakovic G, Freed LE. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 2002;294(1):149-154.
    [99]Nixon AJ, Goodrich LR, Scimeca MS, Witte TH, Schnabel LV, Watts AE, Robbins PD. Gene therapy in musculoskeletal repair. Ann N Y Acad Sci 2007; 1117:310-327.
    [100]Lo MY, Kim HT. Chondrocyte apoptosis induced by collagen degradation: inhibition by caspase inhibitors and IGF-1. J Orthop Res 2004;22(1):140-144.
    [101]丁幸坡,金先庆,刘伟。hIGF-1基因修饰骨髓基质干细胞复合PLGA移植修复关节软骨缺损。重庆医科大学学报2006;31(3):354-357.
    [102]于晓兵,赵德伟,王铁男,王本杰。IGF-1在股骨头再造关节软骨化生中的作用。中国临床解剖学杂志2010;28(2):188-192.
    [103]Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor Ⅰ (IGF-Ⅰ). Gene Ther 2005;12(15):1171-1179.
    [104]Takebayashi T, Iwamoto M, Jikko A, Matsumura T, Enomoto-Iwamoto M, Myoukai F, Koyama E, Yamaai T, Matsumoto K, Nakamura T. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes. J Cell Biol 1995; 129(5):1411-1419.
    [105]Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 2002;278(1):72-83.
    [106]Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 2003;21(3):451-457.
    [107]Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 2010;31(14):3858-3867.
    [108]Krinner A, Zscharnack M, Bader A, Drasdo D, Galle J. Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Prolif 2009;42(4):471-484.
    [109]Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther 2007;9(3):R55.
    [110]Meyer EG, Buckley CT, Thorpe SD, Kelly DJ. Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech 2010;43(13):2516-2523.
    [111]Buma P, Pieper JS, van Tienen T, van Susante JL, van der Kraan PM, Veerkamp JH, van den Berg WB, Veth RP, van Kuppevelt TH. Cross-linked type Ⅰ and type Ⅱ collagenous matrices for the repair of full-thickness articular cartilage defects--a study in rabbits. Biomaterials 2003;24(19):3255-3263.
    [112]Lu F, Gao JH, Mizuro H, Ogawa R, Hyakusoku H. Experimental study of adipose tissue differentiation using adipose-derived stem cells harvested from GFP transgenic mice. Zhonghua Zheng Xing Wai Ke Za Zhi 2007;23(5):412-416.
    [113]Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, Ji J, Ouyang HW. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials 2013;34(3):713-723.
    [114]Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA, Benhaim P. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 2007; 13(7):1615-1621.
    [115]Izal I, Aranda P, Sanz-Ramos P, Ripalda P, Mora G, Granero-Molto F, Deplaine H, Gomez-Ribelles JL, Ferrer GG, Acosta V, Ochoa I, Garcia-Aznar JM, Andreu EJ, Monleon-Pradas M, Doblare M, Prosper F. Culture of human bone marrow-derived mesenchymal stem cells on of poly(L:-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surg Sports Traumatol Arthrosc 2012; PMID:22864678.
    [116]Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004;22(5):560-567.
    [117]Gabler F, Frauenschuh S, Ringe J, Brochhausen C, Gotz P, Kirkpatrick CJ, Sittinger M, Schubert H, Zehbe R. Emulsion-based synthesis of PLGA-microspheres for the in vitro expansion of porcine chondrocytes. Biomol Eng 2007;24(5):515-520.
    [118]Endres M, Neumann K, Schroder SE, Vetterlein S, Morawietz L, Ringe J, Sittinger M, Kaps C. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects. Tissue Cell 2007;39(5):293-301.
    [119]Mehlhorn AT, Zwingmann J, Finkenzeller G,Niemeyer P, Dauner M, Stark B, Siidkamp NP, Schmal H. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 2009; 15(5):1159-1167.
    [120]Mobasheri A, Csaki C, Clutterbuck AL, Rahmanzadeh M, Shakibaei M. Mesenchymal stem cells in connective tissue engineering and regenerative medicine:applications in cartilage repair and osteoarthritis therapy. Histol Histopathol 2009;24(3):347-366.
    [121]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677-689.
    [122]Garcia-Castro J, Trigueros C, Madrenas J, Perez-Simon JA, Rodriguez R, Menendez P. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 2008;12(6B):2552-2565.
    [123]Schmitt B, Ringe J, Haupl T, Notter M, Manz R, Burmester GR, Sittinger M, Kaps C. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 2003;71(9-10):567-577.
    [124]De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003;174(3):101-109.
    [125]Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids:a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003;48(2):418-429.
    [126]Murakami S, Kan M, McKeehan WL, de Crombrugghe B. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 2000; 97(3):1113-1118.
    [127]Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 2001;98(14):7841-7845.
    [128]Trippel SB. Growth factor inhibition:potential role in the etiopathogenesis of osteoarthritis. Clin Orthop Relat Res 2004;(427 Suppl):S47-52.
    [129]Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 2000;18(5):773-780.
    [130]Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G. In vitro generation of osteochondral composites. Biomaterials 2000;21(24):2599-2606.
    [131]Perera JR, Gikas PD, Bentley G. The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 2012;94(6):381-387.