玉米遗传缺陷性空秆的发生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2011年-2013年在沈阳农业大学南试验基地(北纬41。49’,东经123。34’)进行。以易空秆和不易空秆的成对近等基因系沈农98A和沈农98B,易空秆杂交种东单90、东单80,不易空秆杂交种郑单958为试材,在遮荫胁迫处理下,研究比较两种类型品种(系)对弱光胁迫的敏感性差异。明确引起玉米空秆的弱光胁迫时期,探讨不同遮荫胁迫及光照转换后光合速率及荧光特性的动态适应性变化,以期解释寡照天气引起弱光敏感型玉米发生异常性空秆的生理机制,为耐密植(耐荫)玉米新品种选育及对弱光敏感型品种鉴定技术体系的构建奠定基础。主要研究结果如下:
     1.沈农98A、东单80和东单90属于容易发生空秆的自交系和杂交种即这里所说的空秆型品种(系),其中沈农98A是与不空秆自交系沈农98B相对应的近等基因系。与不空秆品种(系)相比,空秆型品种(系)在三方面显示出明显差异:一是在相同的光胁迫强度下,发生空秆的比率大大高于不空秆型品种(系);二是诱发空秆的光胁迫强度低于不空秆型品种(系);三是诱发空秆的光胁迫强度范围清晰明显。进一步证实了玉米中遗传缺陷性空秆的存在。
     2.抽雄至吐丝末期是玉米遗传缺陷性空秆的弱光敏感时期。此期的弱光胁迫将产生大量不吐丝或吐丝严重不良而形成空秆,其中吐丝株数降低是弱光敏感品种(系)大量空秆的主要原因。诱发具有空秆遗传缺陷的自交系沈农98A空秆基因表达的遮荫胁迫强度为38%遮荫胁迫;诱发正常自交系沈农98B和昌7-2空秆的遮荫胁迫强度范围应为38%-60%遮荫,即遮荫38%以2上且接近38%的光照胁迫是区分沈农98B、昌7-2与沈农98A的光强界限。3个杂交种中,郑单958对弱光的适应性相对较强,特别是75%遮荫时东单90和东单80基本都空秆,而郑单958空秆率只有50%。
     3.遮荫使玉米雌穗幼穗发育迟缓、变短、变细,穗粒数减少、败育粒数增加;雄穗主轴长、第一分枝数、第一分枝长度和雄小穗总数大幅度下降,并随遮荫强度的增加而加重,易空秆品种(系)的反应更为强烈;株高对遮荫的反应较复杂,轻度遮荫(38%遮荫)可以促进株高的增加,但长时期重度遮荫(75%遮荫)却会降低株高。此外,遮荫胁迫还会使玉米叶面积、比叶重、叶片各部分干重降低,茎秆变细,茎秆强度下降。
     4.不同自交系对弱光的适应性差异较大,其表现由自交系对弱光的敏感性所决定。不论是在自然光照还是遮荫胁迫下,弱光敏感型自交系沈农98A的净光合速率均低于沈农98B。38%遮荫的光照胁迫是导致弱光敏感型自交系沈农98A与其近等基因系沈农98B产生明显差异的界限光强。此外,弱光敏感型品种(系)的叶绿素含量总体上也低于不敏感型品种(系)。
     5.遮荫及光照转换对玉米的叶绿素荧光参数有明显影响。遮荫处理后,弱光敏感型自交系沈农98A的最大光化学效率(Fv/Fm)、非循环光合电子传递速率(ETR)、实际光化学效率(φ)psn)和光化学猝灭系数(qP)始终低于沈农98B。恢复光照后,两个自交系的净光合速率(PN)能很快恢复到正常光照的水平,且除沈农98B的qP低于对照外,其余参数均高于对照。弱光敏感型自交系沈农98A的叶绿素荧光参数均低于不敏感型自交系沈农98B,表明沈农98B的对光照转换的适应能力要优于沈农98A。
The experiment was conducted on the south farm of Shenyang Agricultural University (41°49'N,123°34'E) from2011-2013, which is classified as a north temperate climate. The experiment applied a split-plot experimental design with inbred lines as the main plots and shading intensities as subplots. Low-light sensitivity differences of different types of varities and lines to shade stresses were compared by using paired near-isogenic line of vulnerable and invulnerable barren stalk inbred lines of Shennong98A and Shennong98B, vulnerable barren stalk hybrids of Dongdan90and Dongdan80, and invulnerable barren stalk hybrid Zhengdan958, to make explicit the key stress period inducing barren stalks, to explore dynamic adaptive changes in the photosynthetic rate and also fluorescence characteristics to different shade stresses and after light intensity transfer. The experiment also aimed to explain the photosynthetic characteristics of barren stalk of low-light-sensitive inbred lines when exposed to limited light conditions. The main results are followed:
     1. Pairs of near-isogenic line Shennong98A and Shennong98B are developed by the Institute of Specialty Corn of Shenyang Agricultural University. Shennong98A is a barren-stalk defective inbred line, and Dongdan80and Dongdan90are barren-stalk defective hybrids with barren stalk under weak light conditions. They are prone to barren stalks under weak light conditions. Compared with nonbarren-stalk varieties (or lines), barren-stalk varieties (or lines) show significant differences in three aspects:the ratio of barren-stalk is much higher than the barren-stalk varieties (or lines) under the same light intensity, light intensities induced barren-stalks are lower than the light of nonbarren-stalks, critical light intensity induced barren-stalks are clear. It further confirme the existence of genetic defect barren stalk of maize.
     2. The low-light-sensitive stage inducing genetic defect barren stalk of maize is from tasseling to the end of silking stage. At this stage, weak light stress will generate a large number of barren stalks because of non-silking. The shade stress inducing gene expression of the genetic defect barren stalks of Shennong98A is38%. Shade tolerance of Shennong98B and Chang7-2are similar, whose stress intensities should be between38%and60%. That is to say, more than38%shade or close to38%shade is the light intensity limit to distinguish Shennong98B, Changqi-2and Shennong98A. Zhendan958has the better adaptation ability to weak light condition in three hybrids. There are significant differences in three hybrids under the75%shade. Dongdan90and Dongdan80are basically barren stalks under the75%shade, but Zhengdan958is only50%.
     3. Shade stresses could make young female ear shorter and thinner, decrease grains per ear, and increase the number of abortive grains. The spindle length of tassel, the first branch numbers, the first branch lengh, and total of male floret numbers decreased with the increase of shade intensity and the reactions of easy barren stalk varieties were much more obvious, even caused100%barren stalk led by female ear agenesis. The reaction of plant height to shade was more complexed.38%shade could promote the increase of plant height, but75%shade for a long period would reduce plant height. In addition, shade stresses also can reduce leaf area, specific leaf weight, straw stiffness and the dry matter of stem, leaf, sheath.
     4. There were large differences in the weak-light adaptation of different inbred lines, and its performance was determined by the weak-light sensitivety of inbred lines. Whether in natural light or under shade stresses, the net photosynthetic rate of low-light sensitive inbred line Shennong98A was lower than Shennong98B.38%shade is the light intensity limit to distinguish the differences of Shennong98A and Shennong98B. In addition, chlorophyll content of weak-light sensitive varieties (or lines) was lower than insensitive varieties (or lines).
     5. The effects of shading on the fluorescence parameters of maize were obvious. The noncyclic photosynthetic electron transport rate (ETR) and nonphotochemical quenching (NPQ) of maize were significantly reduced while maximum photochemical conversion efficiency (Fv/Fm), actual photochemical efficiency (φpsn) and photochemical quenching (qP) increased after shading, with effective degrees exacerbated with increases in shade intensity. Upon removal of the shading treatment, NPQ increased and Fv/Fm,φpsu, qP and ETR were restored. Photosynthetic characteristics and their differences are important photosynthetic physiological indexes for identifying barren stalk and nonbarren stalk lines. The PN and fluorescence parameters of the barren-stalk line Shennong98A were lower than that of the nonbarren stalk line Shennong98B, both under a shade and nonshade environment, indicating that the light adaptability of Shennong98B is better than Shennong98A.
引文
1.蔡昆争,骆世明.1999.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,10(2):193-196.
    2.曹广才,吴东兵,陈贺芹,等.2004.温度和日照与春播小麦品质的关系.中国农业科学,37(5):663-669.
    3.曹修才,侯廷荣.1995.玉米空秆的成因及防止对策.玉米科学,3(2):37-38.
    4.陈建勋,张慎举.1997.田伟.夏玉米空秆原因调查试验及预防措施.玉米科学,5(4):41-44.
    5.程方民,张篙午.1999.水稻籽粒灌浆过程中稻米品质动态变化及温度影响效应.浙江大学学报(农业与生命科学版),25(4):347-350.
    6.程宁辉,胡建广,赵相山,等.1997.光照和黑暗条件下大豆和玉米基因表达差异的初步研究.复旦大学学报(自然科学版),36(5):524-530.
    7.东先旺,辛淑亮.1991.光温条件对高产夏玉米产量及产量性状的影响.莱阳农学院学报,8(3):192-197.
    8.董丽华,李铭丰,胡立成,等.2000.大豆生殖阶段油分形成与环境关系及提高油分含量途径的研究I光照条件与油分积累的关系研究初报.黑龙江农业科学,6:14-15.
    9.董树亭,高荣歧.1997.玉米花粒期群体光合性能与高产潜力研究.作物学报,23(3):318-325.
    10.董树亭,胡昌浩,岳寿松,等.1992.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系.植物生态学与地植物学学报,16(4):372-377.
    11.董树亭.2006.玉米生态生理与产量品质形成.高等教育出版社,北京.
    12.段建真,郭素英.1992.遮荫与覆盖对茶园生态环境的影响.安徽农学院学报,19(2):189-195.
    13.付景,李潮海,赵久然,等.2009.弱光胁迫对不同基因型玉米光合色素的影响.河南农业科学,43(6):31-34.
    14.付景,李潮海,赵久然,等.2009.玉米品种耐阴性指标的筛选与评价.应用生态学报,20(11):2705-2709.
    15.付景.2009.玉米耐荫性指标的筛选与评价.河南农业大学硕士论文.
    16.高桂芹,郭丽霞.2006.2005年唐山市夏播玉米空秆、畸形穗气象因素分析.玉米科学,14(zk):119-120.
    17.关义新,林葆,凌碧莹.2000.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,26(6):806-812.
    18.关义新,林葆,凌碧莹.2000.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,6(2):152-158.
    19.郭文利,白兴云.1996.1995年的低温冷害和阴害对玉米生产的影响.北京农业科学,14(3):15-17.
    20.韩天富,王金陵,杨庆凯,等.1997.开花后光照长度对大豆化学品质的影响.中国农业科学,30(2):47-53.
    21.韩天富,王金陵,邹继军,等.1995.大豆开花后阶段对开花前不同光照处理的反应.大豆科学,14(4):283-259.
    22.贺明荣,王振林,高淑萍.2001.不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报,27(5):640-644.
    23.赫忠友,谭树义,林力,等.1998.不同光照强度和光质对玉米雄花育性的影响.中国农学通报,14(4):6-8.
    24.黄超.2010.玉米空秆原因及防止措施.现代农业科技,(1):100.
    25.贾立君,杜剑锋.1997.黑龙江省东部玉米空秆原因调查与分析.现代化农业,(3):17-19.
    26.贾士芳,李从峰,董树亭,等.2010.花后不同时期遮光对玉米粒重及品质影响的细胞学研究.中国农业科学,43(5):911-921.
    27.贾士芳.2007.生育后期遮光对玉米产量和品质及生理特性的影响.山东农业大学博士论文.
    28.焦德茂,季本华,严建民,等.1996.水稻对高低光强适应的品种间差异.作物学报,22(6):668-672.
    29.金之庆,葛道阔,郑喜莲.1996.全球气候变化对中国玉米生产潜在影响评价.作物学报,1996,22(5):513-524.
    30.李潮海,刘奎.2002.不同产量水平玉米杂交种生育后期光合效率比较分析.作物学报,28(3):379-383.
    31.李潮海,栾丽敏,郝四平,等.2004.玉米光胁迫研究进展[J].河南农业大学学报,38(1):9-12.
    32.李潮海,栾丽敏,王群,等.2005.苗期遮光及光照转换对不同玉米杂交种光合效率的影响.作物!学报,31(3):381-385.
    33.李潮海,栾丽敏,尹飞,等.2005.弱光胁迫对不同基因型玉米生长发育和产量的影响.生态学报,25(4):824-830.
    34.李潮海,栾丽敏,李宁.2005.苗期遮光和光照转换对不同玉米品种光合特性的影响.作物学报, 31(3):381-385.
    35.李潮海,赵亚丽,杨国航,等.2007.遮光对不同基因型玉米光合特性的影响.应用生态学报,18(6):1259-1264.
    36.李少昆,赵明.1998.不同基因型玉米光合作用强度的调控研究.石河子大学学报(自然科学版),2(3):245-250.
    37.李天,大衫立,山岸彻,等.2006.灌浆结实期弱光对水稻籽粒蔗糖含量及相关酶活性的影响.作物学报,32(6):943-945.
    38.李霞,刘友良,焦德茂.2002.不同高产水稻品种叶片德荧光参数的日变化和光适应特性的关系.作物学报,25(2):145-153.
    39.李霞,严建民,季本华,等.1999.光氧化和遮荫条件下水稻的光合生理特性的品种差异.作物学报,25(3):301-305.
    40.李永庚,于振文,梁晓芳,等.2005.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,29(5):807-513.
    41.刘刚,王当.2010.1951-2008年沈阳市温光水气候变化特征分析.安徽农业科学,38(30):7108-17110,17138.
    42.刘国顺,赵献章,韦凤杰,等.2007.旺长期遮光及光照转换对不同烟草品种光合效率的影响.中国农业科学,40(10):2368-2375.
    43.刘贤赵,康绍忠,邵明安.2000.土壤水分与遮阴水平对棉花叶片光合特性的影响研究.应用生态学报,11:377-381.
    44.刘贤赵,康绍忠.2000.变水处理与短期遮阴对作物水分利用效率的影响.应用基础与工程科学学报,8:148-153.
    45.陆长梅,吴国荣,周长芳,等.2000.光照对植物SOD活性的影响.南京师大学报(自然科学版),23(3):96-99.
    46.栾丽敏.2003.遮光对不同基因型玉米产量和光合特性的影响.河南农业大学硕士论文.
    47.马达鹏,陶大云,刘建昌.1990.本田期连续遮荫对不同叶色水稻品种光合特性的影响.耕作与栽培,(4):57-59.
    48.毛壁君.1981.齐穗后遮光对不同熟期水稻品种谷粒充实的影响.广东农业科学,6:12-15.
    49.牟会荣,姜东,戴廷波,等.2008.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,41(2):599-606.
    50.彭长连,林植芳,林桂珠.2000.玉米不同叶位叶片对光氧化的敏感性.植物生理学通讯,36(1):30-32.
    51.任万军,,杨文钮,徐精文,等.2002.始穗后弱光对不同基因型水稻叶片特性的影响.四川农业大学学报,20(3):205-208.
    52.任万军,杨文钮,徐精文,等.2003.弱光对水稻籽粒生长及品质的影响.作物学报,29(5):785-790.
    53.任万军,杨文钮,张国珍,等.2003.弱光对杂交稻氮素积累、分配与子粒蛋白质含量的影响.植物营养与肥料学报,9(3):288-293.
    54.沈秀瑛,戴俊英,胡安畅,等.1993.玉米群体冠层特征与光截获及产量关系的研究.作物学报,19(3):246-252.
    55.史建国,崔海岩,赵斌,等.2013.花粒期光照对夏玉米产量和籽粒灌浆特性的影响.中国农业科学,46(21):44274434.
    56.史振声,等.2010.辽宁地区中熟、中晚熟玉米品种的优势性分析.中国种业,12:55-57.
    57.史振声,李凤海,张世煌,等.2011.极端气候条件下辽宁省晚熟玉米品种的风险性评价.玉米科学,19(5):100-104,109.
    58.史振声,孙萌,李凤海,等.2010,辽宁西部地又玉米密植潜力研究.玉米科学,18(4):99-102.
    59.史振声,于延波,李凤海,等.2010.密植型玉米品种在辽宁省成功推广给我们的启示.辽宁农业科学,(1):40-42.
    60.史振声,杨扬,李凤海,等.2010.玉米品种丹玉39的增产潜力研究.种子,29(3):72-74.
    61.史振声,张飞.2009.高秆稀植大穗型玉米的密植潜力研究.玉米科学,7(20):116-119.
    62.史振声,张世煌,李凤海,等.2008.辽宁中熟、中晚熟与晚熟玉米品种的产量性能比较与分析.玉米科学,16(6):6-10.
    63.史振声,张喜华,吴玉群,等.2006.2005年辽宁省玉米减产的主要因素分析.辽宁农业科学,(5):19-21.
    64.史忠良,马爱萍,仇松英.1998.光照强度对小麦不同品种结实率及千粒重的影响.山西农业科学,26(4):16-18.
    65.寿森炎,杨信廷,朱祝军,等.2000.氮素形态和光照强度对番茄生长及抗氧化酶活性的影响.浙江大学学报(农业与生命科学版),26(5):500-504.
    66.宋凤斌,姚运生.1995.长春地区玉米的光温水生产潜力及增产途径.吉林农业科学,1995,1:92-95.
    67.孙君明,丁安林,沈黎明.1998.光照对大豆幼苗组织中异黄酮含量和分布的影响.植物学报,40(11):1015-1021.
    68.王晨阳,郭天财,阎耀礼,等.2004.花后短期高温胁迫对小麦叶片光合性能的影响.作物学报,30(1):88-91.
    69.王东峰,张超.2007.玉米空秆的产生原因及防止措施.安徽农学通报,13(17).
    70.王庆材,孙学振,宋宪亮,等.2006.不同棉铃发育时期遮荫对棉纤维品质性状的影响.作物学报,32(5):671-675.
    71.王庆材,王振林,宋宪亮,等.2005.花铃期遮荫对棉纤维品质的影响.应用生态学报,16(8):1465-1468.
    72.王秀萍,刘天学,李潮海,等.2010.遮光对不同株型玉米品种农艺性状和果穗发育的影响.江西农业科学,22(1):5-7.
    73.王艳,米国华,陈范骏,等.2001.玉米根系形态对光照、氮水平反应的基因型差异.土壤肥料,3:12-16.
    74.王洋,齐晓宁,邵金峰,等.2008.光照强度对不同玉米品种生长发育和产量构成因素的影响.吉林农业大学学报,30(6):759-773.
    75.于宇菲.2009.高密度栽培对玉米高产稳产的影响.杂粮作物,29(6):393-394.
    76.王玉贞,刘志全.2000.玉米高产与群体整齐度间关系调查分析.玉米科学,8(2):43-45.
    77.王志新.2004.遮光对大豆产量及品质影响的研究.大豆科学,23(1):4144.
    78.王忠,顾蕴洁,李卫芳,等.1997.玉米胚乳的发育及其养分输入的途径.江苏农学院学报,18(3):1-7.
    79.吴智全.1991.春玉米光温生产潜力研究.河北农作物研究,(3):21-22.
    80.武晓玲,张丽君,聂邵仙,等.2013.弱光对大豆苗期生长及光合荧光特性的影响.大豆科学,33(1):53-57.
    81.许大全,张玉忠,张荣铣.1992.植物生理学通讯.光合作用的光抑制,28(4):237-243.
    82.许大全.1997.光合气孔限制分析的一些问题.植物生理学通讯,33(4):241-244.
    83.严建民,翟虎渠,万建民,等.2002.儿种重穗型杂交稻的耐荫性差异.江苏农业学报,18(4):193-195.
    84.晏庆九,霍仕平,张芳魁,等.2013.人工模拟阴湿环境对玉米自交系生长发育特性的影响.作物学报,39(12):2253-2261.
    85.杨桄棘.1997.玉米空秆的成因和防止措施.吉林畜牧兽医,(2):39-39.
    86.杨广东,朱祝军.2001.不同光照条件一下缺镁对黄瓜生长及活性氧清除系统的影响.园艺学报,28(5):430-434.
    87.杨联松,孙明,张培江,等.1998.温度、光照对杂交中粳80优121稻米品质的影响.杂交水稻,13(6):23-28.
    88.杨振国,侯凤莲.1997.光照对玉米苯丙氨酸解氨酶活性的影响.吉林林学院学报,13(3):151-153.
    89.易九红,张超凡,黄艳岚,等.2013.遮荫对作物产量和品质的影响及其生理响应研究进展.作物研究.27(1):64-69.
    90.于佩锋,赵海峰.2003.玉米空秆、倒伏的原因及防止措施.吉林农业,(8):14-14.
    91.袁继超,丁志勇,赵超,等.2005.高海拔地区水稻遮光、剪叶疏花对米质影响的研究.作物学报,31(11):1429-1436.
    92.袁刘正,李潮海,王秀萍,等.2008.不同玉米自交系耐阴性比较.玉米科学,16(6):19-23.
    93.曾希柏,青长乐,谢德体,等.2000.作物生长中光照和氮肥施用量的相互关系研究.土壤肥料,37(3):380-386.
    94.张凤路,赵明,王志敏,等.1999.玉米籽粒败育过程的激素变化.中国农业大学学报,4(3):1-4.
    95.张凤路等.2002.玉米雌雄穗开花间隔影响穗粒数的潜在原因研究.玉米科学,10(2):53-55.
    96.张吉旺,董树亭,王空军,等.2006.遮荫对夏玉米产量及生长发育的影响.应用生态学报,17(4):657-662.
    97.张吉旺.2005.光温胁迫对玉米产量和品质及其生理特性的影响.山东农业大学博士学位论文.
    98.张建华,李迎春.1997.光、温、土壤湿度影响玉米生长发育及产量形成的模拟模式.于旱地区农业研究,15(2):8.
    99.张烈.2001.玉米不同基因型耐密、耐荫、耐瘩特性及遗传相关研究.山东农业大学博十后研究工作报告.
    100.张守华,孙克仕,等.2008.玉米灌浆异常原因分析及防止措施.现代农业科技,(24).
    101.张万春.2010.夏玉米空秆及倒伏原因与防止对策.安徽农学通报,16(10):93-93,196.
    102.张燕芝.1993.玉米种植密度对人:工遮阴的反应.国外农学:杂粮作物,2:11-14.
    103.张养利,李进仓,张德仓.2009.16个玉米新品种叶龄指数与穗分化关系的试验初报.陕西农业科学,(5):14-16.
    104.张永江,李少昆,胡昌浩,等.2002.玉米不同基因型叶片PSII光能转换效率的比较研究.中国农业科学,35(6):621-625.
    105.张永亮,史振声,等.2008.稀植与密植型玉米品种对密度的反应差异.中国种业,159(6):30-32.
    106.张永亮,史振声,等.2008.玉米不同株型品种的栽培密度研究进展.玉米科学,16(增)124-127.
    107.赵明,西在松,R Ishhill,等.2003.干旱和遮光条件下玉米非光化学荧光猝灭的变化和组成的研究.作物学报,29(1):59-62.
    108.赵久然,陈国平.1990.不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察.中国农业科学,23(4):28-34.
    109.赵明,丁在松,陈鹏,等.2003.干旱和遮光条件下玉米非光化学荧光淬灭的变化和组成的研究.作物学报,29(1):59-62.
    110.赵明,李少昆,王树安,等.1999.我国常用玉米自交系光和特性的聚类分析.作物学报,25(6):733-741.
    111.赵全梅,栗锡令.1993.气温光照对农作物产量的影响.国土与自然资源研究,1:44-47.
    112.郑志广.2003.光温条件对水稻结实及干物质生产的影响.北京农学院学报,18(1):13-18.
    113.钟雪梅,史振声,李凤海,等.2012.遮荫对玉米遗传缺陷性空秆的诱发效果研究.玉米科学,20(4):58-63.
    114.周广洽,徐孟亮,李训贞.1997.温光对稻米蛋白质及氨基酸含量的影响.生态学报,17(5):537-542.
    115.周卫霞,董朋飞,王秀萍,等.2013.弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响.作物学报,39(10):1826-1834.
    116.周卫霞,李潮海,刘天学,等.2013.弱光胁迫对不同耐荫型玉米果穗发育及内源激素含量的影响.生态学报,33(14):4315-4323.
    117.周卫霞,王秀萍,穆心愿,等.2013.弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响.作物学报,39(11):2065-2073.
    118. Hashemi-Dezfouli, S.J.Herbert.1992. Intensifying Plant Density Response of Com with Artificial Shade. Agron.J,84:547-551.
    119. A.J.Reed, G.W.Singletary, J.R.Schussler, D.R.Williamson, A.I.Christy.1988. Shading Dry Matter and Nitrogen Partitioning, Kernel Number and Yield of Maize. Crop Sci.,28:819-825.
    120. Aluko,B,K. K,S,fischer,1988. The Effeet of Changes of Assimilate Supply Sround Flowering on Grain Sink Size And Yield of Maize (Zea May L.) Cultivars of Tropical and Temperature Adaptation. Aust, J, Agric Res.,39:152-161.
    121. Andrade,F.H., S.A.Uhart, M.I.Frugone.1993. Intercepted Radiation at Flowering and Kernel Number in Maize:Shade Versus Plant Density Effeets. Crop Sci.,33:482-485.
    122. Andrew J R, Singletary G W, Schussler J R.1988. Shading Effeets on Dry Matter and Nitrogen Partitioning, Kernel Number, and Yield of Maize. Crop Sci.,28:819-825.
    123. Andrew J. R, George W. S.1989. Roles of Carbohydrate Supply and Phytohomones in Maize Kernel Abortion. Plant Physiol,91:986-992.
    124. Andrew, R. H., M. G Burns.1978. Effects of Shade Applied at Consecutive Periods on Sweet Com Development. J. Amer. Soc. Hort. Sci.,103(5):658-661.
    125. Barber J.1995. Molecular Basis of the Vulnerability of Photsystem to Damage by Light. Australian Joumal of Plant Physiology,22(2):201-208.
    126. Begna S H, Hamilton R 1, Dwyer L M, Stewart D W, Smith D L.1999. Effects of Population Density on the Vegetative Growth of Leafy Reduced-statureMaize in Short-season Areas. J Agron Crop Sci., 182(1):49-55.
    127. Bjirkman O, Demming B.1987. Photon Yield of O Evolution and Chlorophyll Goueoescence Character at 77K Among Vascular Plants of Diverse Origins. Planta,170:489-504.
    128. Earl H J, Tollenaar M.1999. Using Chlorophyll Fluorometry to Compare Photosynthetic Performance of Commericial Maize (Zea mays L.) Hybrids in the Field. Field Corp Reseacrh,61:201-210.
    129. Earley E B, Mcllrath W O, Seif R D, et al.1967. Effects of Shade Applied at Different Stages of Plant Development on Corn (Zea mays L.) Production. Crop Sci.,7:151-156.
    130. Earley E B, Miller R J, Reichert G. L.1966. Effects of Shade of Maize Production under Field Conditions. Crop Sci., (6):1-7.
    131. Fay P A, kapp AK.1998. Responses to Short-term Reductions in Light in Soybean Leaves:Effeets of Leaf Position and Drought Stress. Plant Sci.,159:805-811.
    132. Fischer. F.A.1985. Number of Kernels in Wheat and the Influence of Solar Radiation and Temperature, J.AgricSci.,105:447-461.
    133. Gerakis P A, Parakosta-tasopoulou D.1980. Effects of Dense Planting and Artificial Shading on Five Maize Hybrids. Agricultural Meteorology,21(2):129-137.
    134. Govidjee.2002. A Role for a Light-harvesting Antenna Complex of Photosystem II in Photo Protection. The Plant Cell,14:1663-1667.
    135. Hiyane R, Hiyane S, Tang A C, et al.2010. Sucrose Feeding Reverses Shade-induced Kernel Losses in Maize. Ann Bot,106:395-403.
    136. J. R. Kiniry, J. T. Ritchie.1985. Shade-sensitive Interval of Kernel Number of Maize. Agron.J. 77:711-715.
    137. Jun Hidema, Amane Makino, Yasuko Kurita, tadahiko Mae, Kunihiko Ojima.1992. Changes in the Levels of Chlorophyll and Light-Harvesting Chlorophyll a/b Protein of PS Ⅱ in Rice Leaves Aged under Different Irradianees from Full Expansion through Senescence. Plant Cell Physiol, 33(8):1209-1214.
    138. Kiniry J R, Tischler C R, Roserthal W D, et al.1992, Nonstructural Earbohydrate Utilization by Sorghum and Maize Shaded during Grain Growth. Corp Sci.,32(1):131-137.
    139. Kobata T, Sugawara S, Takatu S.2000. Shading during the Early Grain Filling Period Does not Affect Potential Grain Dry Matter Increase in Rice. Agron. J.,92:411-417.
    140. Krause G H, Somersalo S, Zumbusch E, et al.1990. On the Mechanism of Photoinhition Chlorophasts. Relationship between Changes in Fluorescence and Activity of Photosystem. Plant Physiol,136: 472-479.
    141. Krause G H, Weis E.1991. Chlorophyll Fluorescence and Photosynthesis:The Basics. Annual Review of Plant Physiology and Plant Molecular Biology,42:313-349.
    142. Lim S.J.1995. Variation of Amylogram Properties and Its Relationship with Other Eating Quality Characteristics in Rice. Jpn J Crop Sci.,27(3):268-275.
    143. Mbeme D M N, Andrade F H.1986. The Effect of Shade Stress on the Performance of Corn for Silage Versus Grain. Can. Plant Science.66(1):53-60.
    144. Mitchell R A C, Gibbard C L, Mitchell V J.1996. Effects of Shading in Different Developmental Phases on Biomass and Grain Yield of Winter Wheat at Ambient and Elevated CO2. Plant Cell And Environment,19:615-621.
    145. Moss D.N., H.T.stinson.1961. Differential Response of Com Hybrid to Shade. Crop Sci.,1:416-418.
    146. Nakata, A. Kono Y.1990. The Effects of Exposure to Light on the Development of the Root System of Rice Seedlings. Report of the Tokai Branch of Crop Science Society of Japan,10:27-28.
    147. P. K. Grookston, K. J. Trehame, P. Ludford, J. L. ozbun.1975. Response of Beans to Shading. Crop Sci.,15:412-416.
    148. Pellerin, S. S.demotes-mainard.1991. Effect of Competition for Light Between Plants on the Root Shoot Ratio and the Number of Adventitions Root of Maize, Symposium Root Ecology and Its Practice Application Vienna,65-68.
    149. R. H. Bohning, Christel A. Bumside.1956. The Effect of Light Intensity on Rate of Apparent Photosynthesis in Leaves of Sun and Shaded Plant. Am J Bot.,43:557-561.
    150. Reed A J, Singletary G W, Schussler J R.1988. Shading Effects on Dry Matter and Nitrogen Partitioning, Kernel Number, and Yield of Maize. Crop Sci.,28(5):819-825.
    151. Samarraie S M, Osman H E, Mian H R, et al.1990. Shade Effects on Growth and Biomass Production of Corn and Sunflower in Western Saudi Arabia. Agric. Sci.,2(1):51-59.
    152. Setter T L, Flannigan B A, Melkonian J.2001. Loss of Kernel Set Due to Water Deficit and Shade in Maize:Carbohydrate Supplies, Abscisic Acid, and Cytokinins. Crop Sci.,41:1530-1540.
    153. Sanguineti M C, M M giuliani, Ruberose.1998. Root and Shoot Traits of Maize Hibred Lines Grown in the Field in Hydroponic Culture and Their Relationships with Root Lodging. Maydica.43:211-216.
    154. Schoper, J.B., R.RJoheson, R.J. Lambert.1982. Maize Yield Response to Increased Assimilate Supply. Crop Sci.,22(6):1184.
    155. Schreiber V, Schliwa U, Bilger W.1986. Continuous Recording of Photochemical and Non-photochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluoremeter. Photosynth Res.,10:51-62.
    156. Struik P C.1983. The Effects of Short and Long Shading, Applied during Different Stages of Growth, on the Development, Productiviry and Quality of Forage Maize (Zea May L.). Netherlands Journal of Agricultural Science,31(2):101-124.
    157. Tim L. Brian A. Flannigan.1986. Sugar and Starch Redistribution in Maize in Response to Shade and Ear Temperature Treatment. Crop Sci.,26:575-579.
    158. Tim L., Setter Brian A., Flannlgan, Jeff Melkonian.2001. Loss of Kernel Set Due to Water Deficit and Shade in Maize:Carbohydrate Supplies, Abscisic Acid, and Cytokinins. Crop Sci.,41:1530-1540.
    159. Tim L., Setter Brian A., Flannlgan.1989. Relationship between Photosynthate Supply and Endosperm Development in Maize. Annals of Botany,64:481-487.
    160. Tollenaar M, Lee E A.2002. Yield potential, Yield Stability and Stress Tolerance in Maize. Field Crops Res.,88:161-169.
    161. Tollenaar, M., Daynard, T. B.,1978. Kernal Growth and Development at Two Positions on the Ear of Maize (Zea mays L.) Can. J. Plant Sci.,58:189-197.
    162. UhartS A, Andrade F H.1995. Nitrogen and Carbon Accumulation and Remobilization during Grain Filling in Maize under Different Source/Sink Ratios. Crop Sci.,35(1):183-190.
    163. Wardlaw I F.,1970. The Early Stages of Grain Development in Wheat:Response to Light and Temperature in Single Variety. Aust. J. Biol, Sci.,23:765-774.