配位聚合物的合成、结构及对气态污染物的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在广西高校科研项目“聚硫醚蔗渣纤维素改性及对持久性污染物的捕集(201203YB061)'’和广西民族大学科研项目“金属有机骨架材料的合成、表征及吸附性能研究(2011MDYB041)”的支持下,针对我国的酸雨(S02)及温室气体(C02)等大气污染问题,用水热法合成新型金属有机骨架材料(Metal-organic Frameworks, MOFs),并将其作为新型吸附剂,吸附典型气态污染物C02和S02,探究MOFs材料的吸附性能、吸附动力学方程、吸附热力学参数和吸附机理,开展新材料在气态污染物控制方面的交叉应用研究,以期为我国大气污染预防和治理提供相关的理论支撑和技术指导。论文的主要内容和研究结果如下:
     (1)以1,3,5-苯三甲酸为有机配体,以Zn(NO3)2·6H2O为金属离子,采用水热合成法得到配位聚合物[ZnNa(H3btc)(H2O)2]·(H2O)2。X-射线单晶衍射数据显示,该配位聚合物属于三斜晶系,Znz+离子为五配位双四面体模式,与五个氧原子配位,Na原子有两种均采用扭曲的正八面体配位模式,二个Na原子与两个配位水配位,四个羧酸配位;红外光谱图显示,3155cm-1处有结合O-H的伸缩振动峰,说明配位聚合物中存在水分子并形成了氢键,1613cm-1处有C=O的伸缩振动吸收峰,说明羧基已去质子化,配位成功;比表面积和孔隙分析显示,该配合物BET比表面积为181.92m2/g,平均孔径为1.223840nm,孔隙部分为中孔,部分为微孔;热重分析曲线显示了配合物经历了二次热失重,第一次发生在50℃~200℃,失重量约为20%,第二次失重发生在350℃-580℃,第二阶段失重量较多(约占50%),说明该配合物结构较稳定,低于350℃时不坍塌分解。
     (2)在P=20bar,温度分别为20℃、40℃和60℃时,通过配合物[ZnNa(H3btc)(H2O)2]·(H2O)2吸附CO2和8O2气体动力学测试可知,升高温度可缩短吸附时间,但同时也降低了该配合物对CO2和SO2饱和吸附量,拟二级动力学方程能很好地描述[ZnNa(H3btc)(H2O)2]·(H2O)2对C02和S02吸附过程,其反应活化能Eα分别为5.062123和5.182881kJ/mol,这说明该配合物对CO2和SO2的吸附属于物理吸附过程。通过[ZnNa(H3btc)(H2O)2]·-(H20)2吸附C02和S02气体PCT测试可知,该配合物对C02和S02的吸附等温线可用Langmuir等温吸附模型很好的拟合,说明该配合物对C02和802的吸附是单分子层吸附;AH°分别为-22.3734和-7.18521kJ/mol,说明吸附是放热过程;△S°分别为-90.02216不-40.55655J/mol·k,说明气态污染物从气相转到固相,其自由度减小了,吸附减小了固相-气相界面上气态污染物的无序程度;二个吸附反应的吉布斯自由能-20kJ/mol<△G°<0,说明该吸附过程是物理吸附过程,且能自发地达到平衡。
     (3)以1,2-苯二胺和2-吡啶甲酸为有机配体原料,以ZnSO4为金属离子,采用水热合成配位聚合物C12H9N3O10Zn2。X-射线单晶衍射数据显示,该配位聚合物属于Monoclinic晶系,Zn2+采用了扭曲的正八面体配位模式,与咪唑羧酸一侧形成了一个五元螯合环,并与另一个配体羧酸上的一个O原子配位,该O原子同时与两个Zn2+配位,Zn2+还与草酸形成另外一个五元螯合环,剩余一个配位点由配位水来填充。红外光谱图显示,3031cm-1处有结合O-H的伸缩振动峰,说明该配位中存在水分子并形成了氢键;1645cm-1处有与金属配位的C=O的伸缩振动吸收峰,说明羧基已去质子化,配位成功;比表面积和孔隙分析显示,该配合物BET比表面积为316.86m2/g,平均孔径为0.998268nm,孔隙部分为中孔,部分为微孔;热重分析显示了该配合物经历了二次热失重,第一次发生在30℃-220℃左右,失重量约为5%,第二次失重发生在300℃-700℃,这一阶段失重量较多(约占40%),说明配合物C12H9N3O10Zn2稳定性一般,温度高于220℃时,结构开始坍塌。
     (4)在P=20bar,温度分别为20℃、40℃和60℃时,通过配合物C12H9N3O10Zn2吸附CO2和SO2气体动力学测试可知,升高温度可缩短吸附时间,但同时也降低了该配合物对CO2和SO2饱和吸附量,拟二级动力学方程能很好地描述C12H9N3O10Zn2对CO2和SO2吸附过程,其反应活化能Eα分别为9.39578和15.8717kJ/mol,这说明该配合物对CO2和SO2的吸附属于物理吸附过程。通过C12H9N3O10Zn2吸附CO2和SO2气体PCT测试可知,该配合物对CO2和SO2的吸附等温线可用Langmuir等温吸附模型很好的拟合,说明该配合物对CO2和SO2的吸附是单分子层吸附;△H°分别为-15.4971和-14.0894kJ/mol,说明吸附是放热过程;△S°分别为-69.19102和-65.47137J/mol·k,说明气态污染物从气相转到固相,其自由度减小了,这说明吸附减小了固相-气相界而上气态污染物的无序程度;二个吸附反应的吉布斯自由能-20kJ/mol<△G°<0,说明该吸附过程是物理吸附过程,且能自发地达到平衡。
In support of Guangxi Universities Scientific Research Project (Polythioether bagasse cellulose modified and capture persistent pollutants.201203YB061) and Guangxi University for Nationalities Research Foundation (A study on synthesis, structure and adsorption properties of metal-organic frameworks.2011MDYB041). As to air pollution of CO2and SO2in China, we synthesize a new Metal-organic Frameworks (MOFs) by hydrothermal method, and take it as a new adsorbent to adsorption typical gaseous pollutants, CO2and SO2. Explore the adsorption properties, adsorption kinetics equation, adsorption thermodynamic parameters and adsorption mechanism, of MOFs. And carry out cross-application of new materials in the control of gaseous pollutants in order to provide theoretical support and technical guidance for the prevention and control of air pollution in China. The main contents and results of the paper are as follows:
     (1) Take1,3,5-Benzenetricarboxylic acid as organic ligand and Zn(NO3)2·6H2O as metal ions, synthesize of [ZnNa(H3btc)(H2O)2](H2O)2of coordination polymers. X-ray single crystal diffraction data show, the coordination polymer belongs to the triclinic crystal system, Zn2+is pentacoordinated tetrahedral mode and coordinates with five oxygen atoms. The two Na atoms have a distorted octahedral coordination mode, two Na atoms and coordinates with two water ligand and four carboxylic acid ligand; IR spectra show,3155cm-1combined with the O-H stretching vibration, which shows that the water molecules present in the coordination polymers and the formation of hydrogen bonds. The C=O stretching vibration absorption peak at1613cm-1, which shows that the carboxyl deprotonated and Coordinates successfully. Analysis of the specific surface area and pore showed that, the surface area of complexes is large, BET surface area is181.92m2/g, the average pore size is 1.223840nm, one part is the hole, one part is the micropores. Thermogravimetric analysis curve shows that complexes hot weight loss is twice. The first occurred at50℃to200℃, weight loss is of about20%; The second occurred at350℃~580℃, weight loss is of about50%, which shows that the complex structure is more stable and does not decompose below350℃.
     (2) In pressure is20bar and temperature is20℃,40℃and60℃,[ZnNa(H3btc)(H2O)2](H2O)2adsorption of CO2and SO2gas dynamics test results show that, elevated temperatures can shorten the absorption time, but it also reduces the amount of the complex adsorption of CO2and SO2saturated. The proposed second-order equation can be well described by [ZnNa(H3btc)(H20)2]-(H2O)2adsorption of CO2and SO2, the activation energy were5.062123and5.182881kJ/mol. This shows that the complex adsorption of CO2and SO2in the process of physical adsorption.[ZnNa(H3btc)(H20)2]-(H2O)2adsorption of CO2and SO2gas PCT test results show, adsorption isotherms complexes of can be used Langmuir adsorption isotherm model well fitted, complex adsorption of CO2and SO2is the monolayer adsorption.△H°are-22.3734and-7.18521kJ/mol, The adsorption is an exothermic process.△S°are-90.02216and-40.55655J/mol-k. Gaseous pollutants transfer from the gas phase to the solid phase, the adsorption reduces the degree of disorder of the gaseous pollutants in the solid phase-gas interface.-20kJ/mol<△G°<0, the adsorption process is physical adsorption process, the adsorption reaction can spontaneously reach equilibrium.
     (3) Take1,2-diaminobenzene and2-Picolinic acid as organic ligand and ZnSO4as rnetal ions, synthesize of C12H9N3O10Zn2of coordination polymers. X-ray single crystal diffraction data show, the coordination polymer belongs to the Monoclinic crystal system, coordination mode of Zn2+is distorted octahedral. Zn2+and imidazole carboxylic acid side of the formation of a five-member chelating ring. Zn2+and on another ligand carboxylic acid O atom coordination, Zn2+and on another ligand carboxylic acid O atom coordination. The remaining one with the water. IR cpectra show,3031cm-1combined with the O-H stretching vibration, which shows that the water molecules present in the coordination polymers and the formation of hydrogen bonds. The C=O stretching vibration absorption peak at1645cm-1, which shows that the carboxyl deprotonated and Coordinates successfully. Analysis of the specific surface area and pore showed that, the surface area of complexes is large, BET surface area is316.86m2/g, the average pore size is0.998268nm, one part is the hole, one part is the micropores. Thermogravimetric analysis curve shows that complexes hot weight loss is twice. The first occurred at30℃to220℃, weight loss is of about5%; The second occurred at300℃to700℃, weight loss is of about40%, which shows that the structure of the complex begins to decompose when the temperature is higher than220℃,
     (4) In pressure is20bar and temperature is20℃,40℃and60℃, C12H9N3O10Zn2adsorption of CO2and SO2gas dynamics test results show that, elevated temperatures can shorten the absorption time, but it also reduces the amount of the complex adsorption of CO2and SO2saturated. The proposed second-order equation can be well described by C12H9N3O10Zn2adsorption of CO2and SO2, the activation energy were9.39578and15.8717kJ/mol. This shows that the complex adsorption of CO2and SO2in the process of physical adsorption. C12H9N3O10Zn2adsorption of CO2and SO2gas PCT test results show, adsorption isotherms complexes of can be used Langmuir adsorption isotherm model well fitted, complex adsorption of CO2and SO2is the monolayer adsorption.△H°are-15.4971and-14.0894kJ/mol, The adsorption is an exothermic process.△S°are-69.19102and-65.47137J/mol·k. Gaseous pollutants transfer from the gas phase to the solid phase, the adsorption reduces the degree of disorder of the gaseous pollutants in the solid phase·gas interface.-20kJ/mol<△G°<0,the adsorption process is physical adsorption process, the adsorption reaction can spontaneously reach equilibrium.
引文
[1]Brian Moulton and Michael J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids [J]. Chemical Reviews, 2001,101(6):1629-1658.
    [2]Jesse L.C. Rowsell, Omar M. Yaghi. Metal-organic frameworks:a new class of porous materials [J]. Microporous and Mesoporous Materials,2004,73:3-14.
    [3]O;Keeffe, M; Yaghi, OM. Reticular chemistry-Present and future prospects-Introduction [J]. Journal of Solid State Chemistry,2005,178(8):176-182.
    [4]Thallapally, PK; Tian, J; Kishan, MR, et al., Flexible (Breathing) Interpenetrated Metal-Organic Frameworks for CO2 Separation Applications [J]. Journal of the American Chemical Society,2008,130(50):16842-16843.
    [5]Adeline Y. Robin and Katharina M. Fromm, Coordination Polymer networks with O-and N-donors:What they are, Why and how they are made [J]. Coordination Chemistry Reviews, 2006,250,2127-2157.
    [6]Andrea C. Sudik, Andrew R. Millward, Nathan W. Ockwig, et al., Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra [J] J. Am. Chem. Soc.,2005,127(19):7110-7118.
    [7]Ryan J. Kupplera, Daren J. Timmonsb, Qian-Rong Fanga, et al., Potential applications of metal-organic frameworks [J]. Coordination Chemistry Reviews,2009, 253(23-24):3042-3066.
    [8]冯守华,谭持恒.化学的黄金时代[J].化学通报,1998(7):9-14.
    [9]Werner A. Beitrag zur konstitution anorganischer verbindungen [J]. Zeitschrift fur anorganische und allgemeine Chemie,1893,3:267-330.
    [10]A.Werner, Zeitchrift fur, Anorganische Chemie[J]. Zeitschrift fur anorganische und allgemeine Chemie,1895,9,382.-390.
    [11]A.Werner, Zeitchrift fur Anorganische Chemie[J]. Zeitschrift fur anorganische und allgemeine Chemie,,1899,21,145-159.
    [12]徐志固,现代配位化学[M],北京:化学工业出版社,1987,220.-240.
    [13]唐雯霞,祝世彤,戴安邦,配位化学近期进展[J].化学通报,1991(11):1-5.
    [14]Basolo,F.著,高忆慈等译,无机化学前沿[M],兰州:兰州大学出版社,1988,32-60.
    [15]David M. L. Goodgame, David A. Grachvogel, and David J. Williams, A New Type of Metal-Organic Large-Pore Zeotype[J]. Angew. Chem. Int Ed.,1999,38:153-156.
    [16]Bruser H J and Schwarzenbach D,et al., The crystal structure of prussian blue:Fe4[Fe(CN)6]3-xH2O[J]. Inorg. Chem.,1977,16:2704-2710.
    [17]Hoskins, B.F., Robson, R., Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments, J. Am. Chem. Soc.1989,111,5962-5964.
    [18]Hoskins, B.F., Robson, R., Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments, J. Am. Chem. Soc.1989,111,5962-5964.
    [19] Hoskins, B.F., Robson. R., Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments, J. Am. Chem. Soc.1991,114,2162-2168.
    [20]Wells A F. Three Dimensional Nets and Polyhedra [M]. London:John Wiley,1977,31-40.
    [21]Wells A F. Structural Inorganic Chemistry [M]. New York:Oxford University Press, 1984,33-47.
    [22]Fujita M. and Kwon Y. J. Satoru washizu, et al., Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and4, 4'-bipyridine[J]. J. Am.Chem.Soc.1994,116:1151-1152.
    [23]Hailian Li, Mohamed Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J].Nature,1999, 402,276-279.
    [24]Eddaoudi, M; Kim, J; Rosi, N; Vodak, D; Wachter, J; O'Keeffe, M; Yaghi, OM, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and their Application in Methane Storage[J].Science,2002,295(5554):469-472.
    [25]Barthelet, K; Marrot, J; Riou, D; Ferey, G, A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie International Edition,2002,41(2):281-284.
    [26]Ferey, G; Serre, C; Mellot-Draznieks, C; Millange, F; Surble, S; Dutour, J; Margiolaki, I; A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie International Edition,2004, 43(46):6296-6301.
    [27]Ferey, G; Mellot-Draznieks, C; Serre, C; Millange, F; Dutour, J; Surble, S; Margiolaki, I;A chromium terephthalate-based solid with unusually large pore volumes and surface area Science,2005,309(5743):2040-2042.
    [28]Deng, HX; Doonan, CJ; Furukawa, H; Ferreira, RB; Towne, J; Knobler, CB; Wang, B (Wang, Bo)l; Yaghi, OM;Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science,2010,327(5767):846-850.
    [29]Hailian Li, Mohamed Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J].Nature,1999, 402,276-279.
    [30]Chae, HK; Siberio-Perez, DY; Kim, J; Go, Y; Eddaoudi, M; Matzger, AJ; O'Keeffe, M; Yaghi, OM;A route to high surface area, porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523-527.
    [31]Ferey, G; Mellot-Draznieks, C; Serre, C; Millange, F; Dutour, J; Surble, S; Margiolaki, I; A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
    [32]Furukawa, H; Ko, N;Go, YB; Aratani, N; Choi, SB; Yaghi, OM;Ultrahigh Porosity in Metal-Organic Frameworks[J].Science 2010,329(5990):424-428.
    [33]Mori, W; Takamizawa, S, Microporous materials of metal carboxylates[J]. Journal of Solid State Chemistry,2000,152(1):120-129.
    [34]Rowsell, JLC; Yaghi, OM; Metal-organic frameworks:a new class of porous materials[J]. Microporous and Mesoporous Materials 2004,73(1-2):3-14.
    [35]Eddaoudi, M; Kim, J; Rosi, N; Vodak, D; Wachter, J; O'Keeffe, M; Yaghi, OM; Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-471.
    [36]Furukawa, H; Yaghi, OM;Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications [J]. Journal of the American Chemical Society,2009,131(25):8875-8883.
    [37]Hu, S; Zou, HH; Zeng, MH; Wang, QX; Liang, H;Molecular packing variation of crimpled 2D layers and 3D uncommon 65.8 topology:Effect of ligand on the construction of metal-quinoline-6-carboxylate polymers[Jl. Cryst. Growth & Des.,2008,8 (7):2346-2351.
    [38]Sun, DF; Ke, YX; Mattox, TM; Ooro, BA; Zhou, HC;Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand[J]. Chemical Communications,2005,(43):5447-5449.
    [39]Fang, QR; Zhu, GS; Xue, M; Wang, ZP; Sun, JY; Qiu, SL; Amine-Templated Assembly of Metal-Organic Frameworks with Attractive Topologies [J]. Cryst. Growth & Des.,2008, 8(1):319-329.
    [40]Hailian Li, Mohamed Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J].Nature,1999, 402,276-279.
    [41]Wang, JJ; Gou, L; Hu, HM; Han, ZX; Li, DS; Xue, GL; Yang, ML; Shi, QZ;Ligand and pH-Controlled Zn-II bilayer coordination polymers based on biphenyl-3,3',4,4'-tetracarboxylate [J]. Cryst. Growth & Des.,2007,7(8):1514-1521.
    [42]Blatov, VA; Carlucci, L; Ciani, G; Proserpio, DM;Interpenetrating metal-organic and inorganic 3D networks:a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm,2004,6:377-395.
    [43]Natarajan, S; Mahata, P;Metal-organic framework structures-how closely are they related to classical inorganic structures? [J]. Chemical Society Reviews,2009,38 (8):2304-2318.
    [44]Xiong, RG; You, XZ; Abrahams, BF; Xue, ZL; Che, CM;Enantioseparation of racemic organic molecules by a zeolite analogue [J].Angew. Chem. Int. Ed.,2001,40 (23):4422-4426.
    [45]Pan, L; Olson, DH; Ciemnolonski, LR; Heddy, R; Li, J;Separation of hydrocarbons with a microporous metal-organic framework [J]. Angew. Chem. Int. Ed.,2006, 45(4):616-619.
    [46]Bai, HY; Ma, JF; Yang, J; Zhang, LP; Ma, JC; Liu, YY;Eight Two-Dimensional and Three-Dimensional Metal Organic Frameworks Based on a Flexible Tetrakis (imidazole) Ligand:Synthesis, Topological Structures, and Photo luminescent PropertiesfJ]. Crystal Growth & Design,2010,10(4):1946-1959.
    [47]Sudik, AC; Millward, AR; Ockwig, NW; Cote, AP; Kim, J; Yaghi, OM;Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra[J].J. Am. Chem.Soc.2005, 127(19):7110-7118.
    [48]Serre, C; Millange, F; Thouvenot, C; Nogues, M; Marsolier, G; Louer, D; Ferey, G;Very large breathing effect in the first nanoporous chromium(III)-based solids:MIL-53 or Cr-Ⅲ(OH)center dot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}-(x)center dot H2Oy[J].J. Am. Chem.Soc.2005,124(45):13519-13526.
    [49]O. M. Yaghi, H. Li, T. L. Groy, Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids [J]. J. Am. Chem. Soc.,1996,118,9096-9102.
    [50]Loiseau, T; Muguerra, H; Ferey, G; Haouas, M; Taulelle, F;Synthesis and structural characterization of a new open-framework zinc terephthalate Zn-3(OH)(2)(bdc)(2)·2DEF, with infinite Zn-(μ3-OH)-Zn chains [J]. Journal of Solid State Chemistry,2005,178(3):621-628.
    [51]Paul M. Forster and AnthonyK. Cheetham,Open-framework nickel succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]center dot 2H2O:A new hybrid material with three-dimensional Ni-O-Ni connectivity [J]. Angewandte Chemie International Edition,2002,41(3):457-459.
    [52]Chui, SSY; Lo, SMF; Charmant, JPH; Orpen, AG; Williams, ID;A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science,1999, 283(5045):1148-1150.
    [53]Thomas Devic, Christian Serre, Nathalie Audebrand,Jeˊ ro^me Marrotand Ge'rard Ferey MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area [J]. J. Am. Chem. Soc.,2005, 127(37):12788-12789.
    [54]Kahn, O; Larionova, J; Ouahab, L; Magnetic anisotropy in cyano-bridged bimetallic ferromagnets synthesized from the [Mo(CN)7]4" precursor [J]. Chem. Commun. 1999(11):945-952.
    [55]Hong Zhang, Ximin Wang, Kecong Zhang,Boon K. Teo,Molecular and crystal engineering of a new class of inorganic cadmium-thiocyanate polymers with host-guest complexes as organic spacers, controllers, and templates[J]. Coord Chem. Rev.1999,183, 157-195.
    [56]L. J. Zhang, J.Q. Xu, Z. Shi, et al. Hydrothermal synthesis and characterization of the first oxalate-bta mixed-ligand three-dimensional frameworks: {[M2(μ8-bta)(H2-C2O4)]-(H3O)2(H2O)2}n (M=Co2+, Fe2+; bta=benzene-1,2,4,5-tetracarboxylate) [J].Dalton Trans.,2003,(6):1148-1152.
    [57]Daofeng Sun, Rong Cao, Yucang Liang, Qian Shi, Weiping Su and Maochun Hong, Hydrothermal syntheses, structures and properties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures[J]. J. Chem. Soc., Dalton Trans., 2001(16):2335-2340.
    [58]M.Ali, A. Ray, W.S. Sheldriek, et al. Synthesis, crystal structure, EPR and magnetic properties of a cyano-bridged Cull-Nill heter obimetallic complex:an unusual structure with long-range ferromagnetic exchange through hydrogen bonding [J]. New J. Chem., 2004(28):412-417.
    [59]Xian-He Bu, Ming-Liang Tong, Ho-Chol Chang,Susumu Kitagawa, and Stuart R. Batten,A Neutral 3D Copper Coordination Polymer Showing ID Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew. Chem. Int. Ed.,2004.43(2):192-195.
    [60]Jared M.Taylor. Amir. H. Mahmoudkhani, George K. H. Shimizu. A Tetrahedral OrganopHospHonate as a Linker for a Microporous Copper Framework[J]. Angew. Chem. Int.Ed.2007.46.795-798.
    [61]尹明彩,芳香羧酸配合物的合成、结构及性能表征[D].武汉大学,2004.
    [62]孙为银,配位化学,[M]北京:化学工业出版社,2004,170-183.
    [63]E. R. Parnham, R. E. Morris, Ionothermal Synthesis of Zeolites, Metal-Organic Frameworks, and Inorganic-Organic Hybrids[J]. Acc. Chem. Res.,2007,40,1005-1013.
    [64]L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, Synthesis and Crystal Structures of Coordination Complexes with Pyridyl Substituted[J]. Angew. Chem. Int. Ed., 1995,34,1895-1898.
    [65]J. F. Ma, J. F. Liu, X. Yan, H. Q. Jia, Y. H. Lin, J. Chem. Networks with hexagonal circuits in co-ordination polymers of metal ions (Zn-Ⅱ, Cd-Ⅱ) with 1,1'-(l,4-butanediyl)bis(imidazole) [J]. Soc., Dalton Trans.,2000, (14):2403-2407.
    [66]Murry S G, Hartley F R. Coordination chemistry of thioethers, selenoethers, and telluroethers in transition-metal complexes [J]. Chemical Reviews,1981,81(4):365-414.
    [67]Goodgame D M L, Menzer S, Ross A T, et al. Use of Heterometal Combinations to construct Very Large Ring Frameworks; Synthesis and Structural Characterisation of the 36-Membered Ring Compound [{N1Nd(4-picolylpyrrolidin-2-one)4(NCS)2-(NO3)3}n] [J]. Journal of the Chemical Society-Chemical Communications,1994, (18):2605-2606.
    [68]MacGillivray L R, Subramanian S, Zaworotko M J. Interwoven two-and three-dimensional coordination polymers through self-assembly of Cul cations with linear bidentate ligands [J]. Journal of the Chemical Society-Chemical Communications,1994, (11): 1325-1326.
    [69]Blake A J, Champness N R, Chung S S M, et al. Control of interpenetrating copper(I) adamantoid networks:synthesis and structure of{[Cu(bpe)2]BF4}n [J]. Chemical Communications,1997, (11):1005-1006.
    [70]Yong K,Jeong J. Applications of atomic layer chemical vapor deposition for the processing of nanolaminate structures[J]. Journal of the American Chemical Society,2002,19(3):451-462.
    [71]Yaghi O M, Li H, Davis C, et al. Methods of Creating Active sites in MOF and Catalytic Explorations[J]. Acc. Chem. Res.,1998,37:474-484.
    [72]Abrahams B F, Moylan M, Orchard S. D, et al. Zinc Saccharate:A Robust,3D Coordination Network with Two Types of Isolated, Parallel Channels, One HydropHilic and the Other HydropHobic[J]. Angew Chem Int Ed,2003,42(16):1848-1851.
    [73]Zhao X J,Du M,Wang Y,et al, Formation of cobalt(II)-piperazine supramolecular systems under different organic acid mediums:synthesis, characterization and crystal structures [J]. Journal of Molecular Structure,2004,692(1-3):155-161.
    [74]Li H, Davis CE, Yaghi O M, et al. Combined Molecular Dynamics and φ-Value Analysis of Structure-Reactivity Relationships in the Transition State and Unfolding Pathway of Barnase:Structural Basis of Hammond and Anti-Hammond Effects [J]. Journal of the American Chemical Society,1998,120:2186-2198.
    [75]Wang RH, Hong MC,Weng JB, et al. Synthesis and crystal structure of a novel hydrogen-bonded three-dimensional polymer Zn(1,4-benzenedicarboxylate)-(pyridine) center dot H2O](n) [J]. Chinese Journal of Chemistry,2002,20(10):1124-1128.
    [76]C. J. Kepert, T. J. Prior, and M. J. Rosseinsky, A versatile family of interconvertible microporous chiral molecular frameworks:The first example of ligand control of network chirality[J]. J. Am. Chem. Soc.,2000,122(21):5158-5168.
    [77]R. Vaidhyanathan,(?) Srinivasan Natarajan, et al. New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines[J]. Chem.Mater.,1999,11(12):3636-3642.
    [78]Carine Livage, Chrystelle Egger, and Gerard Ferey, Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids:The example of cobalt(Ⅱ) succinate[J]. Chem. Mater.,2001,13(2):410-414.
    [79]Rosi NL. Size-controlled peptide-directed synthesis of hollow spherical gold nanoparticle superstructures.PQDD,2003(1).
    [80]Nathaniel L. Rosi,Juergen Eckert,Mohamed Eddaoudi, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,30(5622):1127-1129.
    [81]Latroche, M.; Surbl, S.; Serre, C., et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J]. Angewandte Chemie International Edition,2006, 45(48):8227-8231.
    [82]Li, Y.; Yang, R. T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover [J]. Journal of the American Chemical Society,2006,128(25):8136-8137.
    [83]Li, Y.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover [J]. Journal of the American Chemical Society,2006, I28(3):726-727.
    [84]Ma, S. Q.; Sun, D. F.; Simmons, J. M., et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake [J]. Journal of the American Chemical Society,2008,130(3):1012-1016.
    [85]Mckee, D. W. Separation of an oxygen-nitrogen mixture [P]. US,3140933,1964.
    [86]Chao, C. C. Process for separating nitrogen from mixtures thereof with less polar substances [P]. US,4859217,1989.
    [87]Coe, C. G.; Kirner, J. F. Pierantozzi, R., et al. Nitrogen adsorption with a divalent cation exchanged lithium x-zeolite [P]. US,5258058,1993.
    [88]Fitch, F. R.; Bulow, M.; Ojo, A. F. Adsorptive separation of nitrogen from other gases [P]. US,5464467,1995.
    [89]Lemcoff, N. O. Nitrogen separation from air by pressure swing adsorption [J]. Studies in Surface Science and Catalysis,1991,120(1):347-370.
    [90]Sircar, S.; Rao, M. B.; Golden, T. C. Fractionation of air by zeolites [J]. Studies in Surface Science and Catalysis,1991,120(1):395-423.
    [91]Jones, R. D.; Summerville, D. A.; Basolo, F. Synthetic oxygen carries related to biological systems [J]. Chemical Reviews,1979,79(2):139-179.
    [92]Bytheway, L.; Hall, M. B. Theoretical calculations of metal-dioxygen complexes [J]. Chemical Reviews,1994,94(3):639-658.
    [93]Hayashi, H.; C6 te, A. P.; Furukawa, H., et al. Zeolite a imidazolate frameworks [J]. Nature materials,2007, (6):501-506.
    [94]Millward, AR; Yaghi, OM, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J. Am. Chem. Soc.,2005, 127(51):17998-17999.
    [95]Wang, B.; Cote, A. P.; Furukawa, H., et al. Colossal cage in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature,2008,453(8):207-211.
    [96]Evans, OR,Lin, WB,Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Acc. Chem. Res.2002,35(7):511-522.
    [97]Hanson, SR;Best, MD; Wong, CH, Sulfatases:Structure, mechanism, biological activity, inhibition, and synthetic utility[J]. Angewandte Chemie International Edition,2004, 43(43):5736-5763.
    [98]Xiong, RG; Xue, X; Zhao, H; You, XZ; Xue, ZL, Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis[J]. Angewandte Chemie International Edition,2002,41(20):3800-3803.
    [99]Xin-Yi Wang, Lu Wang, Zhe-Ming Wang, and Song Gao, Solvent-tuned azido-bridged Co2+ layers:Square, honeycomb, and Kagome[J].J. Am. Chem. Soc.,2006,128(3):674-675.
    [100]Jonathan Braine, Ute Lisenfeld, Pierre-Alain Due & Stephane Leon, Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages[J]. Nature, 2000,404(6780):904-904.
    [101]Shi, X; Zhu, GS; Qiu, SL; Huang, KL; Yu, JH; Xu, RR,Zn2[(S) O3PCH2-NHC4H7CO2] 2:A homochiral 3D zinc phosphonate with helical channels[J]. Angewandte Chemie International Edition,2004,43(47):6482-6485.
    [102]K.Barthelet,D. Riou and G. Ferey,[VⅢ(H2O)]3O(O2CC6H4CO2)3·(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework[J]. Chem. Commu.,2002, (14):1492-1493.
    [103]Nathaniel L. Rosi, Mohamed Eddaoudi, Jaheon Kim,Michael O'Keeffe, and Omar M. Yaghi,Infinite secondary building units and forbidden catenation in metal-organic frameworks[Jj. Angew. Chem.,Int. Ed.2002,41,284-287
    [104]K. Barthelet, D. Riou, M. Nogues, and G. Ferey, Synthesis, structure, and magnetic properties of two new vanadocarboxylates with three-dimensional hybrid frameworks [J]. Inorg. Chem.,2003,42(5):1739-1743.
    [105]Barthelet, K; Adil, K; Millange, F; Serre, C; Riou, D; Ferey, G, Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(Ⅲ)carboxylate:MIL-71 or V2 (Ⅲ)(OH)2F2{O2CC6H4CO2}-center dot H2O[J]. J. Mater. Chem.,2003,12(9):2208-2212.
    [106]Barthelet, K; Marrot, J; Ferey, G; Riou, D, V-Ⅲ(OH){O2CC6H4CO2} (center dot)(H02CC6H4CO2H)x(DMF)v(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology:reticular synthesis with infinite inorganic building blocks? [J]. Chemical Communications,2004, (5):520-521.
    [107]Serre, C; Millange, F; Thouvenot, C; Nogues, M; Marsolier, G; Louer, D; Ferey, G,Very large breathing effect in the first nanoporous chromium(III)-based solids:MIL-53 or Cr-III(OH)center dot{O2CC6H4CO2}center dot{HO2CC6H4CO2-H}(x)center dot H2Oy[J]. J. Am. Chem. Soc.,2002,124(45):13519-13526.
    [108]Millange, F; Serre, C; Ferey, G,Synthesis, structure determination and properties of MIL-53as and MIL-53ht:the first Cr-III hybrid inorganic-organic microporous solids: Cr-III(OH)center dot{O2CC6H4CO2}center dot{HO2CC6H4-CO2H}x [J]. Chemical Communications,2002(8):822-823.
    [109]Y. Liu, G. Li, X. Li and Y. Cui, Liu, Y; Li, G; Li, X; Cui, Y, Cation-dependent non linear optical behavior in an octupolar 3D anionic metal-organic open framework[J]. Angewandte Chemie International Edition,2007,46(33):6301-6304.
    [110]Pan, L; Woodlock, EB; Wang, XT; Lam, KC; Rheingold, AL,Novel silver(I)-organic coordination polymers:conversion of extended structures in the solid state as driven by argentophilic interactions[J]. Angewandte Chemie International Edition,2001, (18): 1762-1763.
    [111]Yang Qingyuan, Zhong Chongli. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks:a computational study[J]. Chem PHys Chem, 2006,7(7):1417-1421.
    [112]Rigaku/MSC. Crystal Structure. Rigaku/MSC Inc[G]. The Woodlands, Texas, USA.2002.
    [113]BrukerS MART, SAINT and SHELXTL[G]. Bruker AXS Inc., Madison, Wisconsin, USA.2002.
    [114]Sheldrick G M. SHELXS-97 and SHELXS-97, Program for reefing crystal structure [C]. University of Gottingen, Germany,1997.
    [115]Onyango M.S., Kojima Y. Aoyi O., Bernardo E.C. and Matsuda H., Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F9[J] Journal of Colloid and Interface Science,2004, 279(2):341-350
    [116]Ho Y.S., Porter J.F and McKay G., Equilibrium isotherm studies for the sorption of divalent metal ions onto peat:copper, nickel and lead single component systems[J].Water, Air, and Soil Pollution,2002,141(1-4):1-33.
    [117]Tahir S.S. and Rauf N., Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay[J].Chemosphere,2006,63(11):1842-1848.
    [118]Sips R., Combined form of Langmuir and Freundlich equations[J].The Journal of Chemical Physics,1948,16:490-495.
    [119]Lagergren, S., Zur theorie der sogenannetn adsorption geloster troffe. Kungliga Svenska Vetenskapsakademiens[J].Handlingar, Vetensk. Handl.1898,24(1-4):1-39
    [120]Ho Y.S., Citation review of Lagergren kinetic rate equation on adsorption reactions[J].Scientometrics,2004,59(1):171-177.
    [121]Ho Y.S., and McKay G., Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451-465.
    [122]Sun Q. Y. and Yang Z., The adsorption of basic dyes from aquous solution on modified peat-resin particle[J].Water Research,2003,37(7):1535-1544.
    [123]Langmuir I., The constitution and fundamental properties of solids and liquids[J]. Journal of American Chemistry Society,1916,38(1):2221-295.
    [124]Sari A., Tuzen M., Citak D. and Soylak M., Equilibrium, kinetic and thermodynamic studies of adsorption of Pb2+ from aqueous solution onto Turkish kaolinite clay [J] Journal of Hazardous Materials,2007,149(2):283-291.
    [125]Freundlich H., Colloid and capillary chemistry. London:Metheum,1926,p.993.
    [126]Senturk H. B., Ozdes D., Gundogdu A., Duran C. and Soylak M., Removal of pHenol from aqueous solutions by adsorption onto organomdified Tirebolu bentonite:Equilibrium, kinetic and thermodynamic study [J] Journal of Hazardous Materials,2009,172(1):353-362.
    [127]Boparai H. K., JosepH M. and O'Carroll D.M., Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials,2011,186(1):458-465.
    [128]Naseem R. and Tahir S.S., Thermodynamic studies of Mn2+ and Fe2+ adsorption on to bentonite[J].The Journal of Chemical Thermodynamics,2000,32(5):651-658.
    [129]Lin Q.S., Zheng T., Wang P., Jiang J.P., and Li N., Adsorption isotherm, kinetic and mechanism studies of some substituted pHenols on activated carbon fibers[J].Chemical Engineering Journal,2010,157(2-3):348-356.
    [130]联合国政府间气候变化专门委员会(IPCC),气候变化2007年;综合报告[R],2007.
    [131]http://www.mnp.nl/en/dossiers/Climatechange/moreinfo/Chinanownol in CO2 emission susain second position.html.
    [132]Climate Change 2001:Impacts, Adaptation, and Vulnerability,2001.
    [133]Qing Min Wang, Dongmin Shen, Martin Bulow, et al, Metallo-organic molecular sieve for gas separation and purification [J]. Microporous and Mesoporous Materials,2002, 55(2):217-230.
    [134]Fujita M. and Kwon Y. J. Satoru washizu, et al., Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and4, 4'-bipyridine[J]. J. Am.Chem.Soc.1994,116:1151-1152.
    [135]Danil N. Dybtsev, Hyungphil Chun, Sun Hong Yoon, Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J]. J. Am. Chem. Soc.,2004,126(1):32-33.
    [136]Long Pan, Kristie M. Adams, Hayden E. Hernandez, et al. Porous lanthanide-organic frameworks:Synthesis, characterization, and unprecedented gas adsorption properties [J]. J. Am. Chem. Soc.,2003,125(10):3062-3067.
    [137]Mircea Dinca and Jeffrey R. Long, Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3[J].J. Am. Chem. Soc., 2005,127(26):9376-9377.
    [138]Mehlman MA. Carcinogenic Effects of Benzene:Cesare Maltoni's Contributions[J]. Ann N Y Acad Sci,2002,982:137-148.
    [139]Ryu, Z.Y., J.T. Zheng, M.Z. Wang. Porous Structure of PAN-based Activated Carbon Fibers[J]. Carbon,1998,36(4):427-432.
    [140]广西壮族自治区环境保护厅,2009年广西壮族自治区环境状况公报.http://cn.chinagate.cn/reports/2010-10/26/content_21201501.htm
    [141]广西壮族自治区环境保护厅,2010年广西壮族自治区环境状况公报.http://cn.chinagate.cn/infocus/2011-06/15/content_22789072.htm