基于三氮唑及衍生物配体构筑的配位聚合物的合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于晶体工程学原理,从有机配体的设计与合成出发,研究了有机配体对于配位聚合物最终结构的影响及金属离子的配位数对于最终结构和维数的影响,总结了不同有机配体和金属离子在构筑配位聚合物中所起到的不同作用,丰富了配位聚合物的种类与结构,为开发具有功能特性的晶态材料提供了实验数据。本论文选择1,2,4-三氮唑及其衍生物作为含氮配体,选用不同构型,不同结构的多齿羧酸作为含氧配体,合成出25种配位聚合物,并对所合成的配合物进行了单晶结构测试与解析,以及相关功能性质的研究与探讨。
     1、以1,2,4-三氮唑为含氮有机配体和不同的多齿羧酸配体,与d10金属Zn和Cd离子反应,在水热反应条件下,构筑了9个具有不同结构和不同维数的新型配位聚合物。配合物1和2是由1,2,4-三氮唑与Zn或Cd离子构筑的三维网络结构,配合物3-9都是由d10金属和1,2,4-三氮唑及多齿羧酸类配体构筑的三维网络配合物,其中配合物9是一个三维手性配合物。[Zn2(TRZ)4(HTRZ)2]n(1)[Cd2(TRZ)3I]n(2){[Zn2(TRZ)(pBDC)1.5H2O].(H2O)4)n(3){[Cd2(TRZ)(pBDC)1.5H2O]·(H2O)0.5}n(4){[Zn(TRZ)(mHBDC)H2O].(H2O)4}n(5){[Zn5(TRZ)4(BTC)2H2O2]·(H2O)6)n(6)([Zn6(TRZ)6(HOBA)2(OBA)2]·(H2O)7]n(7){[Cd3(TRZ)2(OBA)2]·(H2O)0.5}n(8){Cd(TRZ)2(PZDC)0.5}n(9)
     2、以1,2,4-三氮唑衍生物为含氮有机配体结合不同的多齿羧酸配体,与d10金属Zn和Cd离子反应,在水热反应条件下,构筑了10个具有不同结构,不同维数的新型配位聚合物。配合物17是一维链状结构,配合物12和15是一维纳米管型结构,配合物13、14、18是二维层结构,配合物11、16、19是复杂的三维结构。研究结果表明,三氮唑配体的引入有助于辅助合成不同维数的复杂结构配合物,不同的有机配体对于最终产物的维度和结构起着至关重要的决定性作用。[Zn(L1)2(pBDC)·H2O]n(10)[Cd(L1)(pBDC)·3H2O]n(11)[Zn(L1)2(mBDC)·0.5H2O]n(12)[Cd(L1)(mBDC)·2H2O]n(13)[Zn(L1)2(BTC)·3.5H2O]n(14)[Cd(L1)2(BTC)·2H2O]n(15)[Zn2(L1)(PMA)·3H2O]n(16)[Zn(L2)2(pBDC)1(pBDC)0.5](17)[Zn(L2)2(mBDC)·3H O]n(18)[Cd(Lz)2(pBDC)(pBDC)0.5·3H2O]n(19)
     3、以丙氨酸衍生物为多齿羧酸配体,通过选择不同的含氮有机配体,与不同的过渡金属离子反应,在水热条件下合成出6个具有不同维数不同结构类型的配位聚合物。其中配合物20是一个具有22元环结构的单分子配合物,配合物21和22是由Cd离子构筑的三维微孔配合物,配合物23是由5核Cd簇构筑的三维8连接并具有hex拓扑的三维网络,配合物24具有折叠形状的二维层结构,配合物25则是一个具有三重互穿的三维3,4连接网络配合物。配合物的光化学性质显示,这些新颖配合物可能是潜在的光学材料。[Zn2(L1)2phen2(H2O)2](20)[Cd3(L1)2(OH)2(4,4'-bpy)(H2O)2]·2H2O(21)[Co3(L1)2(OH)2(4,4'-bpy)(H2O)2]·2H2O(22)[Cd5(L1)2(OH)2(trz)4(L3)]·2H2O(23)[Zn(HL2)(4,4'-bpy)](24)[Cd3(L2)2(L3)2(H2O)5]·H2O(25)
The aim of this thesis is to synthesize new coordination polymers on the basis of1,2,4-triazole ligands and their derived ligands and different multicarboxylate ligands, to explore the synthetic conditions and rules for these compounds, analysis influence of organic ligands and metal ions on the formation of final structures, and to study the relationships between structures and properties for these new coordination polymers. In this thesis,25new coordination polymers were synthesized under the hrdrothermal condition, and structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffractions.
     1. Nine new coordination complexes have been synthesized on the basis of1,2,4-triazole ligand and different multicarboxylate ligands with d10metal ions under the hydrothermal condition with different structures. Complexes1and2are three-dimensional networks constructed by1,2,4-triazole ligand and Zn or Cd ions; complexes3-9are three dimension networks based on1,2,4-triazole and different multicarboxylate ligands with different structures. In addition, compound9is a three dimensional chiral network.[Zn2(TRZ)4(HTRZ)2]n(1)[Cd2(TRZ)3I]n(2){[Zn2(TRZ)(pBDC)1.5H2O]·(H2O)4}n(3){[Cd2(TRZ)(pBDC)1.5H2O]·(H2O)0.5}n(4){[Zn(TRZ)(mHBDC)H2O]·(H2O)4}n(5){[Zn5(TRZ)4(BTC)2H2O2]·(H2O)6}n(6){[Zn6(TRZ)6(HOBA)2(OBA)2]·(H2O)7}n(7){[Cd3(TRZ)2(OBA)2]·(H2O)0.5}n(8){Cd(TRZ)2(PZDC)0.5}n(9)
     2. Ten new coordination complexes have been synthesized on the basis of derivant of1,2,4-triazole ligand and different multicarboxylate ligands with Zn and Cd ions under the hydrothermal condition with different dimensional structures. Complexes17is one-dimensional chain structure; compound12and15are one-dimensional nanotube like structures; complexes13,14and18are two-dimensional layer structures and compounds11,16,19are three-dimensional networks. The structures of these complexes present that the1,2,4-triazole ligand are very helpful for the formation of coordination complexes with different dimensional structures, and the difference of organic ligands have important effective on the final structures.[Zn(L1)2(pBDC)·H2O]n(10)[Cd(L1)(pBDC)·3H2O]n(11) [Zn(L1)2(mBDC)·0.5H2O]n(12)[Cd(L1)(m B D C)·2H2O]n(13)[Zn(L1)2(BTC)·3.5H2O]n(14)[Cd(L1)2(BTC)·2H2O]n(15)[Zn2(L1)(PMA)·3H2O]n(16)[Zn(L2)2(pBDC)1(pBDC)0.5](17)[Zn(L2)2(mBDC)·3H2O]n(18)[Cd(L2)2(pBDC)(pBDC)0.5·3H2O]n(19)
     3. Six new coordination complexes have been synthesized on the basis of derivant of alanine and different N-containing ligands with transition metal ions under the hydrothermal condition with different dimensional structures. Complexes20is isolated22-membered ring; compound21and22are one-dimensional micropore structures; complexes23is three-dimensional structures with hex topology based on the pentanuclear Cd cluster, compound24is two-dimensional layer structures and compound25is three-dimensional networks with three-fold interpenation. These compounds have the potential to be optical materials.[Zn2(L1)2phen2(H2O)2](20)[Cd3(L1)2(OH)2(4,4'-bpy)(H2O)2]·2H2O(21)[Co3(L1)2(OH)2(4,4'-bpy)(H2O)2]·2H2O(22)[Cd5(L1)2(OH)2(trz)4(L3)]·2H2O(23)[Zn(HL2)(4,4'-bpy)](24)[Cd3(L2)2(L3)2(H2O)5]·H2O(25)
引文
[1] Xu R, Pang W, Yu J, et al. Chemistry of zeolites and related porous materials: synthesisand structure[M]. John Wiley&Sons,2009.
    [2] Bansal R C, Goyal M. Activated carbon adsorption[M]. CRC press,2010.
    [3] James S L. Metal-organic frameworks[J]. Chemical Society Reviews,2003,32(5):276-288.
    [4] Rowsell J L C, Yaghi O M. Metal–organic frameworks: a new class of porous materials[J].Microporous and Mesoporous Materials,2004,73(1):3-14.
    [5] Férey G. Hybrid porous solids: past, present, future[J]. Chemical Society Reviews,2008,37(1):191-214.
    [6] Papaefstathiou G S, MacGillivray L R. Inverted metal–organic frameworks: solid-statehosts with modular functionality[J]. Coordination chemistry reviews,2003,246(1):169-184.
    [7] Clearfield A. Metal-phosphonate chemistry[J]. Progress in inorganic chemistry,1998,47:371-510.
    [8] Eddaoudi M, Moler D B, Li H, et al. Modular chemistry: secondary building units as abasis for the design of highly porous and robust metal-organic carboxylate frameworks[J].Accounts of Chemical Research,2001,34(4):319-330.
    [9] Férey G, Mellot-Draznieks C, Serre C, et al. Crystallized frameworks with giant pores: Arethere limits to the possible?[J]. Accounts of chemical research,2005,38(4):217-225.
    [10] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of newmaterials[J]. Nature,2003,423(6941):705-714.
    [11] Rao C N R, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures[J].Angewandte Chemie International Edition,2004,43(12):1466-1496.
    [12] Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks: multifunctionalopen-framework materials[J]. Chemical Society Reviews,2007,36(5):770-818.
    [13] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid withunusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
    [14] Serre C, Mellot-Draznieks C, SurbléS, et al. Role of solvent-host interactions that lead tovery large swelling of hybrid frameworks[J]. Science,2007,315(5820):1828-1831.
    [15] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporousmaterial [Cu3(TMA)2(H2O)3] n[J]. Science,1999,283(5405):1148-1150.
    [16] Tomic E A. Thermal stability of coordination polymers[J]. Journal of Applied PolymerScience,1965,9(11):3745-3752.
    [17] Biondi C, Bonamico M, Torelli L, et al. On the structure and water content of copper (II)tricyanomethanide[J]. Chemical Communications (London),1965(10):191-192.
    [18] Hoskins B F, Robson R. Design and construction of a new class of scaffolding-likematerials comprising infinite polymeric frameworks of3D-linked molecular rods. Areappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis andstructure of the diamond-related frameworks [N (CH3)4][CuIZnII (CN)4] and CuI [4,4',4'',4'''-tetracyanotetraphenylmethane] BF4. xC6H5NO2[J]. Journal of the American ChemicalSociety,1990,112(4):1546-1554.
    [19] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stableand highly porous metal-organic framework[J]. Nature,1999,402(6759):276-279.
    [20] Bradshaw D, Claridge J B, Cussen E J, et al. Design, chirality, and flexibility innanoporous molecule-based materials[J]. Accounts of chemical research,2005,38(4):273-282.
    [21] Horike S, Shimomura S, Kitagawa S. Soft porous crystals[J]. Nature chemistry,2009,1(9):695-704.
    [22] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.
    [23] Kim J, Chen B, Reineke T M, et al. Assembly of Metal-Organic Frameworks from LargeOrganic and Inorganic Secondary Building Units: New Examples and Simplifying Principlesfor Complex Structures[J]. Journal of the American Chemical Society,2001,123(34):8239-8247.
    [24] Tranchemontagne D J, Ni Z, O'Keeffe M, et al. Reticular chemistry of metal–organicpolyhedra[J]. Angewandte Chemie International Edition,2008,47(28):5136-5147.
    [25] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J].Angewandte Chemie International Edition,2004,43(18):2334-2375.
    [26] Ma S, Zhou H C. A metal-organic framework with entatic metal centers exhibiting highgas adsorption affinity[J]. Journal of the American Chemical Society,2006,128(36):11734-11735.
    [27] Cychosz K A, Wong-Foy A G, Matzger A J. Liquid phase adsorption by microporouscoordination polymers: removal of organosulfur compounds[J]. Journal of the AmericanChemical Society,2008,130(22):6938-6939.
    [28] Cheetham A K, Rao C N R, Feller R K. Structural diversity and chemical trends in hybridinorganic–organic framework materials[J]. Chemical communications,2006(46):4780-4795.
    [29] Park K S, Ni Z, C téA P, et al. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks[J]. Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.
    [30] Mantion A, Massüger L, Rabu P, et al. Metal-peptide frameworks (MPFs):―Bioinspired‖metal organic frameworks[J]. Journal of the American Chemical Society,2008,130(8):2517-2526.
    [31] Lin J B, Zhang J P, Chen X M. Nonclassical active site for enhanced gas sorption inporous coordination polymer[J]. Journal of the American Chemical Society,2010,132(19):6654-6656.
    [32] He X, Antonelli D. Recent advances in synthesis and applications of transition metalcontaining mesoporous molecular sieves[J]. Angewandte Chemie International Edition,2002,41(2):214-229.
    [33] An J, Geib S J, Rosi N L. High and selective CO2uptake in a cobalt adeninate metalorganic framework exhibiting pyrimidine-and amino-decorated pores[J]. Journal of theAmerican Chemical Society,2009,132(1):38-39.
    [34] Imaz I, Rubio-Martínez M, An J, et al. Metal–biomolecule frameworks (MBioFs)[J].Chemical communications,2011,47(26):7287-7302.
    [35] Harbuzaru B V, Corma A, Rey F, et al. Metal–organic nanoporous structures withanisotropic photoluminescence and magnetic properties and their use as sensors[J].Angewandte Chemie International Edition,2008,47(6):1080-1083.
    [36] Park H J, Suh M P. Mixed‐Ligand Metal–Organic Frameworks with Large Pores: GasSorption Properties and Single‐Crystal‐to‐Single‐Crystal Transformation on GuestExchange[J]. Chemistry-A European Journal,2008,14(29):8812-8821.
    [37] Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organicframeworks with multifunctional properties[J]. Coordination Chemistry Reviews,2009,253(23):2891-2911.
    [38] Humphrey S M, Chang J S, Jhung S H, et al. Porous Cobalt (II)–Organic Frameworkswith Corrugated Walls: Structurally Robust Gas‐Sorption Materials[J]. Angewandte ChemieInternational Edition,2007,46(1‐2):272-275.
    [39] Seo J S, Whang D, Lee H, et al. A homochiral metal–organic porous material forenantioselective separation and catalysis[J]. Nature,2000,404(6781):982-986.
    [40] Sun C Y, Liu S X, Liang D D, et al. Highly stable crystalline catalysts based on amicroporous metal organic framework and polyoxometalates[J]. Journal of the AmericanChemical Society,2009,131(5):1883-1888.
    [41] Ockwig N W, Delgado-Friedrichs O, O'Keeffe M, et al. Reticular chemistry: occurrenceand taxonomy of nets and grammar for the design of frameworks[J]. Accounts of chemicalresearch,2005,38(3):176-182.
    [42] O’Keeffe M, Peskov MA, Ramsden S J, et al. The reticular chemistry structure resource(RCSR) database of, and symbols for, crystal nets[J]. Accounts of chemical research,2008,41(12):1782-1789.
    [43] Batten S R, Neville S M, Turner D R. Coordination polymers: design, analysis andapplication[M]. Royal Society of Chemistry,2009.
    [44] Ma S. Gas adsorption applications of porous metal–organic frameworks[J]. Pure andApplied Chemistry,2009,81(12):2235-2251.
    [45] Lin X, Champness N R, Schr der M. Hydrogen, methane and carbon dioxide adsorptionin metal-organic framework materials[M]//Functional Metal-Organic Frameworks: GasStorage, Separation and Catalysis. Springer Berlin Heidelberg,2010:35-76.
    [46] Spokoyny A M, Kim D, Sumrein A, et al. Infinite coordination polymer nano-andmicroparticle structures[J]. Chemical Society Reviews,2009,38(5):1218-1227.
    [47] Zacher D, Shekhah O, W ll C, et al. Thin films of metal–organic frameworks[J].Chemical Society Reviews,2009,38(5):1418-1429.
    [48] Bradshaw D, Garai A, Huo J. Metal–organic framework growth at functional interfaces:thin films and composites for diverse applications[J]. Chem. Soc. Rev.,2011,41(6):2344-2381.
    [49] Shekhah O, Liu J, Fischer R A, et al. MOF thin films: existing and future applications[J].Chemical Society Reviews,2011,40(2):1081-1106.
    [50] Bétard A, Fischer R A. Metal–Organic Framework Thin Films: From Fundamentals toApplications[J]. Chemical Reviews,2011,112(2):1055-1083.
    [51] Kreno L E, Leong K, Farha O K, et al. Metal–organic framework materials as chemicalsensors[J]. Chemical Reviews,2011,112(2):1105-1125.
    [52] Chen B, Xiang S, Qian G. Metal Organic Frameworks with Functional Pores forRecognition of Small Molecules[J]. Accounts of chemical research,2010,43(8):1115-1124.
    [53] Jiang H L, Tatsu Y, Lu Z H, et al. Non-, micro-, and mesoporous metal organicframework isomers: reversible transformation, fluorescence sensing, and large moleculeseparation[J]. Journal of the American Chemical Society,2010,132(16):5586-5587.
    [54] Kitagawa H. Metal–organic frameworks: Transported into fuel cells[J]. Nature Chemistry,2009,1(9):689-690.
    [55] Hurd J A, Vaidhyanathan R, Thangadurai V, et al. Anhydrous proton conduction at150Cin a crystalline metal–organic framework[J]. Nature Chemistry,2009,1(9):705-710.
    [56] Bureekaew S, Horike S, Higuchi M, et al. One-dimensional imidazole aggregate inaluminium porous coordination polymers with high proton conductivity[J]. Nature materials,2009,8(10):831-836.
    [57] Vallet‐RegíM, Balas F, Arcos D. Mesoporous materials for drug delivery[J].Angewandte Chemie International Edition,2007,46(40):7548-7558.
    [58] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscalecarriers as a potential platform for drug delivery and imaging[J]. Nature materials,2009,9(2):172-178.
    [59] Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordinationpolymers[J]. Chemical Society Reviews,2009,38(5):1228-1236.
    [60] Kawamichi T, Haneda T, Kawano M, et al. X-ray observation of a transient hemiaminaltrapped in a porous network[J]. Nature,2009,461(7264):633-635.
    [61] Roques N, Mugnaini V, Veciana J. Magnetic and porous molecule-basedmaterials[M]//Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis.Springer Berlin Heidelberg,2010:207-258.
    [62] Huang Y G, Jiang F L, Hong M C. Magnetic lanthanide–transition-metalorganic–inorganic hybrid materials: From discrete clusters to extended frameworks[J].Coordination Chemistry Reviews,2009,253(23):2814-2834.
    [63] Kurmoo M. Magnetic metal–organic frameworks[J]. Chemical Society Reviews,2009,38(5):1353-1379.
    [64] Zeng Y F, Hu X, Liu F C, et al. Azido-mediated systems showing different magneticbehaviors[J]. Chemical Society Reviews,2009,38(2):469-480.
    [65] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal–organic frameworks[J].Chemical Society Reviews,2009,38(5):1330-1352.
    [66] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal–organic frameworks[J].Chemical reviews,2011,112(2):1126-1162.
    [67] Lee J Y, Farha O K, Roberts J, et al. Metal–organic framework materials as catalysts[J].Chemical Society Reviews,2009,38(5):1450-1459.
    [68] Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal–organicframeworks[J]. Chemical Society Reviews,2009,38(5):1248-1256.
    [69] Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetricheterogeneous catalysis[J]. Chemical Reviews,2011,112(2):1196-1231.
    [70] Zou R Q, Sakurai H, Han S, et al. Probing the lewis acid sites and co catalytic oxidationactivity of the porous metal-organic polymer [Cu (5-methylisophthalate)][J]. Journal of theAmerican Chemical Society,2007,129(27):8402-8403.
    [71] Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for theoxygen reduction reaction at fuel cell cathodes[J]. Energy&Environmental Science,2011,4(4):1238-1254.
    [72] Sculley J, Yuan D, Zhou H C. The current status of hydrogen storage in metal–organicframeworks—updated[J]. Energy&Environmental Science,2011,4(8):2721-2735.
    [73] Lin X, Champness N R, Schr der M. Hydrogen, methane and carbon dioxide adsorptionin metal-organic framework materials[M]//Functional Metal-Organic Frameworks: GasStorage, Separation and Catalysis. Springer Berlin Heidelberg,2010:35-76.
    [74] Murray L J, Dinc M, Long J R. Hydrogen storage in metal–organic frameworks[J].Chemical Society Reviews,2009,38(5):1294-1314.
    [75] Ma S, Zhou H C. Gas storage in porous metal–organic frameworks for clean energyapplications[J]. Chemical Communications,2010,46(1):44-53.
    [76] Han S S, Mendoza-Cortés J L, Goddard Iii W A. Recent advances on simulation andtheory of hydrogen storage in metal–organic frameworks and covalent organic frameworks[J].Chemical Society Reviews,2009,38(5):1460-1476.
    [77] Murray L J, Dinc M, Long J R. Hydrogen storage in metal–organic frameworks[J].Chemical Society Reviews,2009,38(5):1294-1314.
    [78] Dinc M, Long J R. Hydrogen storage in microporous metal–organic frameworks withexposed metal sites[J]. Angewandte Chemie International Edition,2008,47(36):6766-6779.
    [79] Lin X, Jia J, Hubberstey P, et al. Hydrogen storage in metal–organic frameworks[J].CrystEngComm,2007,9(6):438-448.
    [80] Yan Y, Telepeni I, Yang S, et al. Metal Organic Polyhedral Frameworks: High H2Adsorption Capacities and Neutron Powder Diffraction Studies[J]. Journal of the AmericanChemical Society,2010,132(12):4092-4094.
    [81] Koh K, Wong-Foy A G, Matzger A J. A porous coordination copolymer with over5000m2/g BET surface area[J]. Journal of the American Chemical Society,2009,131(12):4184-4185.
    [82] Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal–organic frameworks[J].Chemical reviews,2011,112(2):782-835.
    [83] Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: Areview[J]. Journal of Environmental Sciences,2008,20(1):14-27.
    [84] Watts R G. Global Warming and the Future of the Earth[J]. Synthesis Lectures on Energyand the Environment: Technology, Science, and Society,2007,1(1):1-114.
    [85] Yamasaki A. An overview of CO2mitigation options for global warming-emphasizingCO2sequestration options[J]. Journal of Chemical Engineering of Japan,2003,36(4):361-375.
    [86] Yeh J T, Resnik K P, Rygle K, et al. Semi-batch absorption and regeneration studies forCO2capture by aqueous ammonia[J]. Fuel Processing Technology,2005,86(14):1533-1546.
    [87] Xu X, Song C, Andresen J M, et al. Novel polyethylenimine-modified mesoporousmolecular sieve of MCM-41type as high-capacity adsorbent for CO2capture[J]. Energy&Fuels,2002,16(6):1463-1469.
    [88] Chue K T, Kim J N, Yoo Y J, et al. Comparison of activated carbon and zeolite13X forCO2recovery from flue gas by pressure swing adsorption[J]. Industrial&engineeringchemistry research,1995,34(2):591-598.
    [89] Dantas T L P, Luna F M T, Silva Jr I J, et al. Carbon dioxide–nitrogen separation throughadsorption on activated carbon in a fixed bed[J]. Chemical Engineering Journal,2011,169(1):11-19.
    [90] Díaz E, Munoz E, Vega A, et al. Enhancement of the CO2retention capacity of Y zeolitesby Na and Cs treatments: Effect of adsorption temperature and water treatment[J]. Industrial&Engineering Chemistry Research,2008,47(2):412-418.
    [91] Liu J, Wang Y, Benin A I, et al. CO2/H2O Adsorption Equilibrium and Rates on MetalOrganic Frameworks: HKUST-1and Ni/DOBDC[J]. Langmuir,2010,26(17):14301-14307.
    [92] Keskin S, van Heest T M, Sholl D S. Can Metal–Organic Framework Materials Play aUseful Role in Large‐Scale Carbon Dioxide Separations?[J]. ChemSusChem,2010,3(8):879-891.
    [93] Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacityfor storage of carbon dioxide at room temperature[J]. Journal of the American ChemicalSociety,2005,127(51):17998-17999.
    [94] Nelson A P, Farha O K, Mulfort K L, et al. Supercritical processing as a route to highinternal surface areas and permanent microporosity in metal organic frameworkmaterials[J]. Journal of the American Chemical Society,2008,131(2):458-460.
    [95] Farha O K, Hupp J T. Rational Design, Synthesis, Purification, and Activation of MetalOrganic Framework Materials[J]. Accounts of chemical research,2010,43(8):1166-1175.
    [96] Zou R, Abdel-Fattah A I, Xu H, et al. Storage and separation applications of nanoporousmetal–organic frameworks[J]. CrystEngComm,2010,12(5):1337-1353.
    [97] Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of themetal oxide and organic linking units on the low-pressure hydrogen adsorption properties ofmetal-organic frameworks[J]. Journal of the American Chemical Society,2006,128(4):1304-1315.
    [98] Vimont A, Travert A, Bazin P, et al. Evidence of CO2molecule acting as an electronacceptor on a nanoporous metal–organic-framework MIL-53or Cr3+(OH)(O2C–C6H4–CO2)[J]. Chemical Communications,2007(31):3291-3293.
    [99] Demessence A, D’Alessandro D M, Foo M L, et al. Strong CO2binding in a water-stable,triazolate-bridged metal organic framework functionalized with ethylenediamine[J].Journal of the American Chemical Society,2009,131(25):8784-8786.
    [100] Babarao R, Hu Z, Jiang J, et al. Storage and separation of CO2and CH4in silicalite,C168schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation[J].Langmuir,2007,23(2):659-666.
    [101] Corma A, García H. Lewis acids as catalysts in oxidation reactions: From homogeneousto heterogeneous systems[J]. Chemical reviews,2002,102(10):3837-3892.
    [102] Corma A, Garcia H. Lewis acids: from conventional homogeneous to greenhomogeneous and heterogeneous catalysis[J]. Chemical reviews,2003,103(11):4307-4366.
    [103] Corma A, Garcia H, Llabrés i Xamena F X. Engineering metal organic frameworks forheterogeneous catalysis[J]. Chemical reviews,2010,110(8):4606-4655.
    [104] Skouta R, Varma R S, Li C J. Efficient Trost's γ-addition catalyzed by reusablepolymer-supported triphenylphosphine in aqueous media[J]. Green Chemistry,2005,7(8):571-575.
    [105] Dhar D N. The chemistry of chalcones and related compounds[M]. New York: Wiley,1981.
    [106] Yadav J S, Reddy A R, Narsaiah A V, et al. An efficient protocol for regioselective ringopening of epoxides using samarium triflate: Synthesis of propranolol, atenolol and RO363[J].Journal of Molecular Catalysis A: Chemical,2007,261(2):207-212.
    [107] Corma A, J Climent M, Carcía H, et al. Formation and hydrolysis of acetals catalysedby acid faujasites[J]. Applied catalysis,1990,59(1):333-340.
    [108] Alaerts L, Séguin E, Poelman H, et al. Probing the Lewis Acidity and Catalytic Activityof the Metal–Organic Framework [Cu3(btc)2](BTC=Benzene-1,3,5-tricarboxylate)[J].Chemistry-A European Journal,2006,12(28):7353-7363.
    [109] Sabo M, Henschel A, Fr de H, et al. Solution infiltration of palladium into MOF-5:synthesis, physisorption and catalytic properties[J]. Journal of Materials Chemistry,2007,17(36):3827-3832.
    [110] Henschel A, Gedrich K, Kraehnert R, et al. Catalytic properties of MIL-101[J].Chemical Communications,2008(35):4192-4194.
    [111] Dhakshinamoorthy A, Alvaro M, Garcia H. Metal organic frameworks as heterogeneouscatalysts for the selective N-methylation of aromatic primary amines with dimethylcarbonate[J]. Applied Catalysis A: General,2010,378(1):19-25.
    [112] Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal–organic frameworks asheterogeneous catalysts[J]. Chemical Communications,2012,48(92):11275-11288.
    [113] Farha O K, Shultz A M, Sarjeant A A, et al. Active-Site-Accessible, Porphyrinic MetalOrganic Framework Materials[J]. Journal of the American Chemical Society,2011,133(15):5652-5655.
    [114] Cohen S M. Postsynthetic methods for the functionalization of metal–organicframeworks[J]. Chemical Reviews,2011,112(2):970-1000.
    [115] Genna D T, Wong-Foy A G, Matzger A J, et al. Heterogenization of HomogeneousCatalysts in Metal–Organic Frameworks via Cation Exchange[J]. Journal of the AmericanChemical Society,2013.
    [116] Zhu Q L, Li J, Xu Q. Immobilizing Metal Nanoparticles to Metal–Organic Frameworkswith Size and Location Control for Optimizing Catalytic Performance[J]. Journal of theAmerican Chemical Society,2013,135(28):10210-10213.
    [117] Takashima Y, Martínez V M, Furukawa S, et al. Molecular decoding usingluminescence from an entangled porous framework[J]. Nature communications,2011,2:168.
    [118] Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brickforming metal organic frameworks with exceptional stability[J]. Journal of the AmericanChemical Society,2008,130(42):13850-13851.
    [119] Farha O K, Spokoyny A M, Mulfort K L, et al. Synthesis and hydrogen sorptionproperties of carborane based metal-organic framework materials[J]. Journal of the AmericanChemical Society,2007,129(42):12680-12681.
    [120] Lu Z Z, Zhang R, Li Y Z, et al. Solvatochromic Behavior of a Nanotubular MetalOrganic Framework for Sensing Small Molecules[J]. Journal of the American ChemicalSociety,2011,133(12):4172-4174.
    [121] Czaja A U, Trukhan N, Müller U. Industrial applications of metal–organicframeworks[J]. Chemical Society Reviews,2009,38(5):1284-1293.
    [122] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to variousMOF topologies, morphologies, and composites[J]. Chemical reviews,2011,112(2):933-969.
    [123] Natarajan S, Mahata P. Non-carboxylate based metal-organic frameworks (MOFs) andrelated aspects[J]. Current Opinion in Solid State and Materials Science,2009,13(3):46-53.
    [124] Zhang J P, Zhang Y B, Lin J B, et al. Metal azolate frameworks: from crystalengineering to functional materials[J]. Chemical Reviews,2011,112(2):1001-1033.
    [125] Hernandez M P, Fernández‐Bertrán J F, Farias M H, et al. Reaction of imidazole ingas phase at very low pressure with Cu foil and Cu oxides studied by X‐ray photoelectronspectroscopy[J]. Surface and Interface Analysis,2007,39(5):434-437.
    [126] AromíG, Barrios L A, Roubeau O, et al. Triazoles and tetrazoles: prime ligands togenerate remarkable coordination materials[J]. Coordination Chemistry Reviews,2011,255(5):485-546.
    [127] Wang X L, Qin C, Wu S X, et al. Bottom‐Up Synthesis of Porous CoordinationFrameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor[J]. AngewandteChemie,2009,121(29):5395-5399.
    [128] Zhang J P, Zheng S L, Huang X C, et al. Two Unprecedented3‐Connected ThreeDimensional Networks of Copper (I) Triazolates: In Situ Formation of Ligands byCycloaddition of Nitriles and Ammonia[J]. Angewandte Chemie,2004,116(2):208-211.
    [129] Kuang X, Wu X, Yu R, et al. Assembly of a metal–organic framework by sextupleintercatenation of discrete adamantane-like cages[J]. Nature chemistry,2010,2(6):461-465.
    [130] Wang X L, Qin C, Wang E B, et al. An unusual polyoxometalate-encapsulating3Dpolyrotaxane framework formed by molecular squares threading on a twofold interpenetrateddiamondoid skeleton[J]. Chemical Communications,2007(41):4245-4247.
    [1] Zacher D, Shekhah O, Woll C, et al. Thin films of metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1418-1429.
    [2] Zhenqiang WM. C S, Postsynthetic modification of metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1315-1329.
    [3] Takashi U, Nobuhiro YSusumu K, Polymerization reactions in porous coordination polymers [J]. Chem.Soc. Rev.2009,38:1228-1236.
    [4] Spokoyny A M, Kim D, Sumrein A, et al. Infinite coordination polymer nano-and microparticlestructures [J]. Chem. Soc. Rev.2009,38:1218-1227.
    [5] Shimizu G K H, Vaidhyanathan RTaylor J M, Phosphonate and sulfonate metal organic frameworks [J].Chem. Soc. Rev.2009,38:1430-1449.
    [6] O'Keeffe M, Design of MOFs and intellectual content in reticular chemistry: a personal view [J]. Chem.Soc. Rev.2009,38:1215-1217.
    [7] Ma L, Abney CLin W, Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chem.Soc. Rev.2009,38:1248-1256.
    [8] Long J RYaghi O M, The pervasive chemistry of metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1213-1214.
    [9] Li J-R, Kuppler R JZhou H-C, Selective gas adsorption and separation in metal-organic frameworks [J].Chem. Soc. Rev.2009,38:1477-1504.
    [10] Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.2009,38:1450-1459.
    [11] Zhi-Hong Liu P Y, and Ping Li, K2[Ga(B5O10)]a4H2O: The First Chiral Zeolite-like Galloborate withLarge Odd11-Ring Channels [J]. Inorg. Chem.2007,46,2965-29672007.
    [12] Petoud S p, Muller G, Moore E G, et al. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexeswith Strong Circularly Polarized Luminescence [J]. J. Am. Chem. Soc.2007,129:77-83.
    [13] Lin Z, Slawin A M ZMorris R E, Chiral Induction in the Ionothermal Synthesis of a3-D CoordinationPolymer [J]. J. Am. Chem. Soc.2007,129.
    [14] Johnson R S, Yamazaki T, Kovalenko A, et al. Molecular Basis for Water-Promoted SupramolecularChirality Inversion in Helical Rosette Nanotubes [J]. J. Am. Chem. Soc.2007,129:5735-5743.
    [15] Paci I, Szleifer IRatner M A, Chiral Separation: Mechanism Modeling in Two-Dimensional Systems[J]. J. Am. Chem. Soc.2007,129:3545-3555.
    [16] Chen Z-F, Zhang S-F, Luo H-S, et al. Ni2(R*COO)4(H2O)(4,4'-bipy)2-a robust homochiral quartz-likenetwork with large chiral channels [J]. CrystEngComm,2007,9:27-29.
    [17] Wang Y, Chen P, Li J, et al. Chiral Layered Zincophosphate [d-Co(en)3]Zn3(H0.5PO4)2(HPO4)2Assembled about d-Co(en)33+Complex Cations [J]. Inorg. Chem2006,45:4764-4768.
    [18] Xu Y, Cheng L YYou W S, Hydrothermal synthesis and structural characterizations of two newgermanates with a novel topological framework and unusual Ge4(OH)4Cubane [J]. Inorg. Chem.2006,45:7705-7709.
    [19] Huang X-C, Lin Y-Y, Zhang J-P, et al. Ligand-Directed Strategy for Zeolite-Type Metal–OrganicFrameworks: Zinc(ii) Imidazolates with Unusual Zeolitic Topologies [J]. Angew. Chem. Int. Ed.2006,45:1557–1559.
    [20] Balamurugan VMukherjee R, Helical vs. zigzag coordination polymer: Influence of structuralpreference of metal-ion coordination geometry [J]. Inorg. Chim. Acta.2006,359:1376–1382.
    [21] Myung S, Fioroni M, Julian R R, et al. Chirally Directed Formation of Nanometer-Scale ProlineClusters [J]. J. Am. Chem. Soc.2006,128:10833-10839.
    [22] Zhu X, Zheng H, Wei X, et al. Metal-organic framework (MOF): a novel sensing platform forbiomolecules [J]. Chem. Commun.2013,49:1276-1278.
    [23] Yoshida J, Nishikiori S, Kuroda R, et al. Three polymorphic Cd(II) coordination polymers obtainedfrom the solution and mechanochemical reactions of3-cyanopentane-2,4-dione with Cd(II) acetate [J].Chemistry2013,19:3451-3457.
    [24] Luo Y, Bernot K, Calvez G, et al.1,2,4,5-Benzene-tetra-carboxylic acid: a versatile ligand for highdimensional lanthanide-based coordination polymers [J]. CrystEngComm2013,15:1882-1897.
    [25] Wang C, Wang J LLin W, Elucidating molecular iridium water oxidation catalysts using metal-organicframeworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study [J]. Journal of theAmerican Chemical Society2012,134:19895-19908.
    [26] Jin S, Ding X, Feng X, et al. Charge dynamics in a donor-acceptor covalent organic framework withperiodically ordered bicontinuous heterojunctions [J]. Angew. Chem. Int. Ed.2013,52:2017-2021.
    [27] Zhao D, Shui J-L, Chen C, et al. Iron imidazolate framework as precursor for electrocatalysts inpolymer electrolyte membrane fuel cells [J]. Chemical Science2012,3:3200-3205.
    [28] Zhang T, Song FLin W, Blocking bimolecular activation pathways leads to different regioselectivity inmetal-organic framework catalysis [J]. Chem. Commun.2012,48:8766-8768.
    [29] Wen L, Cheng PLin W, Mixed-motif interpenetration and cross-linking of high-connectivity networksled to robust and porous metal–organic frameworks with high gas uptake capacities [J]. Chem. Sci.2012,3:2288-2293.
    [30] Thottempudi V, Forohor F, Parrish D A, et al. Tris(triazolo)benzene and its derivatives: high-densityenergetic materials [J]. Angew. Chem. Int. Ed.2012,51:9881-9885.
    [31] Smulders M M, Jimenez ANitschke J R, Integrative self-sorting synthesis of a Fe8Pt6L24cubic cage[J]. Angew. Chem. Int. Ed.2012,51:6681-6685.
    [32] Shi P F, Zheng Y Z, Zhao X Q, et al.3D MOFs containing trigonal bipyramidal Ln5clusters as nodes:large magnetocaloric effect and slow magnetic relaxation behavior [J]. Chemistry2012,18:15086-15091.
    [33] Ruan C Z, Wen R, Liang M X, et al. Two triazole-based metal-organic frameworks constructed fromnanosized Cu20and Cu30wheels [J]. Inorg. Chem.2012,51:7587-7591.
    [34] Yoon M, Suh K, Natarajan S, et al. Proton conduction in metal-organic frameworks and relatedmodularly built porous solids [J]. Angew. Chem. Int. Ed.2013,52:2688-2700.
    [35] Yoon M, Srirambalaji RKim K, Homochiral metal-organic frameworks for asymmetric heterogeneouscatalysis [J]. Chem. Rev.2012,112:1196-1231.
    [36] Yoon M, Suh K, Kim H, et al. High and highly anisotropic proton conductivity in organic molecularporous materials [J]. Angew. Chem. Int. Ed.2011,50:7870-7873.
    [37] Dybtsev D N, Chun H, Kim K. Rigid and Flexible: A Highly Porous Metal–Organic Framework withUnusual Guest-Dependent Dynamic Behavior [J]. Angew Chem Int Ed,2004,43:5033-5036.
    [38] Wu H, Gong Q, Olson D H, et al. Commensurate adsorption of hydrocarbons and alcohols inmicroporous metal organic frameworks [J]. Chem. Rev.2012,112:836-868.
    [39] Zou C, Zhang Z, Xu X, et al. A Multifunctional Organic–Inorganic Hybrid Structure Based onMnIII–Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst [J].J. Am. Chem. Soc.2011,134:87-90.
    [40] Zhong R-Q, Zou R-Q, Du M, et al. Metal–organic frameworks of manganese(ii)4,4′-biphenyldicarboxylates: crystal structures, hydrogen adsorption, and magnetism properties [J].CrystEngComm2010,12:677-682.
    [41] Wu M, Rhee J, Emge T J, et al. A low band gap iron sulfide hybrid semiconductor with unique2D
    [Fe16S20]8layer and reduced thermal conductivity [J]. Chem. commun2010,46:1649-1651.
    [42] Lee J Y, Pan L, Huang X Y, et al. A Systematic Approach to Building Highly Porous,Noninterpenetrating Metal–Organic Frameworks with a Large Capacity for Adsorbing H2and CH4[J].Adv Funct Mater,2011,21:993-998.
    [43] Lee J Y, Olson D H, Pan L. et al. Microporous Metal–Organic Frameworks with High Gas Sorptionand Separation Capacity [J]. Adv Funct Mater,2007,17:1255-1262;
    [44] Zhao Y G, Wu H H, Emge T J. et al. Enhancing Gas Adsorption and Separation Capacity throughLigand Functionalization of Microporous Metal–Organic Framework Structures [J]. Chem Eur J,2011,17:5101-5109.
    [45] Das M C, Guo Q, He Y, et al. Interplay of metalloligand and organic ligand to tune micropores withinisostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral andachiral small molecules [J]. J. Am. Chem. Soc.2012,134:8703-8710.
    [46] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks [J]. Chem. Rev.2012,112:1126-1162.
    [47] Chen B L, Ma S Q, Hurtado E J. et al.ATriply Interpenetrated Microporous Metal OrganicFramework for Selective Sorption of Gas Molecules [J]. Inorg Chem,2007,46:8490-8492.
    [48] Chen B L, Ma S Q, Hurtado E J. et al. Selective Gas Sorption within a Dynamic Metal-OrganicFramework [J] Inorg Chem,2007,46:8705-8709.
    [49] Chen B L, Liang C D, Yang J. et al. A Microporous Metal–Organic Framework forGas-Chromatographic Separation of Alkanes [J]. Angew Chem Int Ed,2006,45:1390-1393.
    [50] Chen B L, Ma S Q, Zapata F. et al. Rationally Designed Micropores within a Metal OrganicFramework for Selective Sorption of Gas Molecules [J]. Inorg Chem,2007,46:1233-1236.
    [51] Zhang J P, Lin Y Y, Zhang W X. et al. Temperature-or guest-induced drasticsingle-crystal-to-single-crystal transformations of a nanoporous coordination polymer [J]. J Am Chem Soc,2005,127:14162-14163.
    [52] Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks [J].Chem Commun,2006,1689-1699.
    [53] Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement, University of G ttingen,G ttingen, Germany,1997.
    [1] Fu Y L, Hui L. In situ synthesis, structural characterization and luminescent property of a novel hybridsolid with twofold interpenetrating (4,6)-connected topology [{(Cu4I4)2H2O}{Cu6(mtz)6}]n(Hmtz=3,5-dimethyl-1,2,4-triazole)[J]. J. Mol. Struct,2008,892:205–209.
    [2] Zhai Q G, Lu C Z, Chen S M, Xu X J, Yang W B. A novel3D hybrid architecture based on (H2O)6encircling Cu4I4-O-Cu4I4cluster and hexanuclear Cu6(datrz)6ring [J]. Inorg. Chem. Commun,2006,9:819–822.
    [3] Soudi A A, Morsali A, Moazzenchi S. A first1,2,4-triazole PbII Complex: Thermal, spectroscopic andstructural studies,[Pb2(trz)2(CH3COO)(NO2)]n[J]. Inorg. Chem. Commun,2006,9:1259–1262.
    [4] Zhai Q G, Hu M C, Li S N, Jiang Y C. A three-dimensional organic-inorganic hybrid solid constructedfrom novel Mo-O-Zn bimetallic oxide networks linked via3.amino-1,2,4-triazole [J]. Inorg. Chem.Commun,2008,11:1147–1150.
    [5] Zhang J P, Zheng S L, Huang X C, Chen X M. Two Unprecedented3.Connected Three-DimensionalNetworks of Copper(i) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles andAmmonia [J]. Angew. Chem. Int. Ed,2004,43:206–209.
    [6] Huang Y G, Mu B, Schoenecker P M, Carson C G, Karra J R, Cai Y, Walton K S. A Porous FlexibleHomochiral SrSi2Array of Single-Stranded Helical Nanotubes Exhibiting Single-Crystal-to-Single-CrystalOxidation Transformation [J]. Angew. Chem. Int. Ed,2011,50:436–440.
    [7] Yang C, Wang X P, Omary M A. Crystallographic Observation of Dynamic Gas Adsorption Sites andThermal Expansion in a Breathable Fluorous Metal-Organic Framework [J]. Angew. Chem. Int. Ed,2009,48:2500–2505.
    [8] Ouellette W, Yu M H, Connor C J, Hagrman D, Zubieta J. Hydrothermal Chemistry of theCopper-Triazolate System: AMicroporous Metal-Organic Framework Constructed from Magnetic{Cu3(m3.OH)(triazolate)3}2+Building Blocks, and Related Materials [J]. Angew. Chem. Int. Ed,2006,45:3497–3500.
    [9] Zhang J, Bu J T, Chen S M, Wu T, Zheng S T, Chen Y G, Nieto R. A, Feng P Y, Bu X H. UrothermalSynthesis of Crystalline Porous Materials [J]. Angew. Chem. Int. Ed,2010,49:8876–8879.
    [10] Yang G, Raptis R G. A robust, porous, cationic silver(I)3,5-diphenyl-1,2,4-triazolate framework with auninodal49.66net [J]. Chem. Commun,2004,2058–2059.
    [11] Müller-Buschbaum K, Mokaddem Y. Three-dimensional networks of lanthanide1,2,4-triazolates:3∞[Yb(Tz)3] and3∞[Eu2(Tz)5(TzH)2], the first4f networks with complete nitrogen coordination [J]. Chem.Commun,2006,2060–2062.
    [12] Ling Y, Chen Z X, Zhou Y M, Weng L H, Zhao D Y. A novel green phosphorescent silver(I)coordination polymer with three-fold interpenetrated CdSO4-type net generated via in situ reaction [J].CrystEngComm,2011,13:1504–1508.
    [13] Zhang J P, Lin Y Y, Huang X C, Chen X M. From One-to Three-Dimensional Architectures:Supramolecular Isomerism of Copper(I)3,5-Di(4-pyridyl)-1,2,4-triazolate Involving in Situ LigandSynthesis [J]. Cryst. Growth Des,2006,6:519–523.
    [14] Zhai Q G, Wu X Y, Chen S M, Lu C Z, Yang W B. Construction of Cd/Zn(II)-1,2,4-TriazolateCoordination Complexes via Changing Substituents and Anions [J]. Cryst. Growth Des,2006,6:2126–2135.
    [15] Halder G J, Park H, Funk R J, Chapman K W, Engerer L K, G Urs, Schlueter J A. In-Situ X-rayDiffraction Studies of Host-Guest Properties in Nanoporous Zinc-Triazolate-Based Framework Materials[J]. Cryst. Growth Des,2009,9:609–3614.
    [16] Ding B, Yi L, Cheng P, Liao D Z, Yan S P. Synthesis and Characterization of a3D CoordinationPolymer Based on Trinuclear Triangular CuII as Secondary Building Units [J]. Inorg. Chem,2006,45:5799–5803.
    [17] Ouellette W, Prosvirin A V, Chieffo V, Dunbar K R, Hudson B, Zubieta J. Solid-State CoordinationChemistry of the Cu/Triazolate/X System (X=F-, Cl-, Br-, I-, OH-, and SO2-4)[J]. Inorg. Chem,2006,45:9346–9366.
    [18] Jernigan F E, Sieracki N A, Taylor M T, Jenkins A S, Engel S E, Rowe B W, JovéF A, Yap G P A,Papish E T, Ferrence G M. Sterically Bulky Tris(triazolyl)borate Ligands as Water-SolublenAnalogues ofTris(pyrazolyl)borate [J]. Inorg. Chem,2007,46:360–362.
    [19] Ouellette W, Hudson B S, Zubieta J. Hydrothermal and Structural Chemistry of the Zinc(II)-andCadmium(II)-1,2,4-Triazolate Systems [J]. Inorg. Chem,2007,46:4887-4904.
    [20] Huang X H, Sheng T L, Xiang S C, Fu R B, Hu S M, Li Y M, Wu X T.{[Cu(mtz)]3(CuI)}n: AnUnprecedented Non-interpenetrated (123)(122·14)3Network with Triple-Stranded Helices [J]. Inorg. Chem,2007,46:497-500.
    [21] Zhai Q G, Wu X Y, Chen S M, Zhao Z G, Lu C Z. Construction of Ag/1,2,4-Triazole/PolyoxometalatesHybrid Family Varying from Diverse Supramolecular Assemblies to3.D Rod-Packing Framework [J].Inorg. Chem,2007,46:5046-5058.
    [22] Ouellette W, Prosvirin A V, Valeich J, Dunbar K R, Zubieta J. Hydrothermal Synthesis, StructuralChemistry, and Magnetic Properties of Materials of the MII/Triazolate/Anion Family, Where MII) Mn, Fe,and Ni [J]. Inorg. Chem,2007,46:9067-9082.
    [23] Zhu A X, Lin J B, Zhang J P, Chen X M. Isomeric Zinc(II) Triazolate Frameworks with3.ConnectedNetworks: Syntheses, Structures, and Sorption Properties [J]. Inorg. Chem,2009,48:3882-3889.
    [24] Zhang R B, Li Z J, Qin Y Y, Cheng J K, Zhang J, Yao Y G. Synthesis, Structure, and PhysicalProperties of a New Anions-Controlled Cd(II)-Guanazole (3,5-Diamino-1,2,4-triazole) Hybrid Family [J].Inorg. Chem,2008,47:4861-4876.
    [25] Yin P X, Cheng J K, Li Z J, Zhang L, Qin Y Y, Zhang J, Yao Y G. Ag(I)-Mediated In situDehydrogenative Coupling of3.Amino-1,2,4-triazole into3,3‖-Azobis(1,2,4-triazole) in Cd(II)Coordination Polymers [J]. Inorg. Chem,2009,48:10859-10861.
    [26] Crees R S, Cole M L, Hanton L R, Sumby C J. Synthesis of a Zinc(II) Imidazolium DicarboxylateLigand Metal-Organic Framework (MOF): a Potential Precursor to MOF-Tethered N-Heterocyclic CarbeneCompounds [J]. Inorg. Chem,2010,49:1712–1719.
    [27] Su C Y, Goforth A M, Smith M D, Pellechia P J, zur Loye Hans-Conrad. Exceptionally Stable, HollowTubular Metal-Organic Architectures: Synthesis, Characterization, and Solid-State Transformation Study[J]. J. Am. Chem. Soc.2004,126:3576-3586.
    [28] Zhang J P, Lin Y Y, Huang X C, Chen X M. Copper(I)1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J].J. Am. Chem. Soc.2005,127:5495-5506.
    [29] Zhang J P, Lin Y Y, Zhang W X, Chen X M. Temperature-or Guest-Induced DrasticSingle-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer [J]. J. Am. Chem.Soc.2005,127:14162–14163.
    [30] Yang C, Wang X P, Omary M A. Fluorous Metal-Organic Frameworks for High-Density GasAdsorption [J]. J. Am. Chem. Soc.2007,129:15454–15455.
    [31] Zhang J P, Chen X M. Exceptional Framework Flexibility and Sorption Behavior of a MultifunctionalPorous Cuprous Triazolate Framework [J]. J. Am. Chem. Soc.2008,130:6010–6017.
    [32] Zhang J P, Chen X M. Optimized Acetylene/Carbon Dioxide Sorption in a Dynamic Porous Crystal [J].J. Am. Chem. Soc.2009,131:5516–5521.
    [33] Vaidhyanathan R et al. Direct Observation and Quantification of CO2Binding Within anAmine-Functionalized Nanoporous Solid [J]. Science2010,330:650–653.
    [1] Yoshizawa M, Klosterman J K, Fujita M, et al. Functional molecular flasks: new properties andreactions within discrete, self-assembled hosts[J]. Angew. Chem. Int. Ed.,2009,48,3418–3438.
    [2] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329,424–428.
    [3] Murray LJ, Dinc M, Long J R, et al. Hydrogen storage in metal–organic frameworks[J]. Chem. Soc.Rev.,2009,38,1294–1314.
    [4] Singh S K, Zhang X B, Xu Q, et al. Room-temperature hydrogen generation from hydrous hydrazinefor chemical hydrogen storage[J]. J. Am. Chem. Soc.,2009,131,9894–9895.
    [5] Wang X L, Qin C, Wu S X, et al. Bottom-up synthesis of porous coordination frameworks: apicalsubstitution of a pentanuclear tetrahedral precursor[J]. Angew. Chem. Int. Ed.,2009,48,5291–5295.
    [6] Lan A J, Li K H, Wu H H, et al. A Luminescent Microporous Metal–Organic Framework for the Fastand Reversible Detection of High Explosives[J]. Angew. Chem. Int. Ed.,2009,48,2334–2338.
    [7] Sun C Y, Qin C, Wang X L, et al. Zeolitic imidazolate framework-8as efficient pH-sensitive drugdelivery vehicle[J]. Dalton Trans.,2012,41,6906–6909.
    [8] Li L J, Qin C,Wang X L, et al. Synthesis and characterization of two self-catenated networks and onecase of pcu topology based on the mixed ligands[J]. CrystEngComm,2012,14,4205–4209.
    [9] Fu H, Qin C, Lu Y, et al. An Ionothermal Synthetic Approach to Porous Polyoxometalate-BasedMetal–Organic Frameworks[J]. Angew. Chem. Int. Ed.,2012,51,7985–7989.
    [10] Li B Y, Zhang Z J, Li Y, et al. Enhanced Binding Affinity, Remarkable Selectivity, and High Capacityof CO2by Dual Functionalization of a rht-Type Metal–Organic Framework[J]. Angew. Chem. Int. Ed.,2012,51,1412–1415.
    [11] Cui Y J, Yue Y F, Qian G D, et al. Luminescent Functional Metal–Organic Frameworks[J]. Chem. Rev.,2012,112,1126–1162.
    [12] Horcajada P, Gref R, Baati T, et al. Metal–Organic Frameworks in Biomedicine[J]. Chem. Rev.,2012,112,1232–1268.
    [13] Chen B, Ockwig N W, Millward A R, et al. High H2Adsorption in a Microporous Metal–OrganicFramework with Open Metal Sites[J]. Angew. Chem. Int. Ed.,2005,44,4745–4749.
    [14] Li J R, Sculley J, Zhou H C, et al. Metal–Organic Frameworks for Separations[J]. Chem. Rev.,2012,112,869–932.
    [15] Sun C Y, Qin C,Wang C G, et al. Chiral Nanoporous Metal-Organic Frameworks with High Porosityas Materials for Drug Delivery[J]. Adv. Mater.,2011,23,5629–5632.
    [16] Bourrelly S, Llewellyn P L, Serre C, et al. Different Adsorption Behaviors of Methane and CarbonDioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53and MIL-47[J]. J. Am. Chem. Soc.,2005,127,13519–13521.
    [17] Sun C Y, Wang X L, Qin C, et al. Solvatochromic Behavior of Chiral Mesoporous Metal–OrganicFrameworks and Their Applications for Sensing Small Molecules and Separating Cationic Dyes[J].Chem. Eur. J.,2013,19,3639–3645.
    [18] Carlucci L, Ciani G, Maggini S, et al. Heterometallic Modular Metal–Organic3D FrameworksAssembled via New Tris-β-Diketonate Metalloligands: Nanoporous Materials for Anion Exchange andScaffolding of Selected Anionic Guests[J]. Chem. Eur. J.,2010,16,12328–12341.
    [19] Zou R Q, Sakurai H, Han S, et al. Probing the lewis acid sites and CO catalytic oxidation activity ofthe porous metal-organic polymer [Cu(5-methylisophthalate)[J]. J. Am. Chem. Soc.,2007,129,8402–8403;
    [20] Ma L, Abney C, Lin W B, et al. Enantioselective catalysis with homochiral metal–organic frameworks[J]. Chem. Soc. Rev.,2009,38,1248–1256.
    [21] Hu X L, Sun C Y, Qin C, et al. Iodine-templated assembly of unprecedented3d–4f metal–organicframeworks as photocatalysts for hydrogen generation[J]. Chem. Commun.,2013,49,3564–3566.
    [22] Yang J, Ma J F, Liu Y Y, et al. A Series of Cu(II) Complexes Based on Different Bis(imidazole)Ligands and Organic Acids: Formation of Water Clusters and Fixation of Atmospheric Carbon Dioxide[J]. Cryst. Growth Des.,2008,8,4383–4393.
    [23] Liu Y Y, Li J, Ma J F, et al. A series of1D,2D and3D coordination polymers based on a5-(benzonic-4-ylmethoxy)isophthalic acid: syntheses, structures and photoluminescence[J]. Cryst.Eng.Comm,2012,14,169–177.
    [24] Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-Assembly of Cd(II)-ContainingCoordination Polymers Based on a Novel Flexible Tetrakis(imidazole) Ligand[J]. Cryst. Growth Des.,2010,10,995–1016.
    [25] Zhang L P, Ma J F, Yang J, et al. Series of2D and3D coordination polymers based on1,2,3,4-benzenetetracarboxylate and N-donor ligands: Synthesis, topological structures, andphotoluminescent properties[J]. Inorg. Chem.,2010,49,1535–1550.
    [26] Li B, G. Li G, D. Liu D, et al. Coordination polymers constructed by1,3-bi(4-pyridyl)propane withfour different conformations and2,2′-dinitro-4,4′-biphenyldicarboxylate ligands: the effects of metalions[J]. CrystEngComm,2011,13,1291–1298.
    [27] Li B, Zhang Y, Li G, et al. Design and construction of coordination polymers by2,2′-dinitro-4,4′-biphenyldicarboxylate and imidazole-based ligands: diverse structures based on different metal ions[J].CrystEngComm,2011,13,2457–2463.
    [28] Kan W Q, Ma J F, Liu B, et al. Aseries of coordination polymers based on5,5′-(ethane-1,2-diyl)-bis(oxy)diisophthalic acid and structurally related N-donor ligands: syntheses, structures andproperties[J]. CrystEngComm,2012,14,286–299.
    [29] Qin C, Wang X L, Li Y G, et al. Three-dimensional mesomeric networks assembled from helix-linkedsheets: syntheses, structures, and magnetisms[J]. Dalton Trans.,2005,2609–2614.
    [30] Cohen S M. Modifying MOFs: New chemistry, new materials[J]. Chem. Sci.,2010,1,32–36.
    [31] Shi P F, Zhao B, Xiong G, et al. Fast capture and separation of, and luminescent probe for, pollutantchromate using a multi-functional cationic heterometal-organic framework[J]. Chem. Commun.,2012,48,8231–8233.
    [32] Sun C Y, Wang S, Yang G S, et al. Three-dimensional porous metal–organic replica of natural mineralα-Al2O3based on hexadentate triazine derivative[J]. Inorg. Chem. Comm.,2011,14,893–896.
    [33] Pan L, Huang X, Li J, et al. Novel Single-and Double-Layer and Three-Dimensional Structures ofRare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control inCrystal Structure Formation[J]. Angew. Chem., Int. Ed.,2000,39,527–530.
    [34] García-Zarracino R and H pfl H. A3D hybrid network containing large spherical cavities formedthrough a combination of metal coordination and hydrogen bonding[J]. Angew. Chem., Int. Ed.,2004,43,1507–1511.
    [35] Shin D M, Lee I S, Chung Y K, et al. Synthesis and characterization of novel grid coordinationpolymer networks generated from unsymmetrically bridging ligands[J]. Inorg. Chem.,2003,42,5459–5461.
    [36] Zhang M B, Zhang J, Zheng, et al. A3D Coordination Framework Based on Linkages of NanosizedHydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands[J]. Angew.Chem., Int. Ed.,2005,44,1385–1388.
    [37] He Y H, Feng Y L, Lan Y Z, et al. Syntheses, structures, and photolummescence of four d10metal-organic frameworks constructed from3,5-bis-oxyacetate-benzoic acid[J]. Cryst. Growth Des.,2008,8,3586–3594.
    [38] Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement, University of G ttingen,1997.
    [39] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J].Chem. Rev.,2012,112,1105–1125.
    [40] Cui Y J, Yue Y F, Qian G D, et al. Luminescent functional metal-organic frameworks[J]. Chem. Rev.,2012,112,1126–1162.
    [41] Gao J Z, Yang J, Liu Y Y, et al. Ten new coordination polymers based on3-carboxy-1-(4′-carboxybenzyl)-2-oxidopyridinium and different N-donor ligands: syntheses,structures, and photoluminescent properties[J]. CrystEngComm,2012,14,8173–8185.
    [42] Yang J, Yue Q, Li G D, et al. Structures, Photoluminescence, Up-Conversion, and Magnetism of2Dand3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages[J]. Inorg. Chem.,2006,45,2857–2865.
    [43] Thirumurugan A and Natarajan S. Synthesis, structure and luminescent properties of yttrium benzenedicarboxylates with one-and three-dimensional structure[J]. Dalton Trans.,2004,2923–2928.
    [44] Zhang X J, Jin L P, Gao S, et al. Synthesis and Characterization of Two Novel LanthanideCoordination Polymers with an Open Framework Based on an Unprecedented [Ln17(μ3-OH)8]3+Cluster[J]. Inorg. Chem.,2004,43,1600–1602.
    [45] Wen L, Li Y, Lu Z, et al. Syntheses and structures of four d10metal-organic frameworks assembledwith aromatic polycarboxylate and bix [bix=1,4-bis(imidazol-1-ylmethyl)benzene][J]. Cryst. GrowthDes.,2006,6,530–537.
    [46] Wen L, Lu Z, Lin J, et al. Syntheses, structures, and physical properties of three novel metal-organicframeworks constructed from aromatic polycarboxylate acids and flexible imidazole-based synthons[J].Cryst. Growth Des.,2007,7,93–99.
    [47] Lin J G, Zang S Q, Tian Z F, et al. Metal-organic frameworks constructed from mixed-ligand1,2,3,4-tetra-(4-pyridyl)-butane and benzene-polycarboxylate acids: Syntheses, structures and physicalproperties[J]. CrystEngComm,2007,9,915–921.
    [48] Zhang L P, Ma J F, Pang Y Y, et al. Four novel topological frameworks based on4,4′-(hexafluoro-isopropylidene)diphthalic acid and1,1′-(1,4-butanediyl) bis(imidazole) ligand[J]. CrystEngComm,2010,12,4433–4442.