蔬菜叶酸:检测技术,提高途径和基因型差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶酸是一种重要的水溶性B族维生素,常以多种形式存在,其英文名称除folic acid外,也被称为folate.叶酸生理功能包括参与DNA和RNA的合成;参与氨基酸代谢,在同型半胱氨酸与蛋氨酸之间的相互转化中发挥作用,因此,叶酸与人体重要的生化过程密切相关。叶酸缺乏会引起多种疾病,包括阿尔茨海默病、心血管疾病、骨质疏松症、乳腺癌和结肠癌、抑郁症、痴呆、唇腭裂、听力受损症状。此外,研究还发现,叶酸对孕妇尤其重要,孕妇膳食中添加叶酸可以预防新生儿神经管缺陷。由于人类自身无法合成叶酸,因此,需要从膳食中摄取叶酸。美国食品和营养委员会推荐成年人叶酸摄取量为400μg/天,怀孕期妇女为600μg/天,哺乳期妇女为500μg/天。但调查发现大量人群叶酸摄取不足,特别是孕妇。在人体叶酸营养强化策略中,食物中天然存在的叶酸的营养强化效果明显优于药物和强化食品中人工合成的叶酸。绿叶蔬菜作为天然叶酸的主要来源,其叶酸常以多谷氨酸叶酸的形式存在。然而,目前对蔬菜中的叶酸生物强化研究相对较少。
     蔬菜是中国居民摄取叶酸的主要来源,用高效液相色谱方法检测蔬菜中叶酸类物质具有重要意义。本研究建立了高效液相色谱方法检测蔬菜中多谷氨酸叶酸的检测方法,具有良好的灵敏度,应用在中国市场上出售的不同种类蔬菜中叶酸类物质的检测中发现,蔬菜中的豆芽、菠菜和小白菜的叶酸含量最高。因此,本研究通过进一步研究不同品种豆类种子发芽时间对豆类叶酸及其形式的分析,以期获得最佳的发芽时间。除此外,也通过对不同品种菠菜和小白菜叶酸总量和形态的分析,研究了基因型对两种叶菜中叶酸的影响,以揭示蔬菜叶酸的遗传多样性。主要结果如下:
     (1)不同形式叶酸的稳定性,及低浓度是植物样品中叶酸检测的难点。因此,建立一个稳定可靠的叶酸及不同形式叶酸的分析检测技术对于蔬菜叶酸强化领域研究尤为重要。本研究通过建立快速、简便、灵敏的高效液相色谱方法应用于植物样品中叶酸的测定。该方法采用磷酸缓冲液煮沸法、添加老鼠血清(RS)轭合酶法、固相萃取柱纯化法(SPE)提取和纯化植物中的叶酸,通过Zorbax SB C-18色谱柱分离,使用高效液相色谱(HPLC)-紫外-荧光检测器的串联法对蔬菜中的叶酸总量及不同形式叶酸(四氢叶酸、5-甲基四氢叶酸、5-甲酰基四氢叶酸、10-甲酰叶酸和叶酸)进行定性和定量测定,结果表明,叶酸在范围内,峰面积与进样量呈良好线性关系,叶酸标准物质回收率高,试验重复性好。应用该方法对三种叶菜(菠菜、小白菜和生菜)的不同形态叶酸检测发现,5-甲基四氢叶酸是三种叶菜叶酸的主要形式。因此,本研究建立的叶酸检测方法是一种快速、简便、灵敏的特点,适用于植物不同形式叶酸的检测。
     (2)叶酸缺乏会增加人体患慢性疾病的风险,这些疾病包括婴幼儿神经管缺陷,成年人巨幼细胞性贫血,心血管疾病和某些癌症。中国是已知的神经管畸形高发区。通过足量食用新鲜的绿叶蔬菜可以减少中国人群叶酸缺乏问题,但目前对中国居民经常食用的蔬菜中总叶酸及其不同形式叶酸含量的研究较少。本研究采用高效液相色谱法对中国市场上出售的不同种类蔬菜(绿叶蔬菜、水果蔬菜、根类蔬菜)叶酸分析检测,根据结果估算以蔬菜为主要叶酸来源的中国居民膳食摄入叶酸量。结果表明,不同种类蔬菜可食部分的总叶酸含量在14.78-145.54μg/100g之间,平均含量为61.99μg/100g。其中以小白菜和菠菜的叶酸含量最高(>140μg/100g)。绿叶蔬菜、水果蔬菜、根类蔬菜的总叶酸含量分别为17.22-145.54μg/100g、18.14-86.04g/100g、14.78-75.81μg/100g。以上结果说明,中国居民常食用的不同类型蔬菜之间叶酸含量差异很大,总体来说,叶菜类蔬菜的叶酸含量高于水果和根茎类蔬菜。
     (3)叶酸缺乏和叶酸摄入量不足所导致的人体健康问题及社会经济负担问题日益受到关注。本试验研究不同发芽时间对不同品种豆类(黄豆、绿豆)种子的叶酸、维生素C、总酚和总抗氧化能力含量的影响,以期豆芽营养富集的最佳发芽时间。结果表明,发芽第4天,黄豆芽和绿豆芽叶酸含量达到最高值分别为815.2μg/100g鲜重,675.4μg/100g鲜重。相比未发芽对照,分别提高了3.5和3.9倍;超过4天之后,黄豆芽和绿豆芽的叶酸含量随之下降。5-甲基四氢叶酸是豆芽中叶酸的主要形式,并在种子发芽第4天含量最高。维生素C在未发芽对照中未检测到,发芽的第4天,黄豆芽和绿豆芽的维生素C含量达到最大值,分别达到了29mg/100g鲜重和27.7mg/100g鲜重。发芽4天的黄豆芽和绿豆芽的总叶酸、5-甲基四氢叶酸、维生素C、多酚和抗氧化能力也达到最大值。因此,本研究认为豆类发芽最适宜时间为4天。
     (4)叶酸生物强化为包括发展中国家在内的世界各国解决人体叶酸缺乏提供了一种成本低廉、有效的途径,该方法主要通过育种手段提高植物可食用部分叶酸含量来实现。高叶酸的种质可用于常规育种或直接作为品种利用。在蔬菜中,菠菜中叶酸含量相对较高,然而,对于不同品种菠菜中总叶酸及不同形式叶酸含量分析检测的报道较少。本研究在人工气候室统一种植条件下,种植供试67个菠菜品种(来自于美国农业部和亚洲蔬菜研究发展中心种质资源)收获后采用高效液相色谱法检测供试菠菜品种的总叶酸及不同形式叶酸含量。结果表明,菠菜总叶酸含量范围为54.1-173.2gg/100g鲜重,不同基因型之间相差约3倍,并筛选出4个高叶酸品种(PI499372,NSL6095,PI261787和TOT7337-B),其总叶酸含量均超过150gg/100g鲜重。不同形式叶酸(四氢叶酸,5-甲基-四氢叶酸,5-甲酰-四氢叶酸和叶酸)存在显著的基因型差异是造成总叶酸含量变化的原因。菠菜叶酸的主要形式是5-甲基四氢叶酸占总叶酸量的52%以上。菠菜总叶酸及不同形式叶酸含量的基因型差异为高叶酸育种研究提供了可能。
     (5)叶酸是生物体必需的微量营养素。然而叶酸摄入不足造成的人体叶酸缺乏的问题相当普遍。利用育种生物强化途径是解决人体叶酸缺乏具有较好前景。种质资源遗传多样性的那些样品,在遗传育种中可作为亲本被优先利用。在本研究采用高效液相色谱法对不同品种小白菜叶酸总量及其不同形式叶酸含量分析检测,研究小白菜叶酸的遗传多样性。结果表明,小白菜叶酸总量范围在52.7-166.9μg/100g鲜重之间。小白菜中不同形式叶酸(四氢叶酸,5-甲基-四氢叶酸,5-甲酰-四氢叶酸和叶酸)存在显著的基因型差异造成了叶酸总量的变化。小白菜叶酸主要形式是5-甲基-四氢叶酸含量,其占总叶酸含量的54.6%,不同基因型之间相差4.5倍。对叶酸合成代谢途径中11个关键基因的表达水平研究发现,叶酸含量的变异受转录后水平的调控,故叶酸代谢基因表达的转录后调控可能是造成小白菜种质资源叶酸积累量差异的主要原因,这也是利用小白菜叶酸含量的基因型差异进行叶酸生物强化育种的遗传基础。
Folate, or folic acid, is one of the most nutritionally significant water soluble B vitamin that exists in many different forms. Its presence is necessary for synthesis of DNA and RNA and methylation of homocysteine to methionine. The importance of folate in the diet of pregnant women for the prevention of neural tube defects (spina bifida and anencephaly) in babies is well-known. Folate deficiency has also been implicated in a wide variety of disorders including Alzheimer's disease, cardiovascular diseases, osteoporosis, breast and colon cancers, depression, dementia, cleft lip/palate and hearing loss. Humans cannot synthesise folate by themselves and therefore depend on an adequate supply through food intake. The US Food and Nutrition Board have nominated a recommended dietary allowance (RDA) for folate of400μg for adults,600μg during pregnancy and500μg during lactation per day. However, the recommended daily intake of folate is not reached by many people, especially women in fertile ages. Natural sources of folate are reportedly more effective than supplementation or fortification with folic acid. Green leafy vegetables are excellent sources of folates, which occur naturally in many forms or vitamers. However, little effort has been taken to folate biofortification in vegetables.
     In this series of experiment, we develop and validate a rapid, simple and sensitive Liquid Chromatographic (LC) method suitable for analysis of most common monoglutamate folates in vegetables. Using this validated method, further we analyze most commonly consumed important vegetables that contribute to folate intake in Chinese population, and we found that legume sprouts, spinach and pakchoi are the richest sources of folate. Therefore, further we optimization of the germination process of different cultivars of legume seeds to maximize content and composition of folate. Further we investigate natural variation in the folate content and composition of spinach genotypes grown under controlled environmental conditions to screen for natural diversity. We also investigate natural genetic diversity of folate in pakchoi genotypes grown under controlled environmental conditions to screen for natural diversity for breeding program. The salient findings are as follows:
     (1) Folate analysis is challenging because of large number of structural analogs, their stability and low level in natural samples. A reliable, relatively simple and rapid method will enable to assess the biofortification interventions of folate content and composition. The prime concern of this study was to develop and validate a rapid, simple and sensitive liquid chromatography (LC) method suitable for analysis of most common monoglutamate folates in plant samples. The method involved extraction of folates from the plant sample by heat treatment, deconjugation of folate polyglutamates to monoglutamates by incubation with rat serum (RS) conjugase and purification of food extracts by solid-phase extraction (SPE) and LC-UV/FL detection with Zorbax SB C18column for separation of main monoglutamate folates from plant samples. It was possible to separate and determine five folate derivatives: tetrahydrofolate,5-methyltetrahydrofolate,5-formyltetrahydrofolate,10-formylfolic acid and folic acid with fluorescence and ultraviolet detection. Validation of the method included linearity tests, the addition of standard folates for the determination of recovery and repeatability tests. The method developed was applied to analysis of spinach, pakchoi and lettuce;5-methyltetrahydrofolate was found to be the main folate form in all these vegetables. Our validate method offers a rapid, simple and sensitive approach to determine the level of main monoglutamate folates in plant samples.
     (2) Folate deficiency increases the risk of chronic diseases, including neural tube defects (NTDs) in infants, megaloblastic anemia, cardiovascular disease, and some cancers in adults. China is the most NTDs prevalent area in the world. Folate deficiency in China can be reduced by proper supply of fresh leafy green vegetables but little is known about the folate content and vitamers in the vegetables commonly consumed by Chinese population. The purposes of this study were first to analyze most commonly consumed important vegetables that contribute to folate intake in the Chinese population and second to estimate the significance of selected vegetables as a source of dietary folate intake. Folate content and vitamers forms in vegetables were analyzed using a valid liquid chromatography (LC) method. Mono-enzyme treatment was used for leafy green and some fruit vegetables, and di-enzyme treatment for some root vegetables. Total folate content in commonly consumed vegetables ranged from14.78to145.54μg/100g in edible portion with an average61.99μg/100g. The highest folate content (>140μg/100g) were found in pakchoi and spinach. Total folate content in leafy vegetables, fruit vegetables, and root vegetables were in the range of17.22to145.54μg/100g,18.14to86.04μg/100g, and14.78to75.81p.g/100g, respectively. The considerable variations in folate content were found in different types of vegetables commonly consumed by Chinese population. Leafy vegetables are a better source of folate than fruit and root vegetables commonly consumed by Chinese population.
     (3) Folate deficiency associated with low dietary intake is a well-documented public health problem, resulting in serious health and socioeconomic burdens. Therefore, optimization of the germination process of different cultivars of legume seeds in relation to the content and composition of folate, vitamin C, and total phenolics and total antioxidant capacity was carried out to maximize the health-promoting properties. The content and composition of folate, vitamin C, and total phenolic and total antioxidant capacities varied between species, among cultivars, and with germination time. During germination, total folate content was maximum at815.2μg/100g fresh weight in soybean sprout and at675.4μg/100g fresh weight in mungbean sprout on the fourth day, which were equivalent to, respectively,3.5-and3.9-fold increases in the seed's content, and total folate content strongly decreased thereafter.5-CH3-H4folate was the most abundant folate species in legume sprouts and reached a maximum on the fourth day. Vitamin C was not detected in raw seeds, and its content increased sharply in soybean and mungbean sprouts and reached a maximum at the fourth day of germination (29and27.7mg/100g fresh weight, respectively). Germination of soybean and mungbean for4days provided the largest amount of total folate as well as the more stable species5-CH3-H4folate and also brought about large amounts of vitamin C and total phenolics and substantial antioxidant capacities.
     (4) Breeding to increase folate levels in edible parts of plants, termed folate biofortification, is an economical approach to fight against folate deficiency in humans, especially in the developing world. Germplasm with elevated folates are a useful genetic source for both breeding and direct use. Spinach is one of the well-know vegetables that contain a relatively high amount of folate. Currently, little is known about how much folate, and their composition varies in different spinach accessions. The aim of this study was to investigate natural variation in the folate content and composition of spinach genotypes grown under controlled environmental conditions. The folate content and composition in67spinach accessions were collected from the United States Department of Agriculture (USDA) and Asian Vegetable Research and Development Center (AVRDC) germplasm collections according to their origin, grown under control conditions to screen for natural diversity. Folates were extracted by a monoenzyme treatment and analyzed by a validated liquid chromatography (LC) method. The total folate content ranged from54.1to173.2μg/100g of fresh weight, with3.2-fold variation, and was accession-dependent. Four spinach accessions (PI499372, NSL6095, PI261787, and TOT7337-B) have been identified as enriched folate content over150μg/100g of fresh weight. The folate forms found were H4-folate,5-CH3-H4folate, and5-HCO-H4folate, and10-CHO-folic acid also varied among different accessions and was responsible for variation in the total folate content. The major folate vitamer was represented by5-CH3-H4folate, which on average accounted for up to52%of the total folate pool. The large variation in the total folate content and composition in diverse spinach accessions demonstrates the great genetic potential of diverse genotypes to be exploited by plant breeders.
     (5) Folates are essential micronutrient required by most living organisms. Folate deficiency in human remains prevalent due to inadequate dietary intake. Biofortification through breeding is a potential strategy to reduce widespread human folate deficiency. Genetically diverse germplasm can potentially be used as parents in breeding programs. Therefore, we investigated natural genetic diversity of folate in pakchoi genotypes grown under controlled environmental conditions. Folates were extracted by a monoenzyme treatment and analyzed by a validated liquid chromatography method. The total folate content ranged from52.7to166.9μg/100g of fresh weight, with3.2-fold variation. The foiate forms found were H4folate,5-CH3-H4folate, and5-HCO-H4folate, and10-CHO-folic acid also varied among different accessions and was responsible for variation in the total folate content. The major folate vitamer was represented by5-CH3-H4folate, with4.5-fold variation, which on average accounted for up to54.6%of the total folate pool. A general correlation between total folate, pteridine and pABA was observed. Analysis of the transcription of11genes involved in folate metabolism suggested that variation in folate concentrations may be controlled primarily at the post-transcriptional level. Transcriptional regulation of folate metabolism gene expression might contribute to the different levels of folate accumulation in pakchoi germplasm. The diverse genotypic variation in pakchoi germplasm demonstrates the great genetic potential to integrate breeding programs for folate biofortification.
引文
Aiso, K. T. T. (1998). Trienzyme treatment for food folate analysis:Optimal pH and incubation time for alfa-amylase and protease treatments. Journal of Nutrition Science and Vitaminology (44),361-370.
    Aline C. S. Nunes, D. C. K., Francisco J. L. Araga'o. (2009). Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Research (18),661-667.
    Allfrey, V., Faulkner, R., & Mirsky, A. (1964). Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proceedings of the National Academy of Sciences,51(5),786.
    Angier, R. B., Boothe, J. H., Hutchings, B. L., Mowat, J. H., Semb, J., Stokstad, E., Subbarow, Y., Waller, C. W., Cosulich, D. B., & Fahrenbach, M. (1945). Synthesis of a Compound Identical with the L. Casei Factor Isolated from Liver. Science,102 (2644),227.
    AOAC. (2000). Official methods of analysis (17th ed.):Arlington, VA:Association of Official Analytical Chemists (p.12-13).
    Appling, D. R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB Journal,5(12),2645-2651.
    Assaraf, Y. G. (2006). The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates,9(4-5), 227-246.
    Avis Houlihan, M. P., Pieter Scheelings, Glenn Graham, & Geoffrey Eaglesham, T. O. H., Lung Wong, Prapasri Puwastien and Wasinee Jongjitsin. (2011). Folate Content of Asian Vegetables. In:RIRDC, Australia.
    AVRDC (2000). Evaluation and Selection of Leafy Vegetable Cultivars. In AVRDC Report 2000, (pp.50-55). Taiwan.
    Baggott, J. E., & Johanning, G. L. (1999).10-Formyl-dihydrofolic acid is bioactive in human leukemia cells. Journal of Nutrition,129(7),1315-1318.
    Ball, G. F. M. (1998). Bioavailability and analysis of vitamins in foods:Chapman and Hall, London (1998) Chap.15 vitamin C.
    Basset, G., Quinlivan, E. P., Ziemak, M. J., Diaz de La Garza, R., Fischer, M., Schiffmann, S., Bacher, A., Gregory, J. F., & Hanson, A. D. (2002). Folate synthesis in plants:the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proceedings of the National Academy of Sciences,99(19),12489.
    Basset, G. J. C., Quinlivan, E. P., Ravanel, S., Rebeille, F., Nichols, B. P., Shinozaki, K., Seki, M., Adams-Phillips, L. C., Giovannoni, J. J., & Gregory, J. F. (2004). Folate synthesis in plants:the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proceedings of the National Academy of Sciences 101(6),1496.
    Baugh, C. M., & Krumdieck, C. L. (1971). Naturally Occurring Folates. Annals of the New York Academy of Sciences,186(1),7-28.
    Bazzano, L. A., Reynolds, K., Holder, K. N., & He, J. (2006). Effect of folic acid supplementation on risk of cardiovascular diseases. Journal of American Medical Association,296(22),2720-2726.
    Bekaert, S., Storozhenko, S., Mehrshah, P., Bennett, M. J., Lambert, W., Gregory, J. F., Schubert, K., Hugenholtz, J., Van der Straeten, D., & Hanson, A. D. (2008). Folate biofortification in food plants. Trends in Plant Science,13(1),28-35.
    Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":The FRAP assay. Analytical Biochemistry, 239(1),70-76.
    Bergquist, S. A. M., Gertsson, U. E., Nordmark, L. Y. G., & Olsson, M. E. (2007). Ascorbic acid, carotenoids, and visual quality of baby spinach as affected by shade netting and postharvest storage. Journal of Agricultural and Food Chemistry,55(21),8444-8451.
    Berry, R. J., Li, Z., Erickson, J. D., Li, S., Moore, C. A., Wang, H., Mulinare, J., Zhao, P., Wong, L. Y. C., Gindler, J., Hong, S. X., Correa, A., & Neu, C.-U. C. P. (1999). Prevention of neural-tube defects with folic acid in China. New England Journal of Medicine,341(20),1485-1490.
    Besson, V., Rebeille, F., Neuburger, M., Douce, R., & Cossins, E. (1993). Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochemical Journal,292(Pt 2),425.
    Bewley, J. D. (1997). Seed germination and dormancy. Plant Cell,9(7),1055.
    Bhandari, S., & Gregory, J. (1990). Inhibition by selected food components of human and porcine intestinal pteroylpolyglutamate hydrolase activity. American Journal of Clinical Nutrition,51(1),87-94.
    Blakley, R. (1960). Spectrophotometric studies on the combination of formaldehyde with tetrahydropteroylglutamic acid and other hydropteridines. Biochemical Journal,74(1),71.
    Blakley, R. L. (1969). The Biochemistry of Folic Acid and Related Pteridines (Vol. 13). The Netherlands:North-Holland Publishing:Amsterdam.
    Blakley, R. L. (1988). IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN)In:Frontiers in Biology. The Netherlands:North Holland Publishing. Amsterdam p 1-99
    Nomenclature and symbols for folic acid and related compounds recommendations 1986. Journal of Biological Chemistry (263),605-607.
    Blancquaert, D., Storozhenko, S., Loizeau, K., De Steur, H., De Brouwer, V., Viaene, J., Ravanel, S., Rebeille, F., Lambert, W., & Van Der Straeten, D. (2010). Folates and folic acid:from fundamental research toward sustainable health. Critical Reviews in Plant Science,29(1),14-35.
    Block, M. A., Tewari, A. K., Albrieux, C., Marechal, E., & Joyard, J. (2002). The plant S-adenosyl-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. European Journal of Biochemistry,269(1),240-248.
    Boushey, C. J., Beresford, S. A. A., Omenn, G. S., & Motulsky, A. G. (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Journal of the American Medical Association,274(13),1049-1057.
    Brouwer, I. A., van Dusseldorp, M., West, C. E., Meyboom, S., Thomas, C. M. G., Duran, M., van het Hof, K. H., Eskes, T. K. A. B., Hautvast, J. G. A. J., & Steegers-Theunissen, R. P. M. (1999). Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. Journal of Nutrition,129(6),1135-1139.
    Busby, A., Abramsky, L., Dolk, H., & Armstrong, B. (2005). Preventing neural tube defects in Europe:population based study. BMJ,330(7491),574-575.
    Careri, M., Bianchi, F., & Corradini, C. (2002). Recent advances in the application of mass spectrometry in food-related analysis. Journal of Chromatography A, 970(1),3-64.
    Causse, M., Saliba-Colombani, V., Lecomte, L., Duffe, P., Rousselle, P., & Buret, M. (2002). QTL analysis of fruit quality in fresh market tomato:a few chromosome regions control the variation of sensory and instrumental traits. Journal of Experimental Botany,53(377),2089-2098.
    Cella, R., & Parisi, B. (1993). Dihydrofolate reductase and thymidylate synthase in plants:an open problem. Physiologia Plantarum,88(3),509-521.
    Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chemistry,119(4),1485-1490.
    Chanarin, I., & Perry, J. (1969). Evidence for reduction and methylation of folate in the intestine during normal absorption. Lancet,294(7624),776-778.
    Chen, G., Song, X., Ji, Y., Zhang, L., Pei, L., Chen, J., Liu, J., Li, C., & Zheng, X. (2008). Prevention of NTDs with periconceptional multivitamin supplementation containing folic acid in China. Birth Defects Research Part A: Clinical and Molecular Teratology,82(8),592-596.
    Chen, L., Chan, S. Y., & Cossins, E. A. (1997). Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant physiology,115(1),299-309.
    Chen, T. S., & Cooper, R. (1979). Thermal destruction of folacin:effect of ascorbic acid, oxygen and temperature. Journal of Food Science,44(3),713-716.
    Cherian, A., Seena, S., Bullock, R. K., & Antony, A. C. (2005). Incidence of neural tube defects in the least-developed area of India:a population-based study. Lancet,366(9489),930-931.
    Christiansen, M., & Game, E. (2005). Prevention of neural tube defects with periconceptional folic acid supplementation in Europe. Ugeskrift for laeger, 167(32),2875.
    Christianson A, Howson CP, Modell B:(2006) March of Dimes Global Report on Birth Defects—The hidden Toll of Dying and Disabled Children. White Plains, New York:March of Dimes Birth Defects Foundation.
    Collaboration, H. S. (2002). Homocysteine and risk of ischemic heart disease and stroke. Journal of the American Medical Association,288(16),2015-2022.
    Cossins, E. A. (2000). The fascinating world of folate and one-carbon metabolism. Canadian journal of botany. Journal Canadien de Botanique,78(6),691.
    Czernichow, S., Noisette, N., Blacher, J., Galan, P., Mennen, L., Hercberg, S., & Ducimetiere, P. (2005). Case for Folic Acid and Vitamin B12 Fortification in Europe. In, vol.5 (pp.156-162):New York, NY:Thieme Medical Publishers, c2001-c2005.
    Dai, L., Zhu, J., Zhou, G., Wang, Y., Wu, Y., Miao, L., & Liang, J. (2002). [Dynamic monitoring of neural tube defects in China during 1996 to 2000]. Zhonghua yu fang yi xue za zhi [Chine seJjournal of Preventive Medicine],36(6),402.
    Dary, O. (2009). Nutritional interpretation of folic acid interventions. Nutrition Reviews,67(4),235-244.
    De Benoist, B. (2008). Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food and Nutrition Bulletin,29(2 Suppl), S238.
    De Brouwer, V., Storozhenko, S., Stove, C. P., Van Daele, J., Van Der Straeten, D., & Lambert, W. E. (2010). Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the sensitive determination of folates in rice. Journal of Chromatography B,878(3-4),509-513.
    De la Garza, R. D., Quinlivan, E. P., Klaus, S. M. J., Basset, G. J. C., Gregory, J. F. & Hanson, A. D. (2004). Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proceedings of the National Academy of Sciences,101(38),13720-13725.
    De la Garza, R. I. D., Gregory, J. F., & Hanson, A. D. (2007). Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences,104(10), 4218-4222.
    De Souza, S., & Eitenmiller, R. (1990). Effects of different enzyme treatments on extraction of total folate from various foods prior to microbiological assay and radioassay. Journal of Micronutrient Analysis,7(1),37-57.
    De Steur, H., Gellynck, X., Storozhenko, S., Ge, L. Q., Lambert, W., Van Der Straeten, D., & Viaene, J. (2010). Health impact in China of folate-biofortified rice. Nature Biotechnology,28(6),554-556.
    DellaPenna, D. (1999). Nutritional genomics:Manipulating plant micronutrients to improve human health. Science,285(5426),375-379.
    DellaPenna, D. (2007). Biofortification of plant-based food:Enhancing folate levels by metabolic engineering. Proceedings of the National Academy of Sciences, 104(10),3675-3676.
    Devi, R., Arcot, J., Sotheeswaran, S., & Ali, S. (2008). Folate contents of some selected Fijian foods using tri-enzyme extraction method. Food Chemistry, 106(3),1100-1104.
    Dodd, W. A., & Cossins, E. (1969). Metabolism of S-adenosylmethionine in germinating pea seeds:Turnover and possible relationships between recycling of sulfur and transmethylation reactions. Archives of Biochemistry and Biophysics,133(2),216-223.
    Dodd, W. A., & Cossins, E. (1970). Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds. Biochimica et Biophysica Acta (BBA),201(3),461-470.
    Doherty, R. F., & Beecher, G. R. (2003). A method for the analysis of natural and synthetic folate in foods. Journal of Agricultural and Food Chemistry,51(2), 354-361.
    Douce, R., Bourguignon, J., Neuburger, M., & Rebeille, F. (2001). The glycine decarboxylase system:a fascinating complex. Trends in plant science,6(4), 167-176.
    Eitenmiller, R. R., & Landen, W. O. J.. (1999). Folate. In R. R. E. W. O. J. Landen (Ed.), Vitamin analysis for health and food sciences, (pp.411-466):New York:CRC Press.
    Eitenmiller, R. R., Ye, L., & Landen, W. O. (2008). Vitamin analysis for the health and food sciences (2nd ed.). Boca Raton:CRC Press.
    Engelhardt, R., & Gregory, J. F. (1990). Adequacy of enzymic deconjugation in quantification of folate in foods. Journal of Agricultural and Food Chemistry, 38(1),154-158.
    Fan, C. L., & Brown, G. M. (1976). Partial purification and properties of guanosine triphosphate cyclohydrolase from Drosophila melanogaster. Biochemical Genetics,14(3),259-270.
    Faulkner, K., Mithen, R., & Williamson, G. (1998). Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis,19(4),605-609.
    Fernandez-Orozco, R., Frias, J., Zielinski, H., Piskula, M. K., Kozlowska, H., & Vidal-Valverde, C. (2008). Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald Glycine max jutro and Glycine max cv. merit. Food Chemistry,111(3),622-630.
    Finglas, P. M., de Meer, K., Molloy, A., Verhoef, P., Pietrzik, K., Powers, H. J., van der Straeten, D., Jagerstad, M., Varela-Moreiras, G., van Vliet, T., Havenaar, R., & Buttriss, J. (2006). Research goals for folate and related B vitamins in Europe. European Journal of Clinical Nutrition,60(2),287-294.
    Finglas, P. M., Wigertz, K., Vahteristo, L., Witthoft, C., Southon, S., & de Froidmont-Gortz, I. (1999). Standardisation of HPLC techniques for the determination of naturally-occurring folates in food. Food Chemistry,64(2),245-255.
    Fowler, B. (2001). The folate cycle and disease in humans. Kidney International,59(s 78),221-229.
    Freisleben, A., Schieberle, P., & Rychlik, M. (2002). Syntheses of labeled vitamers of folic acid to be used as internal standards in stable isotope dilution assays. Journal of Agricultural and Food Chemistry,50(17),4760-4768.
    Freisleben, A., Schieberle, P., & Rychlik, M. (2003a). Comparison of folate quantification in foods by high-performance liquid chromatography-fluorescence detection to that by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Analytical Biochemistry,315(2),247-255.
    Freisleben, A., Schieberle, P., & Rychlik, M. (2003b). Specific and sensitive quantification of folate vitamers in foods by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry,376(2),149-156.
    Gambonnet, B., Jabrin, S., Ravanel, S., Karan, M., Douce, R., & Rebeille, F. (2001). Folate distribution during higher plant development. Journal of the Science of Food and Agriculture,81(9),835-841.
    Garbis, S. D., Melse-Boonstra, A., West, C. E., & van Breemen, R. B. (2001). Determination of folates in human plasma using hydrophilic interaction chromatography-tandem mass spectrometry. Analytical chemistry,73(22), 5358-5364.
    Geisel, J. (2003). Folic acid and neural tube defects in pregnancy:a review. The Journal of Perinatal & Neonatal Nursing,17(4),268.
    Ginting, E., & Arcot, J. (2004). High-performance liquid chromatographic determination of naturally occurring folates during tempe preparation. Journal of Agricultural and Food Chemistry,52(26),7752-7758.
    Giovannucci, E., Rimm, E. B., Ascherio, A., Stampfer, M. J., Colditz, G. A., & Willett, W. C. (1995). Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men. Journal of the National Cancer Institute,87(4),265-273.
    Goli, D. M., & Vanderslice, J. T. (1992). Investigation of the conjugase treatment procedure in the microbiological assay of folate. Food Chemistry,43(1),57-64.
    Gounelle, J. C., Ladjimi, H., & Prognon, P. (1989). A rapid and specific extraction procedure for folates determination in rat liver and analysis by high-performance liquid chromatography with fluorometric detection. Analytical Biochemistry,176(2),406-411.
    Goyer, A., Illarionova, V., Roje, S., Fischer, M., Bacher, A., & Hanson, A. D. (2004). Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases. Plant physiology,135(1), 103.
    Goyer, A., & Navarre, D. A. (2009). Folate is higher in developmentally younger potato tubers. Journal of the Science of Food and Agriculture,89(4),579-583.
    Gregory, J. (1984). Determination of folacin in foods and other biological materials. Journal-Association of Official Analytical Chemists,67(5),1015.
    Gregory, J. (1997). Bioavailability of folate. European Journal of Clinical Nutrition. 51(1), S54-S59.
    Gregory, J. F. (1996). Folate. In:Food Chemistry. (Ed. O.R. Fennema). Marcel & Dekker, New York:p 590-616.
    Gregory, J. F,. (1989). Chemical and nutritional aspects of folate research:analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Advances in Food and Nutrition Research,33,1-101.
    Gregory, J. F., Engelhardt, R., Bhandari, S. D., Sartain, D. B., & Gustafson, S. K. (1990). Adequacy of extraction techniques for determination of folate in foods and other biological materials. Journal of Food Composition and Analysis, 3(2),134-144.
    Gregory, J. F., Quinlivan, E. P., & Davis, S. R. (2005). Integrating the issues of folate bioavailability, intake and metabolism in the era of fortification. Trends in Food Science & Technology,16(6),229-240.
    Groehn, V., & Moser, R. (1999). Synthesis of optically pure diastereoisomers of reduced folates. Pteridines Berlin,10(3),95-100.
    Grusak MA, C. I. (2005). Methods to improve the crop-delivery of minerals to humans and livestock In W. P. Broadley MR (Ed.), Plant Nutritional Genomics, (pp.265-286):Oxford, UK:Blackwell.
    Halsted, C.H. (1990) Intestinal absorption of dietary folates. In Picciano, M.F., Stokstad, E.L.R. and Gregory, J.F. (eds), Folic Acid Metabolism in Health and Disease.Wiley-Liss, New York, NY, p.23-45
    Han, Y. H., Yon, M., & Hyun, T. H. (2005). Folate intake estimated with an updated database and its association to blood folate and homocysteine in Korean college students. European Journal of Clinical Nutrition,59(2),246-254.
    Hannon-Fletcher, M. P., Armstrong, N. C., Scott, J. M., Pentieva, K., Bradbury, I., Ward, M., Strain, J., Dunn, A. A., Molloy, A. M., & Kerr, M. A. (2004). Determining bioavailability of food folates in a controlled intervention study. American Journal of Clinical Nutrition,80(4),911-918.
    Hanson, A. D., & Gregory, J. F. (2002). Synthesis and turnover of folates in plants. Current Opinion in Plant Biology,5(3),244-249.
    Hanson, A. D., & Roje, S. (2001). One-Carbon Metabolism in Higher Plants. Annual Review in Plant Physiology Plant Molecular Biology,52,119-137.
    Hanson, P., Yang, R., Chang, L., Ledesma, L., & Ledesma, D. (2009). Contents of carotenoids, ascorbic acid, minerals and total glucosinolates in leafy brassica pakchoi (Brassica rapa L. chinensis) as affected by season and variety. Journal of the Science of Food and Agriculture,89(5),906-914.
    Hao. L., Ma, J., Stampfer, M. J., Ren, A., Tian, Y., Tang, Y., Willett, W. C., & Li, Z. (2003). Geographical, seasonal and gender differences in folate status among Chinese adults. Journal of Nutrition,133(11),3630-3635.
    Hao, L., Ma, J., Zhu, J. H., Stampfer, M. J., Tian, Y. H., Willett, W. C., & Li, Z. (2007). High prevalence of hyperhomocysteinemia in Chinese adults is associated with low folate, vitamin B-12, and vitamin B-6 status. Journal of Nutrition,137(2),407-413.
    Hawkes, J., & Villota, R. (1989). Folates in foods:reactivity, stability during processing, and nutritional implications. Critical Reviews in Food Science and Nutrition,28(6),439.
    Hefni, M., Ohrvik, V., Tabekha, M., & Witthoft, C. (2010). Folate content in foods commonly consumed in Egypt. Food Chemistry,121(2),540-545.
    Hefni, M., & Witthoft, C. M. (2011). Increasing the folate content in Egyptian baladi bread using germinated wheat flour. LWT-Food Science and Technology, 44(3),706-712.
    Holland, B., Unwin, I., & Buss, D. (1996). Vegetables, Herbs and Spices. Fruit and Nuts. Fifth supplement to McCance and Widdowson's'The Composition of Foods'. In):Cambridge the Royal Society of Chemistry and Ministry of Agriculture Fisheries and Food, Laboratory of the Government Chemist, Fisheries and Food, London.
    Hoppner, K., & Lampi, B. (1993). Folate retention in dried legumes after different methods of meal preparation. Food Research International,26(1),45-48.
    Home, D. W., Krumdieck, C. L., & Wagner, C. (1981). Properties of folic acid gamma-glutamyl hydrolase (conjugase) in rat bile and plasma. Journal of Nutrition,111(3),442.
    Hossain, T., Rosenberg, I., Selhub, J., Kishore, G., Beachy, R., & Schubert, K. (2004). Enhancement of folates in plants through metabolic engineering. Proceedings of the National Academy of Sciences,101(14),5158-5163.
    Hrazdina, G., & Jensen, R. A. (1992). Spatial organization of enzymes in plant metabolic pathways. Annual Review of Plant Biology,43(1),241-267.
    Hyun, T. H., & Tamura, T. (2005). Trienzyme extraction in combination with microbiologic assay in food folate analysis:an updated review. Experimental Biology and Medicine,230(7),444-454.
    Iniesta, M. D., Perez-Conesa, D., Garcia-Alonso, J., Ros, G., & Periago, M. J. (2009). Folate Content in Tomato (Lycopersicon esculentum). Influence of Cultivar, Ripeness, Year of Harvest, and Pasteurization and Storage Temperatures. Journal of Agricultural and Food Chemistry,57(11),4739-4745.
    Iwatani, Y., Arcot, J., & Shrestha, A. K. (2003). Determination of folate contents in some Australian vegetables. Journal of Food composition and Analysis,16(1), 37-48.
    Jabrin, S., Ravanel, S., Gambonnet, B., Douce, R., & Rebeille, F. (2003). One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiology,131(3),1431-1439.
    Jastrebova, J., Witthoft, C., Grahn, A., Svensson, U., & Jagerstad, M. (2003). HPLC determination of folates in raw and processed beetroots. Food Chemistry, 80(4),579-588.
    Kariluoto, M. S., Vahteristo, L. T., & Piironen, V.1. (2001). Applicability of microbiological assay and affinity chromatography purification followed by high-performance liquid chromatography (HPLC) in studying folate contents in rye. Journal of the Science of Food and Agriculture,81(9),938-942.
    Kariluoto, S. (2008). Folate in rye:Determination and enhancement by food processing. Unpublished Academic Dissertation, University of Helsinki, Helsinki, Finland.
    Kim, Y. I. (2004). Will mandatory folic acid fortification prevent or promote cancer? American Journal of Clinical Nutrition,80(5),1123-1128.
    Klaus, S. M. J., Wegkamp, A., Sybesma, W., Hugenholtz, J., Gregory III, J. F., & Hanson, A. D. (2005). A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. Journal of Biological Chemistry,280(7),5274-5280.
    Kondo, A., Kamihira, O., & Ozawa, H. (2009). Neural tube defects:Prevalence, etiology and prevention. International Journal of Urology,16(1),49-57.
    Konings, E. (1999). A validated liquid chromatographic method for determining folates in vegetables, milk powder, liver, and flour. Journal of AOAC International,82(1),119.
    Konings, E. J. M., Roomans, H. H. S., Dorant, E., Goldbohm, R. A., Saris, W. H. M., & van den Brandt, P. A. (2001). Folate intake of the Dutch population according to newly established liquid chromatography data for foods. American Journal of Clinical Nutrition,73(4),765-776.
    Kouzarides, T. (2002). Histone methylation in transcriptional control. Current opinion in genetics & development,12(2),198-209.
    Leichter, J., Butterworth Jr, C., & Krumdieck, C. L. (1977). Partial purification and some properties of pteroylpolyglutamate hydrolase (conjugase) from chicken pancreas. Royal Society of Medicine:In, vol.154 (pp.98-101).
    Li, Z., Ren, A., Zhang, L., & Guo, Z. (2006). A population based case-control study of risk factors for neural tube defects in four high prevalence areas of Shanxi province, China. Paediatric and Perinatal Epidemiology,20(1),43-53.
    Li, Z., Ren, A., Zhang, L., & Liu, J. (2007). Periconceptional use of folic acid in Shanxi Province of northern China. Public Health Nutrition,10(5),471-476.
    Lin, B. F., & Lin, R. F. (1999). Effect of Chinese stir-fry cooking on folate contents of vegetables. Journal of Chinese Agricultural and Chemical Society,37,443-454.
    Lucock, M. (2000). Folic acid:Nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism,71(1-2),121-138.
    Lucock, M., & Yates, Z. (2005). Folic acid-vitamin and panacea or genetic time bomb? Nature Reviews Genetics,6(3),235-240.
    Lucock, M. D., Green, M., Hartley, R., & Levene, M. I. (1993). Physicochemical and biological factors influencing methylfolate stability:use of dithiothreitol for HPLC analysis with electrochemical detection. Food Chemistiy,47(1),79-86.
    Lucock, M. D., Green, M., Priestnall, M., Daskalakis, I., Levene, M.I. & Hartley, R. (1995). Optimization of chromatographic conditions for the determination of folates in foods and biological tissues for nutritional and clinical work. Food Chemistry,53,329-338.
    Lumley, J., Watson, L., Watson, M., & Bower, C. (2007). Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
    Madelene Johansson, Margaretha Jagerstad, and Wenche Fr(?)lich (2007). Folates in lettuce:a pilot study. Scandinavian Journal of Food and Nutrition,51(1),22 30.
    Martin, J., Landen Jr, W., Soliman, A., & Eitenmiller, R. (1990). Application of a tri-enzyme extraction of total folate determination in foods. Journal of AOAC International,73(5),805-808.
    Maruyama, T., Shiota, T., & Krumdieck, C. L. (1978). The oxidative cleavage of folates:a critical study. Analytical Biochemistry,84(1),277-295.
    Matella, N. J., Braddock, R. J., Gregory III, J. F., & Goodrich, R. M. (2005). Capillary electrophoresis and high-performance liquid chromatography determination of polyglutamyl 5-methyltetrahydrofolate forms in citrus products. Journal of Agricultural and Food Chemistry,53(6),2268-2274.
    Mathews, T. (2007). Trends in spina bifida and anencephalus in the United States, 1991-2005. Hyattsville, MD:National Center for Health Statistics.
    Michael C. Falk, B. M. C., Susan K. Harlander, Thomas J. Hoban, IV, Martina N. McGloughlin, and Amin R. Akhlaghi. (2002). Food Biotechnology:Benefits and Concerns. Journal of Nutrition,132,1384-1390.
    Mills, J. L., Von Kohorn, I., Conley, M. R., Zeller, J. A., Cox, C., Williamson, R. E., & Dufour, D. R. (2003). Low vitamin B-12 concentrations in patients without anemia:the effect of folic acid fortification of grain. American Journal of Clinical Nutrition,77(6),1474-1477.
    Mitchell, H. K., Snell, E. E., & Williams, R. J. (1941). The Concentration of Folic acid. Journal of the American Chemical Society,63(8),2284-2284.
    Molloy, A. M., & Scott, J. M. (2001). Folates and prevention of disease. Public Health Nutrition,4(2B; SPI),601-610.
    Moore, C. A., Li, S., Li, Z., Hong, S. X., Gu, H. Q., Berry, R. J., Mulinare, J., & Erickson, J. D. (1997). Elevated rates of severe neural tube defects in a high-prevalence area in northern China. American Journal of Medical Genetics, 73(2),113-118.
    Mou, B. Q. (2008). Evaluation of oxalate concentration in the US spinach germplasm collection. Horticultural Science,43(6),1690-1693.
    NBSC. (2009). Per Capita Consumption of Major Foods by Rural Households by Region. In:National Bureau of Statistics, China.
    Ndaw, S., Bergaentzle, M., Aoude-Werner, D., Lahely, S., & Hasselmann, C. (2001). Determination of folates in foods by high-performance liquid chromatography with fluorescence detection after precolumn conversion to 5-methyltetrahydrofolates. Journal of Chromatography A,928(1),77-90.
    Nelson, B. C., Sharpless, K. E., & Sander, L. C. (2006). Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1135(2),203-211.
    Neuburger, M., Rebeille, F., Jourdain, A., Nakamura, S., & Douce, R. (1996). Mitochondria are a major site for folate and thymidylate synthesis in plants. Journal of Biological Chemistry,271(16),9466-9472.
    Nichols, B. P., Seibold, A. M., & Doktor, S. Z. (1989). para-aminobenzoate synthesis from chorismate occurs in two steps. Journal of Biological Chemistry,264(15), 8597.
    Nilsson, C., Johansson, M., Yazynina, E., Stralsjo, L., & Jastrebova, J. (2004). Solid-phase extraction for HPLC analysis of dietary folates. European Food Research and Technology,219(2),199-204.
    Nishi, S. (1980). Differentiation of Brassica crops in Asia and the breeding of Hakuran', a newly synthesized leafy vegetable. In:Brassica crops and wild allies.p.133-150.
    Nygren-Babol, L., Sternesjo, A., Jagerstad, M., & Bjorck, L. (2005). Affinity and rate constants for interactions of bovine folate-binding protein and folate derivatives determined by optical biosensor technology. Effect of stereoselectivity. Journal of Agricultural and Food Chemistry,53(13),5473-5478.
    O'Broin, J., Temperley, I., Brown, J., & Scott, J. (1975). Nutritional stability of various naturally occurring monoglutamate derivatives of folic acid. American Journal of Clinical Nutrition,28(5),438-444.
    Office of Dietary Supplements, Dietary Supplement Fact Sheet:. In. (2009):National Institutes of Health,6100 Executive Blvd., Bethesda, MD 20892-7517.
    Ohrvik, V. (2009). Folate Bioavailability In vitro Experiments and Human Trials Unpublished Doctoral Thesis, Swedish University of Agricultural Sciences Uppsala, Sweden.
    Orsomando, G., Bozzo, G. G., Garza, R. D., Basset, G. J., Quinlivan. E. P., Naponelli, V., Rebeille, F., Ravanel, S., Gregory, J. F., & Hanson, A. D. (2006). Evidence for folatesalvage reactions in plants. Plant Journal,46(3),426-435.
    Orsomando, G., de la Garza, R. D., Green, B. J., Peng, M., Rea, P. A., Ryan, T. J., Gregory, J. F., & Hanson, A. D. (2005). Plant γ-Glutamyl Hydrolases and Folate Polyglutamates. Journal of Biological Chemistry,280(32),28877-28884.
    Osseyi, E. S., Wehling, R. L., & Albrecht, J. A. (2001). HPLC Determination of Stability and Distribution of Added Folic Acid and Some Endogenous Folates During Breadmaking. Cereal Chemistry,78(4),375-378.
    P, Guan. (1993). The Vegetable Groups and Cultivars of Guangzhou. Guangdong: Guangdong Science and Technology Press.
    Paine Wilson, B., & Chen, T. S. (1979). Thermal destruction of folacin:effect of pH and buffer ions. Journal of Food Science,44(3),717-722.
    Ashfield-Watt PAL, J. W., ZE Clark, SJ Moat, RG Newcombe, ML Burr and IFW McDowell. (2003). A comparison of the effect of advice to eat either '5-a-day' fruit and vegetables or folic acid-fortified foods on plasma folate and homocysteine. European Journal of Clinical Nutrition,57,316-323.
    Patring, J. D. M., Jastrebova, J. A., Hjortmo, S. B., Andlid, T. A., & Jagerstad, I. M. (2005). Development of a simplified method for the determination of folates in baker's yeast by HPLC with ultraviolet and fluorescence detection. Journal of Agricultural and Food Chemistry,53(7),2406-2411.
    Pawlosky, R. J., & Flanagan, V. P. (2001). A quantitative stable-isotope LC-MS method for the determination of folic acid in fortified foods. Journal of Agricultural and Food Chemistry,49(3),1282-1286.
    Pedersen, J. C. (1988). Comparison of y-glutamyl hydrolase and amylase treatment procedures in the microbiological assay for food folates. British Journal of Nutrition,59,261-227.
    Pehrsson, P. R., Haytowitz, D. B., Holden, J. M., Perry, C. R., & Beckler, D. G. (2001). USDA's National Food and Nutrient Analysis Program:Food sampling (vol 13, pg 379,2000). Journal of Food Composition and Analysis, 14(4),447-447.
    Perez-Balibrea, S., Moreno, D. A., & Garcia-Viguera, C. (2011). Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry,125(2),348-354.
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research,29(9), e45-e45.
    Pfeiffer, C. M., Fazili, Z., McCoy, L., Zhang, M., & Gunter, E. W. (2004). Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay. Clinical Chemistry,50(2),423-432.
    Pfeiffer, C. M., Rogers, L. M., & Gregory, J. F. (1997). Determination of folate in cereal-grain food products using trienzyme extraction and combined affinity and reversed-phase liquid chromatography. Journal of Agricultural and Food Chemistry,45(2),407-413.
    Puwastien, P., Pinprapai, N., Judprasong, K., & Tamura, T. (2005). International inter-laboratory analyses of food folate. Journal of Food Composition and Analysis,18(5),387-397.
    Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., Sandoval, C., Zhao, R., Akabas, M. H., & Goldman, I. D. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell,127(5),917-928.
    Quinlivan, E. P., Hanson, A. D., & Gregory, J. F. (2006). The analysis of folate and its metabolic precursors in biological samples. Analytical Biochemistry,348(2), 163-184.
    Rader, J. I., & Schneeman, B. O. (2006). Prevalence of neural tube defects, folate status, and folate fortification of enriched cereal-grain products in the United States. Pediatrics,117(4),1394-1399.
    Randhir, R., Lin, Y. T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry,39(5),637-646.
    Ravanel, S., Cherest, H., Jabrin, S., Grunwald, D., Surdin-Kerjan, Y., Douce, R., & Rebeille, F. (2001). Tetrahydrofolate biosynthesis in plants:molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,98(26),15360.
    Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470),604-610.
    Rebeille, F., Neuburger, M., & Douce, R. (1994). Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochemical Journal,302(Pt 1),223.
    Rebeille, F., Ravanel, S., Jabrin, S., Douce, R., Storozhenko, S., & Van Der Straeten, D. (2006). Folates in plants:biosynthesis, distribution, and enhancement. Physiologia Plantarum,126(3),330-342.
    Rebello, T. (1987). Trace enrichment of biological folates on solid-phase adsorption cartridges and analysis by high-pressure liquid chromatography. Analytical Biochemistry,166(1),55-64.
    Ren, A., Zhang, L., Hao, L., Li, Z., & Tian, Y. (2007). Comparison of blood folate levels among pregnant Chinese women in areas with high and low prevalence of neural tube defects. Public Health Nutrition,10(8),762-768.
    Ren, A., Zhang, L., Li, Z., Hao, L., & Tian, Y. (2006). Awareness and use of folic acid, and blood folate concentrations among pregnant women in northern China--an area with a high prevalence of neural tube defects. Reproductive Toxicology,22(3),431-436.
    Robinson, D. R. (1971). The nonenzymatic hydrolysis of N5, N10-methenyltetrahydrofolic acid and related reactions. Methods in Enzymology (18B),716-725.
    Rodriguez-Bernaldo de Quiros, A., Castro de Ron, C., Lopez-Hernandez, J., & Lage-Yusty, M. (2004). Determination of folates in seaweeds by high-performance liquid chromatography. Journal of Chromatography A,1032(1),135-139.
    Rogovik, A. L., Vohra, S., & Goldman, R. D. (2010). Safety considerations and potential interactions of vitamins:should vitamins be considered drugs? Annals of Pharmacotherapy,44(2),311-324.
    Ruddick, J., Vanderstoep, J., & Richards, J. (1980). Kinetics of thermal degradation of methyltetrahydrofolic acid. Journal of Food Science,45(4),1019-1022.
    Ruggeri, S., Vahteristo, L. T., Aguzzi, A., Finglas, P., & Carnovale, E. (1999). Determination of folate vitamers in food and in Italian reference diet by high-performance liquid chromatography. Journal of Chromatography A,855(1), 237-245.
    Rush, D. (2000). Nutrition and maternal mortality in the developing world. American Journal of Clinical Nutrition,72(1),212s-240s.
    Russell, R., Dhar, G. J., Dutta, S., & Rosenberg, I. (1979). Influence of intraluminal pH on folate absorption:studies in control subjects and in patients with pancreatic insufficiency. Journal of Laboratory and Clinical Medicine,93(3), 428.
    Rychlik, M., Netzel, M., Pfannebecker, I. Frank, T. and Bitsch, I (2003) Application of stable isotope dilution assays based on liquid chromatography-tandem mass spectrometry for the assessment of folate bioavailability. Journal of Chromatography B,792 (2),167-176
    Rychlik, M., Englert, K., Kapfer, S., & Kirchhoff, E. (2007). Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. Journal of Food Composition and Analysis,20 (5),411-419.
    Sahr, T., Ravanel, S., Basset, G., Nichols, B. P., Hanson, A. D., & Rebeille, F. (2006). Folate synthesis in plants:purification, kinetic properties, and inhibition of aminodeoxychorismate synthase. Biochemical Journal,396(Pt 1),157.
    Sanderson, P., Stone, E., Kim, Y. I., Mathers, J. C., Kampman, E., Stephen Downes, C., Muir, K. R., & Baron, J. A. (2007). Folate and colo-rectal cancer risk. British Journal of Nutrition,98(06),1299-1304.
    Santos, C. A. F., & Simon, P. W. (2002). QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Molecular Genetics and Genomics,268(1),122-129.
    Sauberlich, H., Kretsch, M., Skala, J., Johnson, H., & Taylor, P. (1987). Folate requirement and metabolism in nonpregnant women. American Journal of Clinical Nutrition,46(6),1016-1028.
    Schieffer, G. W., Wheeler, G. P., & Cimino, C. O. (1984). Determination of folic acid in commercial diets by anion-exchange solid-phase extraction and subsequent reversed-phase HPLC. Journal of Liquid Chromatography,7(13),2659-2669.
    Scott, J., Rebeille, F., & Fletcher, J. (2000). Folic acid and folates:the feasibility for nutritional enhancement in plant foods. Journal of the Science of Food and Agriculture,80(7),795-824.
    Selhub, J. (1989). Determination of tissue folate composition by affinity chromatography followed by high-pressure ion pair liquid chromatography. Analytical Biochemistry,182(1),84-93.
    Selhub, J., Darcy-Vrillon, B., & Fell, D. (1988). Affinity chromatography of naturally occurring folate derivatives. Analytical Biochemistry,168(2),247-251.
    Selhub, J., Jacques, P. F., Dallal, G., Choumenkovitch, S., & Rogers, G. (2008). The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food & Nutrition Bulletin, 29(Supplement 1),67-73.
    Seshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D'Agostino, R. B., Wilson, P. W. F., & Wolf, P. A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New England Journal of Medicine, 346(7),476-483.
    Sever, L. (1995). Looking for causes of neural tube defects:where does the environment fit in?. Environmental Health Perspectives,103(165-171).
    Seyoum, E., & Selhub, J. (1993). Combined affinity and ion pair column chromatographies for the analysis of food folate. Journal of Nutritional Biochemistry,4(8),488-494.
    Shane, B. (1989). Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitamins & Hormones,45,263-335.
    Shohag, M. J. I., Wei, Y., Yu, N., Zhang, J., Wang, K., Patring, J., He, Z., & Yang, X. (2011). Natural Variation of Folate Content and Composition in Spinach (Spinacia oleracea) Germplasm. Journal of Agricultural and Food Chemistry, 59(23),12520-12526.
    Shohag, M. J. I., Yanyan Wei, Ning Yu, Lingli Lu, Jie Zhang, Zhenli He, Johan Patring, and Xiaoe Yang. (2012). Folate Content and Composition of Vegetables Commonly Consumed in China. Journal of Food Science.77 (11) H234-H245
    Shrestha, A. K., Arcot, J., & Paterson, J. (2000). Folate assay of foods by traditional and tri-enzyme treatments using cryoprotected Lactobacillus casei. Food Chemistry,71(4),545-552.
    Siehl, D. L. (1999). The biosynthesis of tryptophan, tyrosine, and phenylalanine from chorismate. Plant amino acids. Biochemistry and biotechnology. Princeton, NJ: American Cyanamid Company,171-204.
    Snell, E., & Peterson, W. (1940). Growth Factors for Bacteria:X. Additional Factors Required by Certain Lactic Acid Bacteria. Journal of Bacteriology,39(3),273.
    Spronk, A., & Cossins, E. (1972). Folate derivatives of photosynthetic tissues. Phytochemistry,11(11),3157-3165.
    Stokstad, E. (1943). Some properties of a growth factor for Lactobacillus casei. Journal of Biological Chemistry,149(2),573.
    Storozhenko, S., De Brouwer, V., Volckaert, M., Navarrete, O., Blancquaert, D., Zhang, G. F., Lambert, W., & Van Der Straeten, D. (2007). Folate fortification of rice by metabolic engineering. Nature biotechnology,25(11),1277-1279.
    Storozhenko, S., Navarrete, O., Ravanel, S., De Brouwer, V., Chaerle, P., Zhang, G. F., Bastien, O., Lambert, W., Rebeille, F., & Van Der Straeten, D. (2007). Cytosolic hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase from Arabidopsis thaliana. Journal of Biological Chemistry,282(14), 10749-10761.
    Stover, P. J. (2004). Physiology of folate and vitamin B-12 in health and disease. Nutrition Reviews,62(6), S3-S12.
    Suh, J. R., Herbig, A. K., & Stover, P. J. (2001). New perspectives on folate catabolism. Annual Review of Nutrition,21(1),255-282.
    Suzuki, Y., & Brown, G. M. (1974). The Biosynthesis of Folic Acid. Journal of Biological Chemistry,249(8),2405.
    Tamura, T. (1998). Determination of food folate. Journal of Nutritional Biochemistry, 9(5),285-293.
    Tate, P. H., & Bird, A. P. (1993). Effects of DNA methylation on DNA-binding proteins and gene expression. Current Opinion in Genetics & Development, 3(2),226-231.
    Tay DCS and Toxopeus H. (1993). Vegetables. In S. J. a. P. K. Pudoc (Ed.), Brassica rapa L. cv. group pak choi, in PROSEA-Plant Resources South-East Asia 2nd edition ed., (pp.130-135). Wageningen.
    Tewari, Y. B., Jensen, P. Y., Kishore, N., Mayhew, M. P., Parsons, J. F., Eisenstein, E., & Goldberg, R. N. (2002). Thermodynamics of reactions catalyzed by PABA synthase. Biophysical Chemistry,96(1),33-51.
    Todoroff, K., & Shaw, G. M. (2000). Prior spontaneous abortion, prior elective termination, interpregnancy interval, and risk of neural tube defects. American Journal of Epidemiology,151 (5),505-511.
    Tommasi, F., Paciolla, C., De Pinto, M. C., & De Gara, L. (2001). A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Journal of Experimental Botany,52(361),1647-1654.
    Toth, I., Lazar, G., & Goodman, H. M. (1987). Purification and immunochemical characterization of a dihydrofolate reductase—thymidylate synthase enzyme complex from wild-carrot cells. EMBO Journal,6(7),1853.
    Trialists'Collaboration, B. V. T. (2006). Homocysteine-lowering trials for prevention of cardiovascular events:a review of the design and power of the large randomized trials. American Heart Journal,151 (2),282-287.
    U.S. Department of Agriculture (USDA)-Agricultural Research Service (ARS),. In. (2012) February,2012 ed.:USDA National Nutrient Database for Standard Reference, Release 24, USDA-ARS:Beltsville, MD20705.
    UNICEF, M. I. a. (2004). Vitamin and Mineral Deficiency:A Global Damage Assessment Report. Ottawa (M1) and New york (UNICEF).
    US Food Drug Administration (1993). Food labeling:health claims and label statements, folate and neural tube defects. Federal Register,58(197),53254-53317.
    USDA-ARS. (2010). U.S. Department of Agriculture, Agricultural Research Service,. In September,2010 ed.):USDA National Nutrient Database for Standard Reference, Release 23, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory,, Beltsville, MD 20705.
    Vahteristo, L., & Finglas, P. (2000). Chromatographic determination of folates. Chromatographic Science Series,84,301-324.
    Vahteristo, L., Lehikoinen, K., Ollilainen, V., & Varo, P. (1997). Application of an HPLC assay for the determination of folate derivatives in some vegetables, fruits and berries consumed in Finland. Food Chemistry,59(4),589-597.
    Vahteristo, L. T., Ollilainen, V., Koivistoinen, P. E., & Varo, P. (1996). Improvements in the analysis of reduced folate monoglutamates and folic acid in food by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry,44(2),477-482.
    Vahteristo, L. T., Ollilainen, V., & Varo, P. (1997). Liquid chromatographic determination of folate monoglutamates in fish, meat, egg, and dairy products consumed in Finland. Journal of AOAC International,80(2),373-378.
    Van het Hof, K. H., Tijburg, L. B. M., Pietrzik, K., & Weststrate, J. A. (1999). Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. British Journal of Nutrition,82,203-212.
    Van Wilder, V., De Brouwer, V., Loizeau, K., Gambonnet, B., Albrieux, C., Van Der Straeten, D., Lambert, W. E., Douce, R., Block, M. A., & Rebeille, F. (2009). C1 metabolism and chlorophyll synthesis:the Mgprotoporphyrin IX methyltransferase activity is dependent on the folate status. New Phytologist, 182(1),137-145.
    Vandenberg, H., Finglas, P. M., & Bates, C. (1994). Flair Intercomparisons on Serum and Red-Cell Folate. International Journal for Vitamin and Nutrition Research,64(4),288-293.
    Vauclare, P., Diallo, N., Bourguignon, J., Macherel, D., & Douce, R. (1996). Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiology,112(4),1523-1530.
    Vitamin and Mineral Deficiency:A Global Damage Assessment Report. New York, NY, USA. In. (2004)):UNICEF and The Micronutrient Initiative.
    Wald, N., Sneddon, J., Densem, J., Frost, C., & Stone, R. (1991). Prevention of neural tube defects:results of the Medical Research Council Vitamin Study. Lancet, 338(8760),131-137.
    Wang, X., Qin, X., Demirtas, H., Li, J., Mao, G., Huo, Y., Sun, N., Liu, L., & Xu, X. (2007). Efficacy of folic acid supplementation in stroke prevention:a meta-analysis. Lancet,369(9576),1876-1882.
    Ward, J. L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A. M., Nystrom, L., Andersson, A. A. M., Aman, P., Boros, D., Rakszegi, M., Bedo, Z., & Shewry, P. R. (2008). The HEALTHGRAIN Cereal Diversity Screen:Concept, Results, and Prospects. Journal of Agricultural and Food Chemistry,56(21),9699-9709.
    Waters, A., Mollin, D., Pope, J., & Towler, T. (1961). Studies on the folic acid activity of human serum. Journal of Clinical Pathology,14(4),335-344.
    Weaver, L. M., & Herrmann, K. M. (1997). Dynamics of the shikimate pathway in plants. Trends in Plant Science,2(9),346-351.
    Weber, W., Monch, S., Rychlik. M., & Stengl, S. (2011). Quantitation of Vitamins Using Microbiological Assays in Microtiter Formats. Fortified Foods with Vitamins:Analytical Concepts to Assure Better and Safer Products,37-64.
    Wei, M. M., Bailey, L. B., Toth. J. P., & Gregory 3rd, J. (1996). Bioavailability for humans of deuterium-labeled monoglutamyl and polyglutamyl folates is affected by selected foods. Journal of Nutrition,126(12),3100.
    Wei, M. M., & Gregory, J. F. (1998). Organic acids in selected foods inhibit intestinal brush border pteroylpolyglutamate hydrolase in vitro:potential mechanism affecting the bioavailability of dietary polyglutamyl folate. Journal of Agricultural and Food Chemistry,46(1),211-219.
    WHO (2006). Standards for Maternal and Neonatal Care, Iron and folate supplementation. In). Geneva:World Health Organization.
    Wills, L. (1931). Treatment of "Pernicious Anemia of Pregnancy" and "Tropical Anemia". British Medical Journal,1(3676),1059-1064.
    Wilson, S. D., & Home, D. W. (1983). Evaluation of ascorbic acid in protecting labile folic acid derivatives. Proceedings of the National Academy of Sciences, 80(21),6500.
    Wilson, S. D., & Home, D. W. (1984). High-performance liquid chromatographic determination of the distribution of naturally occurring folic acid derivatives in rat liver. Analytical Biochemistry,142(2),529-535.
    Winkels, R. M., Brouwer, I. A., Siebelink, E., Katan, M. B., & Verhoef, P. (2007). Bioavailability of food folates is 80% of that of folic acid. American Journal of Clinical Nutrition,85(2),465-473.
    Wright, A. J. A., Dainty, J. R., & Finglas, P. M. (2007). Folic acid metabolism in human subjects revisited:potential implications for proposed mandatory folic acid fortification in the UK. British Journal of Nutrition,98(4),667-675.
    Xiao, K. (1989). Epidemiology of neural tube defects in China. Zhonghua Yi Xue Za Zhi,69(4),189.
    Xu, M. J., Dong, J. F., & Zhu, M. Y. (2005). Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture,85(6),943-947.
    Yang, X., Romheld, V., Marschner, H., & Chaney, R. L. (1994). Application of chelator-buffered nutrient solution technique on zinc nutrition study in rice plant (Oryza sativa L). Plant and Soil,163(1),85-94.
    Yang Y X, W. G. Y., Pan X C. (2000). China food composition 2002. Beijing:Peking University Medical Press.
    Ye, Q. Z., Liu, J., & Walsh, C. T. (1990). p-Aminobenzoate synthesis in Escherichia coli:purification and characterization of PabB as aminodeoxychorismate synthase and enzyme X as aminodeoxychorismate lyase. Proceedings of the National Academy of Sciences,87(23),9391.
    Yon, M., & Hyun, T. H. (2003). Folate content of foods commonly consumed in Korea measured after trienzyme extraction. Nutrition Research,23(6),735-746.
    Yu, S., Zhang, F., Wang, X., Zhao, X., Zhang, D., Yu, Y., & Xu, J. (2010). Genetic diversity and marker-trait associations in a collection of Pak-choi (Brassica rapa L. ssp. chinensis Makino) Accessions. Genes & Genomics,32(5),419-428.
    Zhang, B., Zhang, T., Lin, L., Wang, F., Xin, R., Gu, X., He, Y., Yu, D., Li, P., & Zhang, Q. (2008). Correlation between birth defects and dietary nutrition status in a high incidence area of China. Biomedical and Environmental Sciences,21(1),37.
    Zhang, G. F., Storozhenko, S., Van Der Straeten, D., & Lambert, W. E. (2005). Investigation of the extraction behavior of the main monoglutamate folates from spinach by liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A,1078(1-2),59-66.
    Zhao, R., Matherly, L. H., & Goldman, I. D. (2009). Membrane transporters and folate homeostasis:intestinal absorption and transport into systemic compartments and tissues. Expert Reviews in Molecular Medicine,11(1).