谐振式光学陀螺中光源和谐振腔非理想特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺是用来测量角速度的惯性传感器,是导航和制导系统的基础部件。基于Sagnac效应的谐振式光学陀螺(Resonator Optic Gyroscope, ROG)是实现高精度陀螺微小型化和集成化的重要技术途径,相对于传统的干涉式光学陀螺来说,可以实现更小的体积甚至片上集成,相对于微机械陀螺来说,更抗振动,有更高的精度和稳定性。
     高相干性光源和光学谐振腔,是谐振式光学陀螺中非常重要的关键元件。论文对上述两种关键元件非理想特性及对陀螺性能的影响进行了理论和实验研究。论文主要工作和创新点包括:
     (1)在谐振式光学陀螺系统中提出并深入分析一个重要的噪声因素——激光器频率噪声通过交叉调制效应将对系统输出精度造成严重的影响,称之为交调噪声。分析结果表明,系统调制解调频率偶倍频尤其是2倍频附近的激光器频率噪声将在系统中引起交调噪声。对交调噪声进行了不同调制系数、系统参数、谐振腔结构下完整的理论分析。对于100kHz量级的激光器白噪声线宽,当使用最佳载波抑制比调制系数2.405来抑制瑞利背向散射噪声时,会产生10-3rad/s量级的角速度误差,这比系统极限灵敏度高约4个数量级。
     (2)利用相位调制器施加正弦波相位调制和白噪声信号,建立了模拟激光器频率噪声的实验系统,对激光器频率噪声产生的交调噪声大小进行了具体测试,进一步验证了建立的交调噪声理论;结合实际RFOG系统,将四种不同白噪声PSD特性的激光器应用于实际RFOG系统,在RFOG输出端,成功观察到了交调噪声影响大小,测试结果与理论值较为一致。
     (3)对光波导谐振腔谐振曲线不对称产生原因进行了分析和比较,包括背向散射、光克尔效应、偏振波动和耦合器正交模式损耗差异;结果表明,耦合器正交模式损耗差异是影响目前光波导谐振腔芯片产生谐振曲线不对称性的最主要因素;在使用正弦波相位调制来检测谐振腔谐振频率时,当谐振曲线具有不对称性时,两路光调制频率的差异会在陀螺开环输出中产生非零的偏置,不对称程度越大,调制频率的差值越大,开环偏置也越大;采用透射式谐振腔则能够完全抑制由单一耦合器正交模损耗差异导致的谐振曲线不对称性现象。
     综上所述,激光器频率噪声在谐振式光学陀螺系统中产生的交调噪声进行分析、计算和实验测试。通过对谐振腔谐振曲线不对称性现象的分析和比较,发现在光波导谐振腔中,耦合器正交模损耗差异是影响谐振曲线不对称最重要的因素。从而为今后激光器和谐振腔的选择或优化提供理论和实验依据。
Gyroscope is the basic sensor to detect the inertial angular velocity in the Navigation and guidance system. The resonator optic gyro (ROG) based on Sagnac effect is an important technological approach to achieve miniaturization and integration of high performance gyroscope. Compared with Interferometric Fiber Optic Gyro (IFOG), ROG has smaller volume and has the potential of integrated in a single chip. Compared with MEMS gyroscope, ROG is resistant to vibration and has better accuracy and stability.
     Highly coherent laser source and the optical resonance cavity are very critical components in a ROG. This paper conduct theoretical and experimental research on how these two key component affect the ROG performance. The main or innovational work of this thesis including:
     (1) The intermodulation noise in the ROG system is proposed and deeply analyzed. The intermodulation noise is produced by the laser frequency noise at the even multiples of the modulation frequency due to an intermodulation effect, this error will seriously limit the random noise performance of the resonator optic gyroscope. A systematic theoreitcal analysis of the intermodulation noise is conducted with different modulation index, system parameter, resonance cavity and laser source. When a modulation index of2.405is used to suppress the Rayleigh baskscattering noise, the intermodulation noise induced by a100kHz white noise linewidth laser source in a RFOG(resonator fiber optic gyro) system is in the10-3rad/s order, which is4orders of magnitude higher than the shot noise limit.
     (2) The intermodulation noise amplitude are measured by applying sin signal and white noise signal on a phase modulator to simulate the laser frequency noise. The intermodulation theory are further verified. Four lasers with different frequency noise are used as the laser source of RFOG system, the intermodulaion noise induced by laser frequency noise are observed, experimental results fits the theory well.
     (3) The resonance curve asymmetry in a RIOG(resonator integrated optic gyro) is analyzed. Four possible sources including Rayleigh backscattering polarization effect and normal mode loss difference of the coupler are compared. The normal mode loss difference of the coupler is the dominant source for the resonance curve asymmetry observed in the RIOG. When sin wave phase modulation is used to detect the resonant frequency, if the resonance curve isasymmetic, the modulation frequency difference in the modulation frequency in the two lightwaves will cause output bias in the RIOG system. Larger asymmetry and modulation frequency difference means larger output bias. Using the transmission-type resonanct cavity can eliminate the resonance asymmetry induced only by the normal mode loss difference of the coupler.
     In summary, the intermodulation noise induced by the laser frequency noise in a ROG system is analyzed, calculated and verified. Coupler normal mode loss difference is found to be the dominant source for the resonance curve asymmetry observed in RIOG. This will provide theoretical and experimental base for selection and optimization of the laser source and the resonant cavity.
引文
[01]郭秀中.《惯导系统陀螺仪理论》,国防工业出版社,1996,1-151.
    [02][法]Herve C. Lefevre著.张桂才,王巍译.《光纤陀螺仪》,国防工业出版社,2002,4-24.
    [03]C. V. Heer. History of the Laser Gyro, in Proc. SPIE,1984,487:2-12.
    [04]V. Vali and R. W. Shorthill. Fiber ring interferometer. Applied Optics,1976,15(6): 1099-1100.
    [05]S. Ezekiel and S. R. Balsamo. Passive ring resonator laser gyroscope. Applied Physics Letters,1977,30(9):478-480.
    [06]G. A. Sanders, B. Szafraniec, R. Y. Liu, C. Laskoskie, L. Strandjord and G. Weed. Fiber optic gyros for space, marine and aviation application, in Proc. SPIE, 1996,2837:61-71.
    [07]G. A. Sanders, B. Szafraniec, R.Y. Liu, M. S. Bielas, and L. K. Strandjord. Fiber-optic gyro development for a broad range of applications. in Proc. SPIE, 1995,2510:2-11.
    [08]G. A. Pavlath. Fiber Optic Gyros:The Vision Realized. in Proc. SPIE,2006,6314: 1-12.
    [09]S. J. Sanders, L. K. Strandjord and D. Mead. Fiber Optic Gyro Technology Trends-A Honeywell Perspective. MA2(invited),2002:5-8.
    [10]R. A. Bergh, H. C. Leferre and H. J. Shaw. An overview of fiber-optic gyroscopes. Journal of Lightwave Technology,1984, LT-2(2):91-107.
    [11]G. A. Sanders, R. Y. Liu and L. K. Strandjord. Progress in interferometer and resonator fiber optic gyros. in Proc. SPIE,1991,1585:26-29.
    [12]D. M. Shupe. Fiber resoantor gyroscope. sensitivity and thermal nonreciprocity. Applied Optics,1981,20(2):286-289.
    [13]R. A. Bergh, H. C. Lefevre and H. J. Shaw. All-single-mode fiber-optic gyroscope. Optics Letters,1981,6(4):198-200.
    [14]R. E. Meyer, and S. Ezekiel. Passive fiber optic ring resonator for rotation sensing. Optics Letters,1983,8(12):644-646.
    [15]L. K. Strandjord, and G. A. Sanders. Resonator fiber optic gyro employing a polarization rotating resonator. in Proc. SPIE,1991,1585:163-171.
    [16]X. Wang, Z. He, and K. Hotate. Rotation experiment of ring resonator fiber optic gyroscope with a digital controller. IEICE Technical Report, OFT2008-29(2008-08):65-70.
    [17]T. Imai, K. Nishide, H. Ochi, and M. Ohtsu. The passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module. in Proc. SPIE, 1991,1585:153-162.
    [18]Z. Jin, Z. Yang, and H. Ma. Open-loop experiments in a resonator fiber optic gyro using digital triangle wave phase modulation. IEEE Photonics Technology Letters,2007,19(20):1685-1687.
    [19]H. Ma, X. Zhang, Z. Jin, and C. Ding. Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique. Optical Engineering Letters,2006,45(8):1-3.
    [20]X. Zhang, H. Ma, and Z. Jin. Open-loop operation experiments in a resonator fiber optic gyro using the phase modulation spectroscopy technique. Applied Optics,2006,45(31):7961-7965.
    [21]K. Hotate, and G. Hayashi. Resonator fiber optic gyro using digital serrodyne modulation method to reduce the noise induced by the backscattering and closed loop operation using digital signal processing. OFS-13,1999, Tu-4-1: 12-16.
    [22]K. Iwatsuki, K. Hotate and M. Higashiguchi. Resonance characteristics of backscattering in optical passive ring-resonator gyro. Electronics Letters,1986, 22(3):456-463.
    [23]M. Takahashi, S. Tai, and K. Kyuma. Effect of reflections on the drift characteristics of a fiber optic passive ring resonator gyroscope. Journal of lightwave technology,1990,8(5):811-816.
    [24]K. Iwatsuki, K. Hotate and M. Higashiguchi. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro, Applied Optics,1984,23(21): 3916-3924.
    [25]K. Iwatsuki, K. Hotate and M. Higashiguchi. Kerr effect in an optical passive ring-resonator gyro, Journal of Lightwave Technology,1986, LT-4(6):645-651.
    [26]K. Takiguchi and K. Hotate. Method to reduce the optical Kerr-effect-induced bias in an optical passive ring-resonator gyro. IEEE Photonics Technology Letters,1992,4(2):203-206.
    [27]K. Iwatsuki, K. Hotate and M. Higashinguchi. Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro. Applied Optics,1986,25(15):2606-2612.
    [28]K. Hotate, T. Kurakake. Manner to reduce the drift duo to polarization fluctuation in a resonator fiber optic gyro composed of a single mode fiber. in Proc. SPIE, 1993,2070:234-245.
    [29]G. A. Sanders, G. F. Rouse, L. K. Strandjord, et.al.. Resonator fiber optic gyro using LiNbO3 integrated optics at 1.5um wavelength. in Proc. SPIE,1988,985: 202-210.
    [30]M. Ohtsu and S. Araki. Using a 1.5-μm DFB InGaAsP laser in a passive ring cavity-type fiber gyroscope. Applied Optics,1987,26(3):464-473.
    [31]R. Carroll, C. D. Coccoli, D. Cardarelli, G. T. Coate. The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro. in Proc. SPIE,1986, 719:169-177.
    [32]R. Carroll, R. Dahlgren. Theoretical comparison of low and high splittering ratio resonators. in Proc. SPIE,1993,2070:283-292.
    [33]T. Imai, Y. Miki, S. Maeda, K. Nishide. Development of resonator fiber optic gyros. Eleventh international conference on otpical fiver sensors. Advanced sensing photonics, Japan Scociety of Applied Physics,1996, Special Exhibition Ex2-1.
    [34]M. Takahashi, S. Tai, K. Kyuma, K. Hamanaka. Fiber optic passive ring resonator gyroscope using an external cavity laser diode. Optics Letters,1988, 13(3):236-238.
    [35]M. Takahashi, S. Tai, K. Kyuma, and K. Hamanaka. Effect of reflections on the drift characteristics of a fiber optic passive ring resonator gyro. Optics Letters, 1988,13(5):413-415.
    [36]K. Hotate, K. Takiguchi and A. Hirose. Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro. IEEE Photonics Technology Letters,1990,2(1):75-77.
    [37]K. Takiguchi and K. Hotate. Method to reduce the optical Kerr-effect-induced bias in an optical passive ring-resonator gyro. IEEE Photonics Technology Letters,1992,4(2):203-206.
    [38]K. Hotate, and G. Hayashi. Resonator fiber optic gyro using digital serrodyne modulation method to reduce the noise induced by the backscattering and closed loop operation using digital signal processing. OFS-13,1999, Tu-4-1:12-16.
    [39]稻井学. Reduce of noises in resonator fiber optic gyro using digital serrodyne modulation method. MA Dissertion, Tokyo, The University of Tokyo,2004.
    [40]姚毅.全光纤环形腔陀螺的偏振效应及调相检测方案研究.博士学位论文,北京,北方交通大学,1994.
    [41]Y. Yi, S. Kun, and W. Lu. All-fiber R-FOG using a spliceless PM fiber resonator with 90°polarization rotation in the lapped coupler. in Proc. SPIE,1994,2292: 452-461.
    [42]H. Ma, X. Yu, and Z. Jin. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers; Optics Letter,2012,37(16):3342-3344.
    [43]X. Yu, H. Ma, and Z. Jin. Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator. Optics Express,2013,21(1):358-369.
    [44]Z. Jin, X. Yu, and H. Ma. Resonator fiber optic gyro employing a semiconductor laser, Applied Optics,2012,51 (15),2856-2864.
    [45]陈妍.双路闭环谐振式集成光学陀螺研究.博士学位论文,杭州,浙江大学,2012.
    [46]Y. Ohtsuka. Analysis of a Fiber-Optic Passive, Loop-Resonator Gyroscope: Dependence on Resonator Parameters and Light-Source Coherence. Journal of Lightwave Technology,1985, LT-3(2):378-384.
    [47]马慧莲,金仲和,丁纯等.激光器线宽对光纤环形谐振腔谐振特性的影响.中国激光,2003,30(8),pp:731-734.
    [48]K. Kalli, and D. A. Jackson. Analysis of the dynamic response of a ring resonator to a time-varying input signal, Optics Letters,,1993,18(6):465-467.
    [49]NP Photonics'Rock Fiber Laser Source Datasheet, www.npphotonics.com.
    [50]1550nm Narrow Linewidth Low Phase Noise PLANEX, RIO0x9x Series, Redfern Integrated Optics (RIO), Inc.
    [51]L. F. Stokes, M. Chodorow, and H. J. Shaw, All-single-mode fiber resonator, Optics Letters,1982,7(6):288-290.
    [52]Z. K. Ioannidis, R. Kadiwar, and I. P. Giles. Polarization mode coupling in highly birefringent optical fiber ring resonators. Optics Letters,1989,14(10):520-522.
    [053]Z. K. Ioannidis, P. M. Radmore, and I. P. Giles. Dynamic response of an all fiber ring resonator. Optics Letters,1988,13(5):422-424.
    [054]R. Kadiwar, and I. P. Giles. Effects of stimulated brillouin scattering on the performance of polarization maintaining all fiber ring resonators. Optics Letters, 1989,14(6):332-334.
    [55]L. F. Stokes, Effects of normal mode loss in dielectric waveguide directional couplers and interferometers, IEEE Journal of Quantum Electronics,1983, QE-19(12):1888-1896.
    [56]L. F. Stokes, Single-mode optical fiber resonator and applications to sensing (fiber sensor, fiber laser, fiber gyroscope), Ph.D dissertation, Stanford University,1984,41-46.
    [57]A. Ebberg, and H. Lehnert, Effects of resonance asymmetries on the conversion of laser phase noise into amplitude noise in fiber optic ring-resonators, DEEE Photonics Technology Letters,1990,2(7):470-472.
    [58]B. Lamouroux, B. Prade, and J. Y. Vinet, Kerr effect in all-fiber cavities of optical gyros, Applied Optics,1990,29(6):750-753.
    [59]马慧莲,鲍慧强,王世军,金仲和,保偏SiO2光波导环形谐振腔温度特性研究,光电子激光,2009,20(8):1029-1032.
    [60]Intermodulation, www.wikipedia.com.
    [61]G. J. Dick, Local oscillator induced degradation of medium-term stability in passive atomic frequency standards, Proceedings of the 22nd Precise Time and Time Interval meeting, Vienna,1990,487-508.
    [62]C. Audoin, V. Candelier, and N. Dimarcq, A Limit to the frequency stability of passive frequency standards due to an intermodulation effect, IEEE transactions on instrumentation and measurement,1991,40(2):121-125.
    [63]R. Barillet, V. Giordano, J. Viennet, and C. Audoin. Limitation of the Clock Frequency Stability by the Interrogation Frequency Noise:Experimental Results. IEEE Transactions on Instrumentation and Measurement,1993,42(2): 276-280.
    [64]G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, and A. Clairon, Frequency Stability Degradation of an Oscillator Slaved to a Periodically Interrogated Atomic Resonator, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,1998,45(4):887-894.
    [65]R. Barillet, D. Venot, and C. Audoin, Reducing the effect of interrogation phase noise on the frequency stability in passive frequency standards:experimental results and new investigation means, Frequency Control Symposium,1995.49th., Proceedings of the 1995 IEEE International,1995,178-184.
    [66]J. Guena, G. Dudle, M.D. Plimmer, and P. Thomann, Experimental demonstration of intermodulation effects in a continuous cesium fountain microwave frequency standard, Frequency Control Symposium,2007 Joint with the 21st European Frequency and Time Forum. IEEE International,2007,477-482.
    [67]J. Q. Deng, A. Demarchi, F. L. Walls, and R. E. Drullinger, Frequency stability of cell-based passive frequency standards:reducing the effects of local-oscillator PM noise, IEEE International frequency control symposium,1998,95-98.
    [68]A. Joyet, G. Mileti, G. Dudle, and Pierre Thomann. Theoretical study of the Dick effect in a continuously operated ramsey resonator, IEEE Transactions on Instrumentation and Measurement,2001,50(1):150-156.
    [69]J. Q. Deng, G. Mileti, R. E. Drullinger, D. A. Jennings, and F. L. Walls, Noise consideration for locking to the center of a Lorentzian line, Physical Review A, 1999,59(1):773-776.
    [70]M. Bahoura, and A. Clairon. Diode laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe. IEEE Transactions on Instrumentation and Measurement,2003,52(6): 1846-1853.
    [71]M. Bahoura, and A. Clairon, Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2003,50(11):1414-1421.
    [72]R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator, Applied. Physics. B,1983,31:97-105.
    [73]D. Shoemaker, A. Brillet, C. N. Man, O. Cregut, and G. Kerr, Frequency-stabilized laser-diode-pumped Nd:YAG laser, Optics Letters,1989, 14(12):609-611.
    [74]M. Houssin, M. Jardino, B. Gely, and M. Desaintfuscien, Design and performance of a few-kilohertz-linewidth dye laserstabilized by reflection in an optical resonator, Optics Letters,1988,13(10):823-825.
    [75]T. Day, E. K. Gustafson, and R. L. Byer. Sub-Hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer, IEEE Journal of Quantum Electronics,1992,28(4):1102-1113.
    [76]N. Park, J. W. Dawson, and K. J. Vahala. Frequency locking of an erbium-doped fiber ring laser to an external fiber Fabry-Perot resonator, Optics Letters,1993, 18(11):879-881.
    [77]K. Nakagawa, A. S. Shelkovnikov, T. Katsuda, and M. Ohtsu, Absolute frequency stability of a diode-laser-pumped Nd.YAG laser stabilized to a high-finesse optical cavity, Applied Optics,1994,33(27):6383-6386.
    [78]F. Bondu, P. Fritschel, C. N. Man, and A. Brillet, Ultrahigh-spectral-purity laser for the VIRGO experiment, Optics Letters,1996,21(8):582-584.
    [79]G. Bianchini, P. Cancio, F. Minardi 1, F.S. Pavonel, F. Perrone, M. Prevedelli, and M. Inguscio, Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Perot resonator, Applied. Physics. B, 1998,66:407-410.
    [80]A. Schoof, J. Grunert, S. Ritter, and A. Hemmerich, Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 105, Optics Letters 2001,26(20):1562-1564.
    [81]S. A. Webster, M. Oxborrow, and P. Gill, Subhertz-linewidth Nd:YAG laser, Optics Letters,2004,29(13):1497-1499.
    [82]J. P. Chambers, C. K. Madsen, and H. Lin. High frequency Pound-Drever-Hall sensing of ring resonator cavities, in Proc. SPIE,2007,6770(W):1-10.
    [083]E. Ronlekleiv. Fiber DFB lasers for sensor applications. Ph. D thesis, Norwegian University of Science and Technology,1999.
    [84]T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electronics Letters,1980,16(16): 630-631.
    [85]L. B. Mercer.1/f Frequency Noise Effects on Self-Heterodyne Linewidth Measurements, Journal of Lightwave Technology,9(4):485-493.
    [86]P. Horak, and W. H.Loh. On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers, Optics Express,14(9): 3923-3928.
    [87]G. A. Ball, C. G. Hull-Allen and J. Livas. Frequency noise of a Bragg grating fibre laser, Electronics Letters,1994,30(15):1229-1330.
    [88]N. Y. Voo, P. Horak, M. Ibsen and W. H. Loh. Linewidth and Phase Noise Characteristics of DFB Fibre Lasers, in Proc. SPIE,2004,5620:179-186.
    [89]J. F Cliche, M. Allard, and M. Tetu, High-power and ultranarrow DFB laser:the effect of linewidth reduction systems on coherence length and interferometer noise, in Proc. SPIE,2006,6216(0C).
    [90]A. Dandridge. Measurements of the spectral characteristics of CW diode laser. Applied Optics,1981,20(14):2336-2337.
    [91]H. Ma, Z. He, and K. Hotate, Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro, Journal of Lightwave Technology,2011,29(1):85-90.
    [92]G. Zhang, H. Ma, and Z. Jin, Frequency noise characteristics of a narrow-linewidth DFB semiconductor laser in resonator fiber optic gyro, in Proc. SPIE,2012,8421 (8P).
    [93]E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, Residual amplitude modulation in laser electro-optic phase modulation, J. Opt. Soc. Am. B,1985,2(8): 1320-1326.