一种基于生物系统的网络计算模型及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络应用需求日益朝着高性能、大规模、多样性的方向发展,对Internet网络提出了更高的分布式要求:需要这种以用户为中心的网络具有自扩充性、可移动性、可生存性、简单易操作性、以及随着用户和网络环境的长期和短期变化的自适应性等特点,因此有必要进一步优化Internet网络体系结构,并设计其应用。
     生物信息系统可看成一个分布式自治系统,且能提供给科学和工程领域各种富有成效的技术和方法。在生物世界中,像人类社会、蜂群、生物免疫系统这样的大规模系统已形成许多重要的原理和机理正好可以满足以上对Internet的未来需求。
     本课题将免疫系统和生态系统的一些相关原理和机理,尤其是其突现行为,应用到Internet网络中,提出了一种新颖的生物网络计算模型,设计了该计算模型的总体框架。该生物模型包括生物网络平台(由生物实体Context、各种网络服务和生物网络容器组成)和生物实体等。在所设计的生物网络结构中,借鉴生态系统中能量的概念,将能量用于控制的生物实体的行为,如复制、再生、死亡等行为,并且用能量来衡量生物实体使用的网络资源。探讨了能量的控制机制和能量管理功能,并介绍了能量的安全问题。
     为了使集成在生物网络中的生物实体能够彼此通信和协作来更好地体现其突现行为,本课题基于Agent通信语言设计一种生物网络通信语言来解决生物网络中的通信问题,并设计了一种生物网络通信机制来协调生物实体之间、生物实体与超级实体之间以及超级实体之间的通信问题。
     在此基础上,结合其它生物机理,构建生物网络智能仿真平台,给出其在Internet
    
    上的服务和应用,最后通过计算机仿真进行验证。在生物网络仿真平台上,仿真生物
    实体和超级实体的行为以产生需要的服务和应用。
     在生物网络平台上,基于互联祸合免疫网络模型,构建一种新颖的网络突现计算
    模型来满足生物网络的服务突现。仿真实验也表明该模型可用于在Intemet网络中实
    现服务突现。利用生物免疫系统中的对称网络学说,构建一种PZP(对等)网络拓扑
    结构模型,并通过仿真实验验证了该模型能有效地提供用户所需要的服务。
     最后,对全文的工作进行了总结,指出了基于生物系统的生物网络模型的理论与
    应用今后需要进一步深入的研究。
With the development of network application towards high-performance, large-scale, diversity, people put forward more distributed requests to the Internet: the network needs some characteristics, such as self-extension, mobility, survival, simplicity, and adaptability to the long and short change to the users and network environments. As such, it is necessary to optimize the Internet architecture and design its application.
    Biological information systems can be regarded as distributed automatic systems, and can provide the effective technologies and methods for science and engineering field. In biological world, the large-scale systems, such as human society, bee swarm, and biological immune systems have formed many important theories and mechanisms that can be satisfied with the future requirements of the Internet.
    In the thesis, we apply the correlated theories and mechanisms, especially emergent behaviors, to the Internet, and bring forward a novel bio-network computing model, and design the model's whole architecture. The bio-model mainly includes bio-network platform (which consists of bio-entity context, bio-network services, and bio-network components) and bio-entities. In the bio-network architecture, we use for reference the concept of energy in the ecological system. The energy is used to control bio-entity behaviors, such as replication, reproduction, death, and weigh the network resource used by bio-entities. Then the control mechanism and management function of energy are discussed and the security of energy is introduced.
    In order to communicate and collaborate among the bio-entities to implement emergent service and computation better, we design a kind of bio-network communication language by combining the advantages of the Agent Communication Language to solve the communication in the bio-network. The bio-network communication mechanism can
    
    
    coordinate the communication between bio-entities, bio-entities and super-entities, and super-entities.
    We build the bio-network intelligent simulation platform by combining with other biological mechanisms. Services and applications of the Internet are designed and validated through computer simulation. On the bio-network platform, the behaviors of bio-entity and super-entity are simulated to produce services and applications needed.
    On the bio-network platform, we implement a novel network emergent computing model to satisfy bio-network service emergence based on the mutual-coupled immune networks. The experiment results on the platform show that the model can be used to realize service emergence on the Internet. Also, a P2P network topology architecture model is constructed based on immune symmetrical networks and the simulation results can satisfy efficiently to the users' requests.
    Finally, we conclude the whole thesis, and make further researches on theories and applications of the bio-network model.
引文
[1] Dasgupta D., Artificial Immune Systems and their Applications. Springer-Verlag, Inc., 1999.
    [2] 丁永生,任立红.人工免疫系统:理论与应用.模式识别与人工智能,2000,13(1):52~59.
    [3] Dasgupta D. and Attoh-Okine N.. Immunity based systems: A survey. In Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Orlando, Florida, 1997, 369~374.
    [4] 林飞卿,余传霖,何球藻编著.医学基础免疫学.上海:上海医科大学出版社,1995.
    [5] 余贺主编,龙镇洲副主编.医学微生物学.北京:人民卫生出版社,1986.
    [6] Jerne N. K., The immune system. Scientific American, 1973,229(1):52-60.
    [7] Ishiguro A., Kuboshiki S., Ichikawa S., et al., Gait control of hexapod walking robots using mutual-coupled immune networks. Advanced Robotics, 1996, 10(2): 179~195.
    [8] Mitsumoto N., Fukuda T., Arai F., et al., Control of the distributed autonomous robotic system based on the biologically inspired immunological architecture. In Proc. the 1997 IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, USA, 1997, 4:3551~3556.
    [9] Hoffmann G. W., A neural network model based on the analogy with the immune system. J. Theoretical Biology, 1986, 122: 33~67.
    [10] Tang Z., Yamaguchi T., and Tashima K., et al., Multiple-valued immune network model and its simulations. Proc. 1997 27th Int. Symposium on Multiple-Valued Logic, Antigonish, Canada, 1997, 233~238.
    [11] Jeme N. K., Towards a network theroy of the immune system. Annual Immunology. 1974, 125C: 373~389.
    [12] Perelson A. S., Immune network theory. Immunological Review, 1989, 10: 5-36.
    [13] Timmis J., Neal M. and Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3): 143~150.
    [14] Ishiguro A., Watanabe Y., and Uchikawa Y., Immunological approach to dynamic behavior control for autonomous mobile robots. Proc. 1995 IEEE/RSJ Int. Conf. on
    
    Intelligent Robots and Systems, Pittsburgh, PA, USA, 1995, 1: 495~500.
    [15] Kondo T., Ishiguro A., and Watanabe Y., et al., Evolutionary construction of an immune network-based behavior arbitration mechanism for autonomous mobile robots. Electrical Engineering in Japan, 1998, 123(3): 1~10.
    [16] Lee D.-W., Sim K.-B., Artificial immune network-based cooperative control in collective autonomous mobile robots. Proc. 6th IEEE Int. Workshop on Robot and Human Communication, Sendai, 1997, 58~63.
    [17] Ishida Y. and Mizessyn F., Learning algorithms on an immune network model: application to sensor diagnosis. In Proc. Int. Conf. Neural Networks, China, Nov. 3-6, 1992, 1: 33~38.
    [18] Ishida Y.,An immune network model and its applications to process diagnosis. Systems and Computers in Japan, 1993, 24(6): 38~45.
    [19] Ishida Y., An immune network approach to sensor-based diagnosis by self-organization. Complex Systems, 1996, 10: 73~90.
    [20] Ishiguro A., Watanabe Y. and Uchikawa Y. Fault diagnosis of plant systems using immune networks. In Proc. 1994 IEEE Int. Conf. Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, Oct. 2-5, 1994, 34~42.
    [21] Forrest S., Perelson A. S., Allen L., and Cherukuri R. Self-nonself discrimination in a computer. In Proc. IEEE Symposium on Research in Security and Privacy, Okaland, CA, May 16-18, 1994, 202~212.
    [22] Forrest S. et al. A sence of self for unix processes. IEEE Symposium on Security and Privacy, Oakland: California IEEE Computer Society, 1996, 120~128.
    [23] Forrest S., Hofmeyr S. A. and Somayaji A. Computer immunology. Communications of the ACM, 1997, 40(10): 88~96.
    [24] Hunt J. E. and Cooke D. E. Learning using an artificial immune system. J. Network and Computer Applications, 1996, 19: 189~212.
    [25] De Castrp L. N. and Von Zuben F. J., The clonal selection algorithm with engineering applications. In Workshop Proceeding of GECCO'00.2000, Workshop on Artificial Immune Systems and Their Applications, Las Vegas, USA, July 2000.
    
    
    [26] Ishida Y. and Adachi N., Active noise control by an immune algorithm: Adaptation in immune system as an evolution. Proc. 1996 IEEE Int. Conf. Evolutionary Computationn, Nagoya, Japan, 1996, 150~153.
    [27] 马笑潇,黄席樾,柴毅等.免疫Agent概念与模型.控制与决策,2002,17(4):509~512.
    [28] P. Zak, Immune network - model inspired by immune system[J]. Neural Network World, 1997, 7(6): 739~756.
    [29] A. Mackenzie, A. S. Ball and S. R. Virdee. Instant Notes in Ecology. BIOS Scientific Publishers Limited, 1998.
    [30] 尚玉昌 编著.普通生态学,北京:北京大学出版社,2002.
    [31] 曹凑贵主编,严力蛟,刘黎明副主编.生态学概论,北京:高等教育出版社,2002.
    [32] 吴斌.人工生命研究,西南科技大学学报,2002,17(3):60~65,78.
    [33] Casti. J L. Would be worlds: Toward a theory of complex system. Artificial Life and Robotics,1997,1(1): 11~13.
    [34] Cowan G. A., Pines D., Meltzer D. Complexity: Metaphors, Models and Reality. Addison-Wesley, 1994
    [35] 李夏,戴汝为.突现(emergence)--系统研究的新观念[J].控制与决策,1999,14(2):97~102.
    [36] Bhalla U. S. and Lyengar R., Emergent properties of networks of biological signaling pathways[J], Science, 1999, 283:381~387.
    [37] Yao Y. Y., et al. Web intelligence (WI) research challenges and trends in the new information age [M]. Web Intelligence:Research and Development, 2001, 8~13.
    [38] 史忠植著.智能主体及其应用,2000,6-11,110~117.
    [39] 李凡长.多Agent的协调组合设计模型研究.小型微型计算机系统,2002,23(2):246~249.
    [40] 袁贞明,庄越挺.基于多Agent系统的仿真系统研究.模式识别与人工智能,2001,14(3):266~270.
    [41] 张云勇编著.移动agent及其应用,北京:清华大学出版社,2002
    
    
    [42] 骆正虎,杨敬安.基于移动Agent的分布式计算模型研究.小型微型计算机系统,2002,23(3):300~304.
    [43] 林怀忠,陈纯,郑增威.基于移动Agent的移动事务模型及实现.模式识别与人工智能,2002,15(2):216~222.
    [44] 陆宁,尤晋元.一种移动代理应用系统的体系结构描述语言.计算机研究与发展,2002,39(8):1004~1010.
    [45] 丁永生,任立红.一种基于免疫突现计算的生物网络结构的设计.控制与决策,2002,18(2):185~189.
    [46] 任立红,丁永生.一种新颖的基于生态网络计算的网络仿真平台.系统仿真学报,2002,14(11):1497~1499,1503.
    [47] 吴跃,王军,周明天,王湖南.基于移动Agent及RDF的网络数据挖掘系统体系结构.计算机科学,2002,29(1):39~41.
    [48] 肖建华,张建忠,吴功宜.基于移动Agent的分布式入侵检测系统的体系研究,计算机科学,2002,29(8):39~40,35.
    [49] 王汝传,徐小龙,郑晓燕,孙知信.移动代理安全机制模型的研究.计算机学报,2002,25(12):1294~1301.
    [50] 周冲,戴晓明等.移动代理恶意主机问题研究综述,计算机科学,2002,29(3):63~66
    [51] Extensible Markup Language (XML) 1.0 (Second Edition) Recommendation, World Wide Web Consortium, 2000. http://www.w3c.org/TR/REC-xml/.
    [52] Foundation for Intelligent Physical Agents [S]. RIPA specification Part 2:Agent Communication Language, http://www.fipa.crg/spec/fipa99, 1999.
    [53] CORBA ~(TM)/IIOP~(TM) Specification. http://www.omg.org/technology/documents/formal/corba__iiop.htm.
    [54] Java~(TM) RMI-IIOP Documentation. http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop.
    [55] Tim Finin, Dor McKay, Rich Fritzson et. al. KQML: an information and knowledge
    
    exchange prolocol[C]. In: Kazuhiro Fuchi, Toshio Yokoi, eds. Knowledge Building and Knowleged Sharing. Ohmsha and ICS Press, 1994.
    [56] Y Labou, T Finin. A proposal for a new KQML specification[R]. Tech. Report CS-97-03, Computer Science and Electrical Engineering Dept. Univ of Maryland, Baltimere County, 1997.