多层免疫模型及其在故障诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类长期生存在充满传染性病原体的环境中,可是大部分情况下,能够抵御这些感染,那是因为我们的免疫系统保护机体抗御病原体的侵害。生物免疫系统是具有异常检测、多样性、交互性、连续学习、记忆等特性的复杂多层防御系统。受生物免疫系统启发,论文以机电设备故障诊断为目标,研究基于人工免疫系统的故障诊断系统设计及应用。
     论文分析了生物免疫系统的多层防御结构,特别是固有免疫系统和适应性免疫系统及其相互关系,固有免疫系统的重要性表明人工免疫系统也应该将固有免疫系统和适应性免疫系统进行整合,建立具有多种检测机制的诊断模型,以提高系统的故障识别率。
     借鉴生物免疫系统的分层防御机理以及层次间的相互作用,本文提出了用于机电设备故障诊断的多层免疫诊断模型(MIFD),将固有免疫系统扩增到人工免疫系统中,增强了人工免疫系统的性能。多层免疫诊断模型采用三层结构,第一层是固有诊断层,主要实现对故障在发生概率上相互独立的已知故障类型的快速及时的故障检测与诊断。第二层是故障传播诊断层,解决故障单元的影响通过整个系统进行传播的问题。第三层是适应性诊断层,以自适应的方式解决未知及早期故障的识别与诊断。层次之间通过提呈抗原以及激活信号进行信息传递与交互。
     该模型借鉴了生物免疫系统的多种重要机制,不仅考虑了系统对抗原的多层防御结构及其作用时相,还包括了自体/非自体模式识别。模型采用了将固有应答与适应性应答的相互激活机制,克隆选择算法与免疫网络模型的相互激励机制相结合的原理,同时还使用了初次免疫应答理论处理系统中出现的未知故障的诊断。将否定选择算法、克隆选择算法及免疫网络模型等分散的人工免疫算法及模型组合为一个较完整的人工免疫系统结构,共同完成故障诊断任务。
     在故障传播诊断层,利用B细胞免疫网络理论建立故障传播模型,将设备系统中单元之间的故障传播的因果关系映射为免疫系统中细胞之间的交互识别关系。由B细胞网络描述故障节点传播关系,T细胞描述测点回路,实现基于免疫网络的故障传播模型的设计,将免疫网络的动力学特性应用于故障诊断中,并且采用粗糙和精确分步诊断方法,实现准确的故障定位。
     在适应性诊断层,提出了B-PCLONE连续学习算法,采用B细胞和抗体双重学习机制概括在抗原数据中发现的模式。通过对诊断知识的不断补充和完善,克服了故障知识的不完备问题,使系统的诊断能力达到最优。在抗体学习中,采用粒子群优化算法来指导抗体的变异方向,使抗体能够向着有益的方向发展,提高了最佳亲和力的收敛速度。同时系统通过记忆初次响应的诊断结果,可以更快更准确地实现类似故障的二次响应。
     在本文设计的人工免疫系统中,提出了区分B细胞与抗体功能的思想。基于生物体液免疫机理,将故障检测器定义为B细胞及其所包含的若干抗体结构。将故障类型映射为B细胞,将各种故障征兆映射为抗体种群,用B细胞内包含若干抗体更准确地逼近故障征兆与故障的对应关系,在空间区域的分布上属于同一故障的各种故障征兆发生在这种故障的范围内。采用这种检测器机制不仅解决了故障征兆的混叠使得各故障难以明确区分问题,而且可以提高故障检测的效率与准确率,提高连续学习的精度。
     最后以异步电动机为例,设计了试验方案。模拟了各种故障,对所提出的理论方法及所完成的相关成果进行了验证。
We are constantly being exposed to infectious agents and yet, in most cases, we are able to resist these infections. It is our immune system that enables us to resist infections. The natural immune system is a complex multi-layer defense system, with its cell diversity, anomaly detection, interactive, Life-long learning and memory of information processing characteristics. Inspired by theoretical immunology, in this study, we explore the design and application of fault diagnosis system based on artificial immune systems (AISs) for electromechanical device.
     This thesis examines multi-layered defense structure of Biology immune system, especially on innate immunity system, adaptive immunity system and interaction between them. The importance of the innate immune system suggests that AISs should also incorporate models of innate and adaptive immune system to structure diagnosis model with multifold detection mechanisms and improve the performance of the approach.
     Inspired by the multi-layer defense mechanism and incorporates the feedback mechanism in the nature immune system, the paper proposes a multi-layer immune model for fault diagnosis (MIFD) which incorporate both innate and adaptive immune system mechanisms on the purpose of enhancing the performance of the artificial immune system. In the multi-layer model, the innate immune layer directs recognition of known fault that could not cause influence to other nodes, the propagation immune layer adopts the structure of the B-lymphocyte network to construct the fault propagation network for the fault localization, finally, the Adaptive immune layer learns the unknown and incipient fault pattern. Layers interact with each other through activation signals and presenting antigen.
     The proposed MIFD draws its inspiration from variety of cells and different type of mechanisms in the natural immune system. It not only adopts multi-layered defense structure and works in tandem with each other, but also involves the self/non-self discrimination. The model considers the activation between clonal selection algorithm and immune network, utilizing the theory of primary response and B-lymphocyte secrete antibodies to deal with the unknown fault pattern. In order to implement fault diagnosis, we combine negative selection algorithm, clonal selection algorithm and immune network to build the framework for engineering artificial immune systems.
     The fault propagation layer adopts the structure of the B-lymphocyte network to construct the fault propagation model for the fault localization. In this structure, the cause-consequent relationship of fault propagation of systems corresponds to the interaction between B-lymphocytes in the immune system. In this model, with the network of B-lymphocytes representing the influence of fault node throughout system propagates and T-lymphocytes representing sensors loop. It realizes time-continuous fault diagnosis, incorporate the dynamics of the immune networks to the fault propagation model and exploit preliminary and precision processes diagnosis for the fault localization.
     In adaptive immune layer, we suggest a B-PCLONE learning algorithms which recognise the pattern of antigen by using double-learning mechanisms of B-lymphocyte and antibody. Through the continuous supplement and improvement of diagnostic knowledge, the system overcome limited size of learning sample and successfully make the system achieve optimal diagnostic results. In learning algorithms of antibody, we introduced Particle swarm optimization (PSO) into clonal selection algorithm and every candidate detector is regarded as a Particle. The algorithm used Particle optimization evolution equations to guide mutation direction of antibodies for global optimum corporately. Meanwhile, the consequent memory of the primary response of pathogen enables the immune system to mount a more rapid and efficient secondary response to similar faults.
     This thesis introduces the idea about the distinction between the function of B-lymphocyte and antibody. In the biological humoral immunity, the B- lymphocyte can secrete large numbers of antibodies to recognize and eliminate the antigens. Inspired by the relationship of B-lymphocyte and antibody, the detectors are defined as B-lymphocyte and antibodies which the B-lymphocyte produces. The fault is mapping to B-lymphocyte and the omens is mapping to antibodies. A same fault shows various omens represent as the B-lymphocyte produces antibodies. In a shape-space the various omens of a fault range at the fault. By using such a mechanism, it not only solves the problems that how to distinguish the faults which aroused by the overlap of the omens, but also improves the efficiency and accuracy of the fault detection and enhances the accuracy of continuous study.
     At last, experiments are undertaken to assess the effectiveness of the proposed model in an induction motor. The results of the detection show that the implemented MIFD can detect the antecedents to the faults. The effects of the continuous learning feature are demonstrated.
引文
[1] Farmer J D,Packard N H,Perelson A S.The Immune System,Adaptation,And Machine Learning [J].Physica,1986,22:187-204.
    [2] Dasgupta D.Artificial Immune Systems and Their Applications [M].Berlin:Springer—Verlag,1999.
    [3] Leandro Nunes de Castro,Fernando J Von Zuben.The Clonal Selection Algorithm with Engineering Applications [C].In Workshop Proceedings of GECCO’00,Workshop on Artificial Immune Systems and Their Applications,Las Vegas,USA.2000,7:36-37.
    [4] Forrest S,Perelson A S,Allen L,etc..Self-nonself discrimination in a computer [C].Proc IEEE Symposium on Research in Security and Privacy.Okaland:CA,1994:202-212.
    [5] Timmis J,Neal M.A resource limited artificial immune system for data analysis [J].Knowledge-Based Systems,2001,14 (34):121-130.
    [6] Leandro Nunes de Castro,Fernando JoséVon Zuben.AiNet:An Artificial Immune Network for data Analysis [EB/OL].http://www.dca.fee.unicamp.br/~lnunes,2001,3:1-40.
    [7] Ishida Y.Active Diagnosis by an Immunity-Based Agent Approach [J].1996:1-10.
    [8]马笑潇,黄席樾,柴毅等.免疫agent概念与模型[J].控制与决策,2007,4(17):509-512.
    [9] Cista Branco P J,Dente J A,Vilela Mends R.Using immunology Principles for Fault Detection [J].IEEE Transactions on Industrial Electronics,2003,4(50):362-372.
    [10] Thomas Knight,Jon Timmis.A Multi-Layered Immune Inspired Approach to Data Mining [C].Proceedings of the 4th International Conference on Recent Advances in Soft Computing,2002:266-271.
    [11] Thomas Knight,Jon Timmis.A Multi-layered Immune Inspired Machine Learning Algorithm[M].Applications and Science in Soft Computing,German:Springer,2003:1-9.
    [12] Kim J,Bentley P J.Towards an Artificial Immune System for Network Intrusion Detection:An Investigation of Dynamic Clonal Selection [C].Proceedings of Congresson Evolutionary Computation,2002:1015-1020.
    [13]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [14]王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):806-812.
    [15]焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,10(31):1540-1548.
    [16] Jerne NK.Towards a network theory of the immune system[J].Annual Immunology,1974,125(12):373-389.
    [17] Ishiguro A,Kuboshiki S.Gait control of hexapod walking robots using mutual-coupled immune networks[J].Advanced Robotics,1996,10(2):179-195.
    [18] Tang Z,Yamaguchi T,Tashima K,etc..Multiple-valued immune network model and its simulation [C].Proc 27th International Symposium on Multiple -Valued Logic,Antigonish Nova Scotia,Canada,1997:519-524.
    [19] Herzenberg L A,Black S J.Regulatory circuits and antibody response [J].European J of Immune,1980,10:1-11.
    [20] John E Hunt,Denise E Cooke.Learning using an artificial immune system [J].Journal of Network and Computer Applications,1996,19:189-212.
    [21]徐章遂,房立清,王希武等.故障信息诊断原理及应用[M].北京:国防工业出版社,2000.
    [22]杨叔子,丁洪,史铁林等.机械设备诊断学的再探讨[J].华中理工大学学报,1991,19(A02):1-7.
    [23]杨苹,吴捷.复杂系统故障诊断综述[J].测控技术,1998,7( 2):8-10.
    [24]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [25]黄文虎,夏松波.设备故障诊断原理、技术及应用[M].北京:科学出版社,1997.
    [26]朱大奇,于盛林,陈小平.基于故障树分析及虚拟仪器的电子部件故障诊断研究[J].仪器仪表学报,2002,23(1):16-19.
    [27] Zong-Xiao Yang,Su zukiK,etc..Fuzzy fault diagnostic system based on fault tree analysis [C] .The Fourth IEEE Intenrational Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium,1995,1:165-170.
    [28]师汉民,陈吉红,阎兴等.人工神经网络及其在机械工程中的应用[J].中国电力,1996,29(4):5-10.
    [29]虞和济,陈长征.基于神经网络的智能诊断[M].北京:冶金工业出版社,2000.
    [30] R Davis.Diagnostic Reasoning Based on Structure and Behavior [J].ArtificialIntelligence,1984,24(3):347-410.
    [31] R Reiter.A Theory of Diagnosis from First Principle [J].Artificial Intelligence,1987,32(1):57-96.
    [32] Chun J S,Jung H K,Hahn S Y.A study on comparison of optimization performance between immune algorithm and other heuristic algorithms [J].Magnetic,1998,34(5):2972-2975.
    [33]李伟,黄席樾.基于免疫原理的故障诊断推理模型研究[J].计算机仿真,2005,7(22):111-114.
    [34] Jungwon Kim,Peter Bentley.An Artificial Immune Model for Network Intrusion Detection [J].[C].7th European Conference on Intelligent Techniques and Soft Computing,Aachen,Germany,1999:1-7.
    [35] Tarawa I,Koakutsu S,Hirata H.An Optimization Method based on the Immune System [C].Proceeding World Congress On Neural Networks,International Neural Network Society 1996 Annual meeting,San Diego,CA,USA,1996:1045-1049.
    [36] Anders Lyhne Christensen,Rehan O’Grady,Mauro Birattari.Fault detection in autonomous robots based on fault injection and learning [J].Auton Robot,2008,24:49-67.
    [37] De Castro,Von Zuben.Artificial Immune Systems:Part I—Basic Theory and Applications[EB/OL].ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca/trdca0199.pdf,1999:12.
    [38] De Castro , Von Zuben . Artificial Immune Systems : Part II—A Survey of Applications[EB/OL].ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca/trdca0200.pdf,2000:2.
    [39] Orhan Engin,Alper Doyen.Artificial Immune Systems and Applications in Industrial Problems [J].Journal of Science,2004,17(1):71-84.
    [40] Nohara B T,Takahashi H.Evolutionary computation in engineering artificially immune (EAI) system [C].IECON 2000. 26th Annual Conferences of the IEEE Industrial Electronics Society. IEEE Press,2000:2501-2506.
    [41] Dasgupta D , Forrest S . Artificial Immune systems in Industrial Applications [C].Intelligent Processing and Manufacturing of Materials,1999:257-266.
    [42] Ishida Y.Fully Distributed Diagnosis by PDP Learning Algorithm:Towards ImmuneNetwork PDP Model [C].Proceedings of International Joint Conference on Neural Networks,1990:777-782.
    [43] Ishida Y.The Immune System as a Prototype of Autonomous Decentralized Systems:An Overview [C].Third International Symposium on Autonomous Decentralized Systems,Berlin Germany,1997:85-92.
    [44] Ishiguro A,Watanabe Y,Uchikawa Y.Fault diagnosis of plant systems using immune networks[C] . Proc IEEE International Conference on Multi-Sensor Fusion and Integration for Intelligent Systems,LasVegas,NV,1994:34-42.
    [45]杜海峰,王孙安.基于ART—人工免疫网络的多级压缩机故障诊断[J].机械工程学报,2002,38(4):88-90.
    [46]樊友平.基于细胞免疫应答理论重建故障诊断智能体[J].系统仿真学报,2003,15:50-55.
    [47] Bradley D,Tyrell A.Immunotronics:Hardware fault tolerance inspired by the immune system[C].Proceedings of the 3rd`International conference on Evoluable Systems (ICES2000).vol,1801,Springer-verlag,Inc,2000.
    [48] Kayama. M,Sugita. Y,Morooka. Y.Sensor diagnosis system combining immune network and learning vector quantization[J].Electrical Engineering In Japan,1996,117(5):44-56.
    [49] Bradley D , Tyrrell A . Hardware fault tolerance : An immunological solution [C].Proceedings of the IEEE International Conference on Systems,Man and Cybernetics,2000:107-112.
    [50] Costa Branco P J, Dente J A,Vilela Mendes R.Using immunology Principles for Fault Detection[J].IEEE Transactions on Industrial Electronics,2003,50(2):362-372.
    [51]刘树林,张嘉钟,王日新等.基于免疫系统的旋转机械在线故障诊断[J].大庆石油学院学报,2001,25(4):96-100.
    [52]殷桂梁,肖丽萍,吴长齐.免疫原理用于异步电动机故障诊断的研究[J].中国电机工程学,2003,23(6):132-136.
    [53] Araujo M,Aguilar J.Fault detection system in gas lift well based on artificial immune systems[C].Neural Networks,Proceedings of the international Joint Conference on,2003:1673-1677.
    [54] Li Beizhi,Yang Jianguo,Yang Jiangyun.Artificial Immune system in conditionmonitoring and default diagnosis[C].The 33rd International conference on computer and Industrial Engineering.Jeju,Korea,2004,3:25-27.
    [55] Sasaki M,Kawafuku M,Takahashi K.An immune feedback mechanism based adaptive learning of neural network controller[C].6th International Conference on Neural Information Processing.IEEE Computer Society Press,1999,2:502-507.
    [56]刘树林,黄文虎.活塞压缩机气阀故障检测的免疫神经网络方法研究[J].中国机械工程,2005,16(15):1385-1387.
    [57] Gonzalez F,Dasgupta D,Kozma R.Combining negative selection and classification techniques for anomaly detection[C] . Proceedings of the 2002 Congress on Evolutionary Computation,USA,May 2002 IEEE Press,2002:705-710.
    [58] Fabio A Gonzalez,Dipankar Dasgupta.Anomaly Detection Using Real-Valued Negative Selection[J].Genetic Programming and Evolvable Machine,2003,4:383-403.
    [59] Dasgupta D,Krishna K,Kumar,etc..Negative Selection Algorithm for Aircraft Fault Detection[C].Proceedings of 3rd International Conference on Artificial Immune Systems Catania,Sicily,Italy,2004.
    [60] Julie Greensmith,Uwe Aickelin,Steve Cayzer.Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection[C].4th International Conference on Artificial Immune Systems,Springer-Verlag,Banff,Canada,2005:153-167.
    [61] Jamie Twycross , Uwe Aickelin . Towards a conceptual framework for innate immunity[C] . 4th International Conference on Artificial Immune Systems ,Springer-Verlag,Banff,Canada,2005:112-125.
    [62] Jamie Twycross , Uwe Aickelin . Libtissue-implementing innate immunity [C].Proceedings CEC-2006,2006:1-8.
    [63] Jamie Paul Twycross.Integrated Innate and Adaptive Artificial Immune Systems Applied to Process Anomaly Detection [D].Nottingham:University of Nottingham,2007.
    [64] Gianni Tedesco,Jamie Twycross,Uwe Aickelin,Integrating Innate and Adaptive Immunity for Intrusion Detection[C].5th International Conference on Artificial Immune Systems,2006.
    [65] Julie Greensmith,Uwe Aickelin,Jamie Twycross.Articulation and Clarification of theDendritic Cell Algorithm[C].5th International Conference on Artificial Immune Systems,2006:1-14.
    [66]龚涛.免疫计算的建模与鲁棒性分析研究[D].长沙:中南大学,2007.
    [67] Gong Tao,Cai Zixing.Tri-tier Immune System in Anti-virus and Software Fault Diagnosis of Mobile Immune Robot Based on Normal Model[J].J Intell Robot Syst,2008,51:187-201.
    [68] Leandro N,de Castro.Learning and Optimization Using the Clonal Selection Principle[J].IEEE Transactions on Evolutionary Computation,Special Issue on Artificial Immune Systems,2002,6:239-251.
    [69]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [70] U.S. Department of Health and Human Services National Institutes of Health.Understanding the Immune System How It Works.NIH Publication No. 03-5423 September 2003.
    [71]周光炎.免疫学原理[M].上海:上海科学技术文献出版社,2003.
    [72]陈慰峰.医学免疫学[M].北京:人民卫生出版社,2001.
    [73] Steven A. Hofmeyr.An Interpretative Introduction to the Immune System[M].To Appear in Design Principles for the Immune System and other distributed autonomous Systems,I Cohen,L Segel eds,Oxford University Press,2000,4:1-20.
    [74] Tristram G. Parslow,Daniel P. Stites,Abba L.Terr,etc.Medical Immunology (影印版)[M].北京:科学出版社,2006.
    [75] Fabio González.A Study of Artificial Immune Systems Applied to Anomaly Detection [D].Memphis :University of Memphis,2003.
    [76] Modupe Olubukunola Ayara.An Immune-inspired Solution for Adaptable Error Detection in Embedded Systems[D].Canterbury:The University of Kent,2005.
    [77] Guangfan Zhang.Optimum Sensor Localization/Selection in A Diagnostic/ Prognostic Architecture [D].Atlanta:Georgia Institute of Technology,2005.
    [78] Stephanie Forrest,Steven A Hofmeyr.Immunology as Information Processing [C].Design Principles for the Immune System and Other Distri-buted Autonomous System,Santa Fe Institute Studies in theSciences of Complexity,New York:Oxford University Press,2000:361-387.
    [79]莫宏伟.基于人工免疫网络的联想记忆器.自动化技术与应用.2002,1:18-20.
    [80]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,12:1281-1291.
    [81] Wang Lei,Jiao Licheng.An Immune Neural Network Used for Classification [C].Proceedings of the 2001 IEEE International Conference on Data Mining.Institute of Electrical and Electronics Engineers,2001:856– 861.
    [82] De Castro L N,Von Zuben F J.Immune and Neural Network Models:Theoretical and Empirical Comparisons[J].International Journal of Computational Intelligence and Applications,2001,1(3):239-257.
    [83]曾夏玲,余敏,彭雅丽等.基于免疫和模糊综合评判的入侵检测模型研究[J].计算机应用,2007,9(27):2163-2166.
    [84]符海东,袁细国.基于双层防护体系结构的人工免疫模型[J].计算机工程,2008,1(34):178-180.
    [85] Morton Swimmer.Using the danger model of immune systems for distributed defense in modern data networks[J].Computer Networks,2006,9:1-19.
    [86] Dipankar Dasgupta,Fabio González.An Immunity-Based Technique to Characterize Intrusions in Computer Networks[J].IEEE Transactions on Evolutionary Computation, 2002,6(3):281-291.
    [87] Perelson A S,Weisbuch G. Immunology for physicists[J]. Review of Modern Physics,1997,69(4).1219-1267.
    [88]李涛.计算机免疫学[M].北京:电子工业出版社,2004.
    [89] Derek J Smith,Stephanie Forrest,Ron R Hightower,etc..Deriving Shape Space Parameters from Immunological Data[J].Journal of Theoretical Biology,1997,189: 141-150.
    [90] Modupe Ayara,Jon Timmis,Leandro N de Castro,etc..Negative Selection:How to Generate Detectors[C].The First International Conference on Artificial Immune Systems,2002.
    [91] Timmis J,Knight T,de Castro L N,etc..An Overview of Artificial Immune Systems[J].Natural Computation Series,2004,11:51-86.
    [92] Dasgupta D,González F.Artificial Immune System (AIS) Research in the Last Five Years[C] .Proceedings of the IEEE Congress on Evolutionary Computation,Canberra,Australia,2003:123-130.
    [93] Varela F J,Coutinho A.Second genernation immune network[J].Immunology Today, 1991,12(5):159-166.
    [94] D’haeseleer P,Forrest S.An Immunological Approach to Change Detection: Algorithm,Analysis and Implication[C].Proc. of IEEE Symposium on Research in Security and Privacy,Oakland, CA,1996.110-119.
    [95] De Castro L N,Timmis J.Artificial Immune Systems:A New Computational Intelligence Approach[M].New York:Springer,2002.
    [96] Bereta M,Burczyn′ski T.Comparing binary and real-valued coding in hybrid immune algorithm for feature selection and classification of ECG signals[J].Engineering Applications of Artificial Intelligence,2007(20):571-585.
    [97] Castiglione F,Motta S,Nicosia G.Pattern recognition by primary and secondary response of an Artificial Immune System[M].New York:Springer,2007.
    [98] Tan K C . An evolutionary artificial immune system for multi-objective optimization[J].European Journal of Operational Research,2007(2):1-22.
    [99]王珺,刘希玉,王鑫.人工免疫系统及其模型分析[J].计算机技术与发展,2006,7:105-173.
    [100] Stepney S, Smith R, Timmis J,etc..Towards a Conceptual Framework for Artificial Immune Systems[C].Proc. of the 3rd International Conference on Artificial Immune Systems,LNCS 3239,Catania,Italy,2004:53-64.
    [101] Stepney S,Smith R,Timmis J,etc..Conceptual Frameworks for Artificial Immune Systems[J].International Journal of Unconventional Computing,2005,1(3):315-338.
    [102] Emma Hart,Jon Timmis.Application areas of AIS:The past,the present and the future Applied Soft Computing[J].Applied Soft Computing,2008,8:191-01.
    [103] Kemal Polat,Salih Gunes.Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm [J].Expert Systems with Applications,2008,34:773-779.
    [104] Andrew Watkins,Jon Timmis,Lois Boggess.Artificial Immune Recognition System (AIRS):An Immune-Inspired Supervised Learning Algorithm[J].Genetic Programming and Evolvable Machines,2004,5:291-317.
    [105] Timmis J,Andrews P,Owens N,etc..New Perspectives On Artificial Immune Systems[C].2007 ICARIS conference,2007:6-23. 121
    [106] Timmis J,Hone A N W,Stibor T,etc..Theoretical advances in artificial immune Systems[J].Theoretical Computer Science,2008:11-32.
    [107] Deb S, Pattipati K R ,Raghavan V,etc.Multi-signal Flow Graphs:A Novel Approach for System Testability Analysis and Fault Diagnosis.IEEE Aerospace and Electronics Magazine,1995,10 (5 ):14-25.
    [108]丁彩红.基于Petri网的故障诊断技术研究及其在航天器中的应用[D].哈尔滨:哈尔滨工业大学一般力学与力学基础,1999.
    [109]陈玉宝.基于Petri网的智能故障诊断的理论研究及其在FMS中的应用[D].北京:北京航空航天大学机械制造及其自动化,1999.
    [110] Yuji Watanabe,Akio Ishiguro,Yasuhiro Shirai,etc..Emergent Construction of Behavior Arbitration Mechanism Based on the Immune System [J].Proceeding of ICEC'98,1998:481-486.
    [111]任伟建,李佳明,李静芬.人工免疫系统在控制中的应用综述[C].2007中国控制与决策学术年会论文集,2007:348-352.
    [112] Kokawa M, Miyazaki S,Shingai S.Failure propagating simulation and nonfailure paths search in network systems[J].Automcitica,1982:335-341.
    [113] Andrew B Watkins.Exploiting immunological metaphors in the development of serial,parallel,and distributed learning algorithms[D].Kent:The University of Kent,2005.
    [114] Kim J , Bentley P J . Immune Memory in the Dynamic Clonal Selection Algorithm[C].Proceedings of the 1st International Conference on Arti-ficial Immune Systems,Canterbury,2002:1-9.
    [115] Kim J,Bentley P J.Immune Memory and Gene Library Evolution in the Dynamic Clonal Selection Algorithm[J].Genetic Programming and Evolvable Machines,2004,5:361-391.
    [116] Kennedy J,Eberhart RC.Particle swarm optimization[C].Proceedings of IEEE International Conference on Neural Networks.Perth Australia,1995:1942-1948.
    [117] De Castro L N.Immune,Swarm,and Evolutionary Algorithms:Part II- Philosophical Comparisons[C].Proc of the ICONIP Conference (International Conference on Neural Information Processing),Workshop on Artificial Immune Systems,Singapura,2002,11:1469-1473.
    [118] Khilwani N . Fast clonal algorithm[J] . Engineering Applications of ArtificialIntelligence,2007(1):1-23.
    [119]段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172.
    [120] LIU Li-jue,CAI Zi-xing,CHEN Hong.Immunity clone algorithm with particle swarm evolution[J].J Cent South Univ Tech,2006,13(6):703-706.
    [121]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,6:4-6.
    [122]刘丽珏,蔡自兴,唐琎.采用粒群优化的免疫克隆算法[J].计算机应用,2006,26(4):886-954.
    [123]杨进,刘晓洁,李涛.人工免疫系统中变异算法研究[J].计算机工程,2007,17(33):37-39.
    [124]沈标正.电机故障诊断技术[M].北京:机械工业出版社,1996.
    [125]田慕琴.基于模型的异步电动机早期故障智能诊断[D].太原:太原理工大学,2006.
    [126]齐怡.军用电子设备故障诊断专家系统研究[D].北京:北京航空航天大学,2003