面向复杂系统生命周期的故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂系统在国民经济中扮演着重要角色,但其日益复杂的结构和控制系统造成了其故障的多发性特点。对于用户来说,如何提高和保障系统的工作可靠性与有效性是一个亟待解决的问题;而对于装备制造企业来说,产品质量的竞争焦点集中到了设计开发阶段和售后服务阶段,为客户提供高可靠性的产品、迅速有效的诊断维护服务是众多装备制造企业所面临的共同问题。这些问题的解决具有重要的实际意义。
     基于上述动机,本文提出了面向复杂系统生命周期的诊断维护理念,详细阐述了其内涵和三维视图,目的是以网络和远程通信技术为支撑,实现装备系统生命周期时间内故障诊断维护数据信息的集成和管理,建立、完善和保持复杂系统生命周期时间内的信息流,并以此为基础,开展相关的应用研究。本文的主要成果与创新为:
     首先,提出了面向复杂系统生命周期的诊断维护理念,以此为指导研究了面向复杂系统生命周期的诊断维护系统,提出了其描述模型、总体结构和逻辑结构,分析了该系统与企业管理信息系统相融合的必要性、可行性及意义,对构建相关系统具有指导意义。
     其次,提出了诊断维护知识的应用模型,定义了知识建模和知识单元的概念,建立了知识单元模型,并提出了基于知识单元的知识共享和创新应用方法。通过知识单元和知识编码实现了诊断维护知识的组织、管理和重用,提升了企业诊断维护知识资源的管理和应用水平,有利于产品的设计优化、可靠性提高和诊断系统的开发,架起了系统设计和诊断系统开发之间的桥梁。
     再次,提出了从知识单元生成诊断规则和贝叶斯网络的方法思路,以知识单元为基础,设计了集成智能诊断系统总体结构。并提出了用粗糙集确定其提取的诊断规则的可信度的方法,给出了规则推理、实例推理和贝叶斯网络推理的集成诊断策略。其中贝叶斯网络很好地解决了故障的不确定性推理问题。
     第四,指出了复杂系统健康管理的内涵及其监控模式和信息视图。提出了基于生物免疫机制的分布式多Agent健康监测体系,建立了免疫Agent模型和基于免疫机制的监测系统工作模型。提出了复杂系统健康评估的方法,并以故障的危害性大小来衡量其对系统健康状态的影响。
     最后,提出了面向复杂系统生命周期的诊断维护系统的实施策略,以轨道交通自动门的诊断维护系统为例,介绍了其总体方案,以及计算机网络、无线通信等支撑技术的集成和系统功能的实现方法,并给出了系统的测试运行结果。
The Complex System plays an essential role in the national economy. But the increasing complicated structure and control system make it more easily fault. How to improve and support its reliability and validity becomes an urgent problem for customers. On the other hand, product competition focuses on the development stage and after sale stage, many manufacturers have to face the problem to provide more reliable product and rapid effective diagnosis and maintenance service for customer. How to resolve these problems is very valuable.Based on the above motivation, this dissertation proposes the Lifecycle-Oriented Diagnosis and Maintenance Philosophy for complex system, expounding its connotation and three-dimensional view in detail, which supported by network and remote communication technology aims to integrate and manage all fault data and information in the complex system's lifecycle, build and keep the lifecycle information flow, and develop relative applications based on the flow. The main contents and innovations are as following:Firstly, it proposes the Lifecycle-Oriented Diagnosis and Maintenance Philosophy, which guiding the research on Lifecycle-Oriented Diagnosis and Maintenance System for Complex System. And then the system's description model, architecture and logical structure are presented. And the necessity, feasibility and meaning of the system's integration with enterprise management system are analyzed, which can be used for reference when developing similar system.Secondly, the Application Model of diagnosis and maintenance knowledge is proposed, and the concepts of Knowledge Unit and Knowledge Modeling are defined. The methods of knowledge sharing and innovative using are presented based on the built Knowledge Unit Model. By using the Knowledge Unit Model and Knowledge Code, the diagnosis and maintenance knowledge's organization, management and reusing are implemented, which improves the management and application level of enterprise's knowledge resources. This work not only benefits product's design and reliability but also bridges the system design and development of fault diagnosis system.Thirdly, the methods of producing rules and Bayesian network from Knowledge Unit are presented, the architecture of an integrated intelligent diagnosis system is designed based on Knowledge Unit. The method of using rough sets to acquire rules from condition data and ascertaining rules' creditability are also put forward. Then the integration strategy to combine rule-based reasoning, case-based reasoning and Bayesian Network reasoning is given, Bayesian Network can resolve the faults' uncertainty problem effectively.Fourthly, the meaning of Complex System Health Management is discussed, and its monitoring mode and information view are presented. Then the Distributed Multi-Agent Health Monitoring Architecture and its functioning mechanism based on immune
引文
[1]. http://news.sina.com.cn/w/2003-02-02/0722896163.shtml.
    [2].虞和济,陈长征,张省,周建男.基于神经网络的智能诊断[M].北京:冶金工业出版社.2000.5.
    [3].王道平,张义忠.故障智能诊断系统的理论与方法[M].北京:冶金工业出版社.2001.
    [4].钟秉林,黄仁.机械故障诊断学[M].第2版.北京:机械工业出版社.2002.2.
    [5].武波,马玉祥.专家系统[M].北京:北京理工大学出版社.2001.
    [6].杨世锡,焦卫东,吴昭同.基于独立分量分析特征提取的复合神经网络故障诊断法[J].振动工程学报,2004,17(4):438-442.
    [7].赵海东,缪旭东,吕世聘.基于神经网络的军用飞机故障预报系统研究[J].系统工程与电子技术,2003,25(7):894-896.
    [8].朱三文,席泽敏,薛林.基于神经网络的雷达故障诊断专家系统[J].机械与电子,2004(7):75-77.
    [9].谢平.一种用于故障诊断的演化小波神经网络[J].系统工程与电子技术,2003,25(6):742-745.
    [10].吴桂峰,翟玉庆,陈虹,曹卫.基于小波—神经网络的电机振动故障诊断[J].控制工程,2004,11(2):152-154,176.
    [11].赵宏,廖忠.基于遗传网络的提升设备故障诊断研究[J].煤矿机械,2004(8):121—123.
    [12].曲正伟,王云静.基于混沌神经网络的电机故障诊断[J].控制工程,2003,10(4):302-345.
    [13].侯祥林,李永强,虞和济,纪盛青.非线性机械设备系统的分形神经网络诊断方法[J].振动工程学报,2001,14(2):220-223.
    [14].周志华,陈兆乾,骆斌,陈世福.基于混合学习算法IHMCAP的故障诊断模型[J].自动化学报,2000,26(4):529-532.
    [15]. Xu Z, Zhao H. Design of fault detection and isolation via wavelet analysis and neural network[A], in IEEE International Symposium on Intelligent Control[C]. Vancouver, Canada. 2002. 467-472.
    [16]. Jack L B, Nandi A K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mechanical Systems and Signal Processing, 2002, 13(2-3): 373-390.
    [17]. Paul M Frank, Birgit Koppen-Seliger. Fuzzy Logic and Neural Network Application to Fault Diagnosis[J]. International Journal of Approximate Reasoning, 1997, 16: 67-88.
    [18].张苗苗,谢剑英,方敏,徐国良.基于模糊神经网络的智能诊断系统的研制[J].计算机工程,1999,25(3):53-54,74.
    [19]. David B Leake, Andrew Kinley, David Wilson. Case-Based CBR: Capturing and Resuing Reasoning About Case Adaptation[J]. International Journal of Expert Systems, 1997, 10(2): 197-213.
    [20].张晓阳,孙宇,张荣涛,郭兴华.基于实例的故障诊断方法研究与应用[J].南京理工大学学报,2003,27(1):64-67.
    [21].史定华,王松瑞.故障树分析技术方法和理论[M].北京:北京师范大学出版社.1993.
    [22].金星,洪延姬,武江涛,沈怀荣.基于故障树的智能型故障诊断系统[J].宇航学报,2001,22(3):111-113.
    [23]. Bonaldi E L, Borges da Silva L E, Lambert-Torres G, Ollveira L E L, Assuncao F O. Using Rough Sets Techniques as a Fault Diagnosis Classifier for Induction Motors[A]. in IEEE Center[C]. 2002. 3383-3388.
    [24]. Shusaku Tsumoto, Hiroshi Tanaka. Extraction of Domain Knowledge from Databases based on Rough set Theory[A]. IEEE Center. 1996. 748-754.
    [25]. Khoo L P, Tor S B, Zhai L Y. A Rough-Set-Based Approach for Classification and Rule Induction[J]. International Journal of Advanced Manufacturing Technology, 1999, 15: 438-444.
    [26].郝丽娜,王伟.粗糙集—神经网络故障诊断方法研究[J].东北大学学报,2003(3):252-255.
    [27].郝丽娜,徐心和.粗糙集神经网络系统在故障诊断中的应用[J].控制理论与应用,2001,18(5):681-685.
    [28].陈久军,盛颂恩,陈燕飞.Rough集理论在故障诊断专家系统中的应用研究[J].机电工程,2002,19(3):49-51.
    [29].张明,龙鹏飞.基于聚类、粗糙集和支持向量机的故障诊断[J].微机发展,2004,14(8):38-40.
    [30].李千目,赵学龙,游静,刘凤玉.基于粗糙集支持向量机的网络故障诊断系统[J].计算机工程与应用,2004(29):66-68.
    [31]. Khoo L P, Tor S B, Li J R. A rough set approach to the ordering of basic events in a fault tree for fault diagnosis[J]. Advanced Manufacturing Technology, 2001, 17: 769-774.
    [32]. Mark L Krieg. A Tutorial on Bayesian Belief Networks[R]. 2002.
    [33]. Kang C W, Golay M W. A Bayesian belief network-based advisory system for operational availability focused diagnosis of complex nuclear power systems[J]. Expert Systems with Applications, 1999, 17: 21-32.
    [34]. Paolo Garbolino, Franco Taroni. Evaluation of scientific evidence using Bayesian networks[J]. Forensic Science International, 2002, 125: 149-155.
    [35]. Pearl J. Fusion propagation and structuring in belief networks[J], artificial Intelligence, t986, 29: 241-288.
    [36]. Huang C, Darwiche A. Inference in Belief networks: A Procedural Guide[J]. International Journal of Approximate Reasoning, 1994, 11: 1-158.
    [37]. Shachter R. Probabilistic inference and influence diagrams[J]. Operations Research, 1988, 36: 589-604.
    [38]. Dechter R. Bucket Elimination: A unifying Framework for probabilistic inference[A], in Proc. 12th Conference on Uncertainty in Artificial Intelligence[C]. Porland. 1996. 211-219.
    [39]. http://wumrc.engin.umich.edu/ims/?page=home[2004-12-16].
    [40]. Huang M H, Chen K Y, Ho R W, Cheng F T. Development of an e-Diagnostics/Maintenance framework for semiconductor factories with security considerations[J]. Advanced Engineering Informatics, 2003, 17: 165-178.
    [41]. http://www.monicollc.com/mmi.htm [2004-12-16].
    [42].赵孟林.推进武器装备后勤保障数字化[J].航空工程与维修,2000(2):12-14.
    [43].王卫国.美国海军电子装备维修测试系统的应用与发展[J].现代防御技术,2000,28(5):59-62.
    [44].刘玉廷.战地抢修技术面临的挑战与机遇[J].航空工程与维修,2000(4):19-21.
    [45]. Feldmann K. Multimedia system for remote diagnosis of complex machines[J]. Advanced Manufacturing technology, 1999(15): 722-729.
    [46]. Ong S K, An N, Nee A Y C. Web-based fault diagnosis and learning system[J]. Advanced Manufacturing technology, 2001 (18): 502-511.
    [47].张浩,吴启迪.制造企业远程服务与远程工程支持系统[M].上海:同济大学出版社.2002.
    [48]. Li S, Yang Q. ActiveCBR: An Agent System That Integrates Case-Based Reasoning and Active Databases[J]. Knowledge and Information Systems, 2001, 3: 225-251.
    [49].冯志鹏,宋希庚,薛冬新.基于模糊c-均值□粗糙集□自适应模糊神经网络推理系统集成的故障诊断[J].内燃机学报,2003,21(4):281—287.
    [50].杨家本,林锦国,黎明森,宋靖雁.系统工程概论[M].武汉:武汉理工大学出版社.2002. 190-192.
    [51].楼佩煌,戴勇.基于Internet的远程故障诊断与维修向导系统研究[J].中国机械工程,2002,13(2):143-146.
    [52].张金玉,张优云,谢友柏.大型回转机械智能综合诊断处理支持中心的研究[J].中国机械工程,1999,10(4):411-414.
    [53]. Haydn A. Thompson. Wireless and Internet communications technologies for monitoring and control[J]. CONTROL ENGINEERING PRACTICE, 2004, 12: 781-791.
    [54].张荣涛,孙宇.工程车辆的远程分布式智能监测、诊断、维护系统研究[J].中国机械工程,2002,13(12):1028-1031.
    [55].袁小宏,李辛毅,屈梁生.基于因特网的设备远程诊断中心设计[J].中国机械工程,2002,13(10):874-876.
    [56].姜云春,邱静,潘俊荣.装备自治性维修保障概念与体系研究[J].中国机械工程,2004,15(5):402-405.
    [57].孙宇,张荣涛,张晓阳.武器装备的远程智能监测、诊断与维护技术研究[J].兵工学报,2004,25(2):249-251.
    [58]. Jay Lee. A Framework for Web-Enabled E-Maintenance Systems[A]. 2001. 450-459.
    [59].Muammer Koc,Jay Lee,邓军民译.新一代电子维护系统的系统框架[J].中国机械工程,2001,12(5):531-534.
    [60]. Dimitris Kiritsis, Ahmed Bufardi, Paul Xirouchakis. Research issues on product lifecycle management and information tracking using smart embedded systems[J]. Advanced Engineering Informatics, 2003, 17: 189-202.
    [61].刘坚,于德介,李德刚,李蓉.设备e-维护的系统框架于关键使能技术[J].中国机械工程,2004,15(13):1171-1176.
    [62].卡尔.T.犹里齐,斯蒂芬.D.埃平格.产品设计与开发[M].沈阳:东北财经大学出版社.2001.3.
    [63].宁汝新.产品开发集成技术[M].北京:兵器工业出版社.2000.
    [64].张强,吴耀华,贾亚洲.面向并行工程的数控机床可靠性控制模型[J].机械工程学报,2001,37(7):26-29.
    [65]. TUMER I Y, STONER B. Mapping function to failure mode during component development[J]. Research in Engineering Design, 2003, 14(1): 25-33.
    [66]. DOWLATSHAHI S. The role of product safety and liability in concurrent engineering[J]. Computer & Industrial Engineering, 2001, 41 (2): 187-209.
    [67]. ONODERA K. Effective technique of FMEA at each life-cycle stage[A], in Annual RELIABILITY and MAINTAINABILITY Symposium- PROCEEDING [C]. 1997. 50-56.
    [68].徐凤璋,高金钟.故障模式和影响分析与故障树分析的应用[M].北京:机械工业出版社.1987.
    [69].Jay Lee.制造全球化的挑战及研究战略[J].中国机械工程,1997,8(1):27-28.
    [70]. Ren Yu, Benoit Iung, Herve Panetto. A multi-agents based E-maintenance system with case-based reasoning decision support[J]. Engineering Applications of Artificial Intelligence, 2003, 16: 321-333.
    [71]. Iung B. From remote maintenance to MAS-based e-maintenance of an industrial process[J]. Journal of Intelligent Manufacturing, 2003, 14: 59-82.
    [72]. http://www.crmforum.org/market/detail.asp?id=1005 [2005-3-21].
    [73]. Teoh P C, Keith Case. Failure modes and effects analysis through knowledge modelling[J]. Journal of Materials Processing Technology, 2004, 153-154(10): 253-260.
    [74].曾生奎,赵廷弟,张建国,康锐,石君友.系统可靠性设计分析教程[M].北京:北京航空航天大学出版社.2001.5.
    [75].武小悦,陈忠贵.柔性制造系统的可靠性技术[M].北京:兵器工业出版社.2000.
    [76]. Pillay A, Wang J. Modified failure mode and effects analysis using approximate reasoning[J]. Reliability Engineering and System Safty, 2003(79): 69-85.
    [77].甘传付,曹宏炳,黄允华,蔡金燕.基于FMECA、FTA的故障诊断和故障预报[J].系统工程与电子技术,2002,24(11):127-130.
    [78].张晓阳,孙宇,王胜红,陆宝春.发动机故障知识范围分析及诊断系统构建[J].中国机械工程,2004,15(22):2018-2021.
    [79]. Liebowitz J, Beckman T. Knowledge organizations: what every manager should know[M]. Boca Raton: St Lucie Press. 1998.
    [80]. Zhang D, Zhou L, Nunamaker Jr Jay F. A Knowledge Management Framework for the Support of Decision Making in Humanitarian Assistance/Disaster Relief[J]. 2002, 4: 370-385.
    [81]. Satyadas A, Harigopal U, Cassaigne N P. Knowledge management tutorial: an editorial overview[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PARTC: APPLICATIONS AND REVIEWS, 2001.11, 31(4): 429-437.
    [82]. Fischer G, Ostwald J. Knowledge Management: Problems, Promises, Realities, and Challenges[J]. IEEE Intelligent systems, 2001(1/2): 60-72.
    [83].潘旭伟,顾新建,仇元福,程耀东.面向知识管理的知识建模技术[J].计算机集成制造系统—CIMS,2003,9(7):517-521.
    [84].王三武,吴小兰.PDM系统中的编码技术研究与应用[J].现代机械,2004(4):1-2,11.
    [85].庞士宗,肖平阳,唐家福.产品数据管理PDM[M].北京:机械工业出版社.2001.
    [86].曾富东,曾富鸿,郭钢,康涛.PDM信息分类的编码的解决方案[J].企业管理信息化,2001(5):9-10.
    [87]. Tay F E H, Shen L. Fault Diagnosis Based on Rough Set Theory[J]. Engineering Application of Artificial Intelligence, 2003, 16: 39-43.
    [88]. Shen L, Tay F E H, Qu L, Shen Y. Fault diagnosis using rough sets theory[J]. Computer in Industry, 2000, 43: 61-72.
    [89].杨叔子,丁洪,史铁林,郑小军.基于知识的诊断推理[M].北京:清华大学出版社.1993.
    [90]. Claus Skaanning, Finn V. Jensen, Uffe Kjarulff. Printer Troubleshooting Using Bayesian Networks[M]: Springer-Verlag Berlin Heidelberg. 2000. 367-380.
    [91]. Kuo-Wei Su, Sheue-Ling Hwang, Thu-Hua Liu. Knowledge architecture and framework design for preventing human error in maintenance tasks[J]. Expert Systems with Applications, 2000, 19: 219-228.
    [92]. Kingston J. High Performance Knowledge Bases: four approaches to knowledge acquisition, representation and reasoning for workaround planning[J]. Expert Systems with Applications, 2001, 21: 181-190.
    [93].曹存根.面向专家的知识获取[M].北京:科学出版社.1998.
    [94].凌维业.基于粗集论和支持向量机提高诊断精度的理论与方法研究[D].南京:东南大学,2003
    [95].张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社.2001.
    [96]. Pawlak Z. Rough sets, decision algorithms and Bayes' theorem[J]. European Journal of Operational Research, 2002, 136: 181-189.
    [97]. Pawlak Z. Rough sets and intelligent data analysis.[J]. Information Sciences, 2002, 147: 1-12.
    [98].曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社.1998.
    [99].王国峰,张锡恩.基于案例推理的导弹故障诊断专家系统研究[J].系统工程与电子技术,1999,21(8):32-34.
    [100].徐宾刚,屈梁生,陶肖明.转子故障贝叶斯诊断网络的研究[J].机械工程学报,2004.40(1): 66-72.
    [101].Nils J.Nilsson著,郑扣根,庄越挺译.人工智能[M].北京:机械工业出版社.2000.9.205-206.
    [102]. Rina Dechter. Bucket elimination: A unifying framework for reasoning[J]. Artificial Intelligence, 1999, 113: 41-85.
    [103]. Bobbio A, Portinale L, Minichino M, Ciancamerla E. Improving the analysis of dependable systems by mapping fault tree into Bayesian networks[J]. Reliability Engineering and System Salty, 2001, 71: 249-260.
    [104].王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004(6):78-83.
    [105].李俭川,胡茑庆,秦国军,温熙森.基于故障树的贝叶斯网络建造方法与故障诊断应用[J].计算机工程与应用,2003(24):225-228.
    [106].黄昭毅.设备诊断现场实用技术丛书[M].北京:机械工业出版社.2002.
    [107]. Kacprzynski G J, Roemer M J, Hess A J. Health management system design: development, simulation and cost/benefit optimization[A], in IEEE Aerospace Conference Proceedings[C]. 2002. 3065-3072.
    [108]. Jaw L C, Friend R. ICEMS: a platform for advanced condition-based health management[A], in IEEE Proceedings Aerospace Conference[C]. 2001. 3. 2909-2914.
    [109]. Ofsthun S. Integrated Vehicle Health Management for Aerospace Platforms[J]. IEEE Instrumentation & Measurement Magazine, 2002, 5(3): 21-24.
    [110]. The Boeing Company. An architecture to implement integrated vehicle health management systems[A], in IEEE Autotestcon Proceeding: Systems Readiness Technology Conference[C]. USA: IEEE Service Center. 2001. 2-15.
    [111]. MICHAEL DR, ROEMER J. Engine health monitoring system for advanced diagnostic monitoring for gas turbine engines[R]. 1998.
    [112]. Powrie H E G, Fisher C E. Engine health monitoring: Towards total prognostics[A], in IEEE Aerospace Conference[C]. 1999. 11-20.
    [113]. Tanner G F, Crawford J A. An integrated engine health monitoring system for gas turbine aero-engines[A], in IEE Seminar on Aircraft Airborne Condition Monitoring[C]. 2003.1-12.
    [114]. Wilson Quansheng Wang. Rotary Machinery Health Condition Monitoring, Fault Diagnosis and Prognosis[D]. Ontario, Canada: University of Waterloo, 2002
    [115]. Jaehong Sub. On-line machinery health diagnosis and prognosis for predictive maintenance and quality assurance of equipment functioning[D]. Pennsylvania State University, 2001
    [116]. Jaw Link, Reichard Karl, Pattada Kallappa. Real time supervisors and monitors for performing health monitoring and fault detection for systems operating in multiple regimes[R]. 2003.
    [117]. Bartolini A, Sheppard J W, Munns T E. An application of diagnostic inference modeling to vehicle health management[A], in IEEE Autotestcon Proceeding: Systems Readiness Technology Conference[C]. USA: IEEE Service Center. 2001.8. 706-717.
    [118]. Marcus Bengtsson. Condition Based Maintenance System Technology-Where is Development Heading?[A]. in Euromaintenance 2004-Proceedings of the 17th European Maintenance Congress[C]. Barcelona, Spain. 2004.
    [119]. Fred M. Discenzo, William Nickerson, Charles E. Mitchell, Kirby J Keller. Open Systems Architecture Enables Health Management for Next Generation System Monitoring and Maintenance[EB/OL]. http://www.osacbm.org/. 2005-3-3
    [120]. Alec Stothert, Ian M. Macleod. Distributed Intelligent Control System for a Continuous-State Plant[J]. IEEE TRANSACTIONS ON SYS TEMS, MAN, AND CYBERNETICS-PARTB: Cybemetics, 1997, 27(3): 395-401.
    [121]. Miquel Sanchez, Ulises Cortes, Javier Lafuente et al. DAI-DEPUR: an integrated and distributed architecture for waste water treatment plants supervision[J]. Artificial Intelligence Engineering, 1996(1): 275-285.
    [122].张军.制造过程智能化检测监控技术与系统研究[D].南京:南京理工大学,2003
    [123].张晓阳,孙宇,王胜红,陆宝春.产品研发过程中的诊断维护知识管理与建模[J].计算机集成制造系统—CIMS,2005,11(3).
    [124]. Reichard Karl M. Integrating self-health awareness in autonomous systems[J]. Robotics and Autonomous Systems, 2004, 49: 105-112.
    [125]. Followell D, Gilbertson D, Keller K. Implications of an open system approach to vehicle health management[A], in IEEE Aerospace Conference[C]. 2004. 3717-3724.
    [126].夏敬华.面向现代制造的智能监控和诊断系统理论及方法研究[D].南京:南京理工大学,2000
    [127]. Lee J. Machine performance assessment methodology and advanced service technologies,4th Frontiers in Engineering, National Academy Report[R]. 1999. 75-83.
    [128]. Salles G, Filippetti F, Tassoni C, Crellet G, Franceschini G. Monitoring of induction motor load by neural network techniques[J]. IEEE Transactions on Power Electronics, 2000.7, 15(4): 762-768.
    [129]. Jack L B, Nandi A K. Genetic algorithms for feature selection in machine condition monitoring with vibration signals[J]. IEE Proceedings-Vision, Image and Signal Processing, 2000.7, 147(3): 205-212.
    [130]. Jose Aguilar. An Artificial Immune System for Fault Detection[M]: Springer-Verlag Berlin Heidelberg. 2004.
    [131].樊友平,黄席樾,柴毅,周欣.基于细胞免疫应答理论重建故障诊断智能体[J].系统仿真学报,2003,15(1):50-55.
    [132].孟庆华,周晓军,吴跃成,杨辰龙,庞茂.基于小波免疫系统的车辆总成故障检测[J].汽车工程,2004,26(5):619-622.
    [133]. Liu Shulin, Zhang Jiazhong, Shi Wengang, Huang Wenhu. Negative-selection algorithm based approach for fault diagnosis of rotary machinery[A], in American Control Conference[C]. 2002. 3955-3960.
    [134].杜海峰,王孙安.基于ART□人工免疫网络的多级压缩机故障诊断[J].机械工程学报,2002(4).
    [135].殷桂梁,肖丽萍,吴长奇.免疫原理用于异步电动机故障诊断的研究[J].中国电机工程学报,2003,23(6):132-136.
    [136].刘树林,王文虎,王日新,时文刚.基于免疫系统的往复泵再线故障诊断方法[J].中国机械工程,2002,13(8):686-689.
    [137]. http://www.windrug.com/pic/30/11/22/006.htm [2005-3-8].
    [138]. Understanding the immune system: How it works[M]: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH. 2003.9.
    [139].肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293.
    [140]. Roger L. King, Samuel H. Russ, Aric B. Lambert, Donna S. Reese. An artificial immune system model for intelligent agents[J]. Future Generation Computer Systems, 2001, 17(4): 335-343.
    [141].谈英姿,沈炯,肖隽,宋兆龙,吕震中.人工免疫工程综述[J].东南大学学报(自然科学版),2002,32(4):676-682.
    [142].焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548.
    [143]. Stepney S, Smith R E, Timmis J, Tyrrell A M. Towards a Conceptual Framework for Artificial