潮间带盐沼植物的沉积动力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮间带盐沼是重要的湿地生态系统之一,它具有维持生物多样性、为近海鱼类提供饵料和繁育场所的功能,还可以过滤污染物、消能护岸,对海岸带的资源和环境具有重要影响。随着人类对盐沼生态系统重要性的认识,盐沼正成为多学科研究的热点。潮间带盐沼植物对海岸沉积动力过程具有重要影响。它能消能促淤,抵御滩面侵蚀,在海平面加速上升的背景下,这种促淤作用显得尤其重要。同时,它减弱到达岸边的水体能量,保护沿岸的工程设施,或降低沿岸工程设施的建造成本。潮间带盐沼植物的这种重要物理过程和工程效应使之成为河口海岸研究的重要组成部分。
     本文依托国家自然科学基金项目“潮间带大型植物对沉积动力过程影响的研究”(批准号:44011770)和973中-荷合作项目“河口海岸区域物理与生态过程之间的相互作用”(批准号:2004CB720505),选择了长江口崇明东滩盐沼和九段沙盐沼为研究对象,设置典型观测段面,使用先进观测仪器获得了波浪、流速、及悬沙浓度等实测数据,并采沉积物样和植物样,在实验室内进行粒度分析及植物黏附泥沙量的测定。在此基础上,着重分析了盐沼植物的削减水动力、黏附悬浮细颗粒泥沙,改变滩面沉积物特性和冲淤稳定性的作用。主要结果和结论如下:
     1、盐沼植物对水动力的影响。在崇明东滩,波高和流速的降低率(单位滩面高程或距离上波高或潮流流速减小的百分比)在海三棱藨草(Scirpus mariqueter)-互花米草(S.mariqueter)盐沼中比在光滩上可高达一个数量级。互花米草盐沼内波高降低率为7.40%/cm,海三棱藨草盐沼内波高降低率为2.60%/cm,光滩上波高降低率为0.53%/cm。盐沼中平均潮流流速降低率为0.97%/m,最大潮流流速降低率为0.89%/m;光滩上平均潮流流速降低率为0.07%/m,最大潮流流速降低率为0.08%/m.分析认为,盐沼的消浪缓流作用与植物的生态特征有关。植物越高、越密、植被带越宽,其消浪缓流效果越好;盐沼植物是否被淹没,其消浪缓流效果不同。没有被淹没的盐沼植物能更有效地发挥其消浪缓流作用。由此可知,植株矮小易被淹没的海三棱藨草盐沼的消浪缓流作用弱于植株高大不易被淹没的互花米草和芦苇(Phragmites communis)盐沼。
     2、盐沼植物对水体悬沙浓度的影响.在崇明东滩观测段面上,距盐沼前缘25 m处的悬沙浓度通常都高于距盐沼前缘50 m处的悬沙浓度。在一个潮周期过程中,距盐沼前缘25m处的平均悬沙浓度为2.44 kg/m~3,最大悬沙浓度为4.59 kg/m~3;距盐沼前缘50 m处的平均悬沙浓度为1.82 kg/m~3,最大悬沙浓度为3.35 kg/m~3。由此可见,在盐沼中靠近泥沙来源的地方(光滩或潮沟),水体的悬沙浓度较高,随着向陆距离的增加,悬沙浓度逐渐减小。分析认为,盐沼植物影响悬沙浓度的机制归因于植物对水体能量降低引起的悬沙落淤、滩面沉积物再悬浮减弱以及植物对悬沙的黏附。
     3、盐沼植物对悬浮细颗粒泥沙的黏附作用。在2005~2007年的植物生长季节,对崇明东滩和九段沙盐沼的植物样进行了黏附泥沙量的测定,结果表明:植物黏附泥沙量的变化范围为18.0~559.0 g/m~2,单位面积上,平均黏附在互花米草、芦苇和海三棱藨草上的泥沙量分别为220.6±172.7g/m~2,64.9±38.1g/m~2和45.2±31.7 g/m~2。分析认为,盐沼植物黏附悬浮细颗粒泥沙的多少主要与植物性质、悬沙浓度和滩面高程等有关。植物黏附的泥沙量与植物的生物量呈正相关:y=30.544e~(0.0004x)(r=0.72,n=16,p<0.001);植物茎、叶分叉处和籽、花黏附的泥沙量多于植物的茎干、叶面黏附的泥沙量。水体的悬沙浓度越大,黏附的泥沙量越多。植物群落所处的滩面高程越低,潮水淹没的机会越多,植物黏附的泥沙量越大。不同盐沼植物黏附的泥沙量差异显著,同是盐沼外缘取样的互花米草(369 g/m~2)的黏附能力强于海三棱藨草(44.8g/m~2),同是盐沼内缘取样的互花米草(77.3 g/m~2)的黏附能力强于芦苇(38.7 g/m~2),但单位生物量的盐沼植物黏附的泥沙量是海三棱藨草(150.5±134.8 g/kg)最高,芦苇(28.8±22.8 g/kg)最低,互花米草(57.5±32.9 g/kg)位于二者之间。盐沼植物生长位置距光滩或潮沟远近不同,其黏附作用不同,在盐沼外缘,单位滩地面积上植物黏附泥沙量以1-3%/m的速度从盐沼外边缘光滩或潮沟向内陆减小。盐沼植物黏附作用的位置差异归因于不同位置悬浮泥沙浓度和滩面高程的差异。植物黏附的泥沙量在垂向上从上到下急剧增大。从基部到顶端,植物黏附的泥沙量从10-15 g/m~2减小到<2 g/m~2,靠近滩面部分植物黏附的泥沙量占植物黏附总量的30%以上。盐沼植物黏附泥沙从植物基部向顶端减少的趋势是生物量、悬沙浓度和淹没状况共同影响的结果。盐沼植物黏附的泥沙量季节差异明显。以崇明东滩的海三棱藨草黏附的泥沙量为例,秋初(2007年9月)是春末(2007年5月)的6倍,冬季该植物消失,其黏附泥沙的功能也消失。盐沼植物黏附泥沙量的季节差异,除了潮况及悬沙浓度的影响外,主要与植物的生态特征有关.在崇明东滩,互花米草通过黏附机制对沉积速率的贡献率>10%。海三棱藨草通过黏附机制对沉积速率的贡献率<10%.芦苇通过黏附机制对沉积速率的贡献率可能>10%或<10%。
     4、盐沼植物对滩面冲淤过程的影响。盐沼滩面的日平均冲淤速率变化明显小于光滩滩面。如2006年9月15~23日期间,对崇明东滩一个横跨盐沼-光滩的段面观测表明:盐沼日冲淤速率变化范围为-1~3 mm/d,平均日冲淤速率变化范围为-0.2~1.2 mm/d;而光滩日冲淤速率变化范围为-2~5 mm/d,平均日冲淤速率变化范围为-1~2.3 mm/d。海三棱藨草盐沼对滩面的季节性冲淤过程影响明显.如在崇明东滩海三棱藨草盐沼的现场观测发现,植被覆盖季节,滩面持续淤积,一个生长季节滩面累计淤积可超过20cm.在冬季,海三棱藨草衰亡,盐沼变成光滩,滩面停止淤积或遭受侵蚀。分析认为,盐沼植物对滩面冲淤过程的改变归因于盐沼植物对水动力的削弱、茎叶对悬浮细颗粒泥沙的黏附以及植物根系对滩面沉积物的固结作用。
     5、盐沼植物对滩面沉积物粒径的影响。崇明东滩北、中、南三个盐沼段面沉积物的平均粒径与盐沼段面上的平均植物指数(植物高度与盖度的乘积)呈显著的负相关关系:y=30.951e~(-5E-05x)(r=0.9999,n=3,p<0.01),说明植物越高、越密集,滩面沉积物就越细。盐沼植物(以海三棱藨草为例)消失的冬季(沉积物平均粒径为30.1±7.8μm),滩面沉积物粒径比植被覆盖的夏季(沉积物平均粒径为16.4±3.8μm)增大约1倍.分析认为,盐沼植物对沉积物粒径的细化作用归因于植物对水动力的衰减和直接黏附。植物摩擦导致水动力衰减,促进细粒悬浮泥沙落淤,同时还抑制滩面侵蚀。植物对细颗粒泥沙的黏附作用也最终增加了细颗粒悬浮泥沙在滩面上的落淤。
Tidal salt marsh is one of the important ecosystems of wetlands.It provides important ecosystem functions such as nursing habitats for fish and crustaceans,resting and feeding areas for migratory birds.It also supports biodiversity,filters contaminants,dissipates water energy,and offers intrinsic values such as aesthetics and education.Tidal salt marsh plays a significant role in resource and environment of coastal zone.With people's acquaintance on its importance,salt marsh ecosystem has become a hot topic of multi-disciplinary research.Tidal salt marsh vegetation affects the hydrodynamics and sedimentation process greatly.It can attenuate hydrodynamic and accelerate accretion as well as resist erosion of bed.In the context of the growing speed of the global sea level rise,this accretion effect seems more important than ever for tidal marsh survival.Besides the above benefits,the vegetation can also protect the engineering of the coastal zone by attenuating the water energy.All of these physical processes and engineering effects make tidal salt marsh vegetation one important study project.
     This study was funded by the National Science Foundation(44011770) and the Ministry of Science and Technology of China(2004CB720505).In this study,two exposed tidal wetlands,the Eastern Chongrning and the Jiuduansha,at the seaward side of the Yangtze River delta were selected as the study regions.Using advanced equipments,we observed the data of wave,flow speed and SSC(Suspended Sediment Concentration).Then,in the laboratory,sampled sediments were used to make grain-size analyzing,and sampled vegetations were used to measure the amount of sediments adhered by plants.Based on the subsequential results,we laid special stress on analyzing the attenuation of hydrodynamics,the trapping effect,the sediment grain size and stability of bed due to vegetations.The following conclusions are obtained:
     1.Influence of Salt marsh vegetations on hydrodynamics.Attenuation of wave energy and flow speed in S.alterniflora-S,mariqueter salt marsh was one order higher than that in tidal flat in magnitude.The average decrease rate of flow speed was 0.97%/m,and the highest decrease rate was 0.89%/m in salt marsh.In tidal flat,the average decrease rate and the highest decrease rate were 0.070%/m and 0.078%/m respectively.Decrease rate of wave height per unit bed level was 0.53%/cm in tidal flat,while that in S.mariqueter salt marsh was 2.60%/cm,and that in S. alterniflora salt marsh was 7.40%/cm.After analyzing,we found that the attenuation effect of vegetations on hydrodynamics was related with ecological parameters of plants.The higher, denser,and wider the plant was,the greater the attenuation effect on hydrodynamics was.The attenuation effect when the plant was submerged is different from that when the plant was not submerged.When not submerged,the plant can effectively attenuate the wave and flow.Therefore, we can know that the attenuation effect of S.mariqueter salt marsh on hydrodynamics was smaller than that of S.alterniflora salt marsh because the height of the former is smaller than the latter.
     2.Influence of Salt marsh vegetations on SSC.The SSC at Site 30 m away from the outer marsh edge was typically higher than that at Site 50 m away from the outer marsh edge at the trance in the Eastern Chongming.The tide-averaged SSC at Site 30 m away from the outer marsh edge was 2.44 kg/m~3,and that at Site 50 m away from the outer marsh edge was 1.82 kg/m~3.The maximum SSCs at the two sites were 4.59 kg/m~3 and 3.35 kg/m~3 respectively.Thus,we can draw the conclusion that the SSC of water close to sediment source(tidal fiat and creek) was higher. With the increase of the distance away from the landward,the SSC of water decreased.As a result of our analyzing,the mechanism of plant's influence on SSC dues to the settlement of the suspended particulate,the decrease of the resuspend power,caused by the decrease of the wave energy,and the trapping effect of plants on the sediments.
     3.Trapping effect of salt tidal marsh vegetation on suspended sediment.We measured weight of sediment trapped by vegetations sample in the Eastern Chongming and the Jiuduansha salt marsh.The results indicate:The dry weight of sediment adhering to plants ranged from 18.0 to 559.0 g/m~2.On average,the amount of sediment adhering to S.alterniflora,P.australis and S. mariqueter was 220.6±172.7,64.9±38.1,and 31.6±10.0 g/m~2,respectively.After analyzing, we find that the amount of sediment adhering to marsh plants per unit of land area depends onthe plant properties,the SSC and the bed level.The general positive relationship between the amount of sediment and plant biomass:y=30.544e~(0.0004x)(r=0.72,n=16,p<0.001).The amount of sediment adhering to the stems and leaves per unit land area was less than that of adhering to the branching and flower/fruit structures.The SSC of water is higher,the amount of sediment adhering to marsh plants is bigger.The lower the bed level,the higher the frequency and duration of tidal submergence,and the more the sediment adhere to plant.The effect of each type plant is different.At the same position,the amount of sediment adhering to S.alterniflora(77.3 g/m~2) was typically more than to P.australis(38.7 g/m~2),and at the same position,the amount of sediment adhering to S.alterniflora(369 g/m~2) was typically more than to S.mariqueter(44.8 g/m~2). However,also on average,the amount of sediment adhering per plant biomass was highest for S. mariqueter(92.1±35.3 g/kg),lowest for P.australis(28.8±22.8 g/kg),and in between for S. alterniflora(57.5±32.9 g/kg).For the same species,plants closer to a creek of the lower marsh edge tend to trap more sediment.The amount of sediment trapped by vegetation per unit land area in the low marsh margin decreased at a rate of 1-3%/m with distance from the outer marsh edge bordering the mudflat or from the tidal creak where the SSC was higher.The difference of amount trapping by plant in different position attribute to different SSC and bed level.The dry weight of sediment adhering to plants drastically decreased from 10-15 to<2 g/m~2 upward from their base to their tip.The amount of particulate trapped by near-bed 51-0 cm section of the plants is over one third in total.The downward increasing trend in sediment adhering to the plants reflects the combined effect of plant biomass,SSC and inundation condition.The amount of particulate adhering to S.mariqueter in the initial stage of autumn(September) was six than that in the end stage of spring(May).The plants were wither away in winter,and the effect was disappearing.In the Eastern Chongming,we estimate that the contribution of S.mariqueter to the total deposition rate is<10%and the contribution of P.australis to the total deposition rate may be either>10% or<10%.
     4.Influence of Salt marsh vegetations on A&E(accretion and erosion) process of bed.The daily average A&E rate of salt marsh was obviously less than that in tidal flat.For example,from 15 to 23 September 2006,the observation on a trance across salt marsh-tidal flat in the Eastern Chongming indicated that:The daily A&E rate in salt marsh varied from-1 to 3 mm/d,and the daily average A&E rate in salt marsh varied from-0.2 to 1.2 mm/d.However,the two A&E rates in tidal flat are-2~5 mm/d and-1~2.3 mm/d respectively.S.mariqueter can obviously affect the seasonal change of A&E of bed.For example,through our observations in Eastern Chongming, we found that the bed continuously accreted in season when S.mariqueter plants and the bed level can promote 20 cm in a growing season.In winter when the plants were withered away,the salt marsh becomes tidal flat,and the bed did not promote or be eroded.It can be concluded that the mechanism of plant's influence on A&E of bed attributes to attenuation of hydrodynamics caused by plants,trapping effect of plant and concretion of root.
     5.Influence of salt marsh vegetation on grain size of bed sediment.There was obviously negative relation between vegetation index(The product of mean height and coverage of plants) and mean size of surface sediment of north,middle and south salt marsh trances in the Eastern Chongming.The regression relationship was y=30.951e ~(-5E-05x)(r=0.9999,n=3,p<0.01),which indicated that the higher and denser the plant was,the freer the sediment was.Taking S. mariqueter for example,the grain size(average grain size was 30.1±7.8μm) in winter when the salt marsh vegetations die away was two times larger than that in summer(average grain size was 16.4±3.8μm) when the bed was covered by plants.After analyzing,we found that the fining effect of the plants was also attributes to the attenuation of hydrodynamics and their trapping effect.The friction of vegetations induced attenuation of hydrodynamics,and enhanced the settling of fine grain.Meanwhile,the cover of plant prevented the erosion.The trapping effect of plant enhanced the deposition of fine grain to bed finally.
引文
Alizai S.A.K.,Mcmanus J.,1980.The significance of reed beds on siltation in the Tay estuary.Proceedings of the Royal Society Edinburgh,78,1-13.
    Allen J.R.L.,2000.Morphodynamics of Holocene salt marshes:a review sketch from the Atlantic and Southern North Sea coasts of Europe.Quaternary Science Reviews,19,1155-1231.
    Amos C.L.,1995.Siliclastic tidal flats.In:Perillo GM.E.,(Ed.),1995.Geomorphology and Sedimentology of Estuaries.Development of Sedimentology,53.Elsevier,Amsterdam,273-306.
    Baptist M.J.,2003.A flume experiment on sediment transport with flexible,submerged vegetation International workshop on RIParian FORest vegetated channels.Hydraulic,Morphological and Ecological Aspects,20-22.
    Bird E.C.F.,1996.Beach Management.Chichester:John Wiley & Sons,281.
    Bouma T.J.,De Vries M.B.,Low E.,Kusters L.,Herman 1P.M.J.,Ta' nczos I.C.,Temmerman S.,Hesselink A.,Meire P.,van Regenmortel S.,2005.Flow hydrodynamics on a mudflat and in tidal marsh vegetation:identifying general relationships for habitat characterizations.Hydrobiologia,540,259-274.
    Brampton A.H.,1992.Engineering significance of British saltmarshes.In:Allen J.R.L.,Pye K.,1992.Saltmarshes,Morphodynamics,Conservation and Engineering Significance.Cambridge University Press,Cambridge.
    Castellanos E.M.,Figueroa M.E.,Davy A.J.,1994.Nucleation and facilitation in salt-marsh succession:interactions between Spartina maritima and Arthrocnemum perenne.Journal of Ecology,82,239-248.
    Chapman V.J.,1960.Salt Marshes and Deserts of the World.Leonard Hill,London,England,1-92.
    Chmura GL.,Chase P.,Bercovitch J.,1997.Climatic controls on the middle marsh zone in the Bay of Fundy.Estuaries,20,689-699.
    Christiansen T.,Wiberg P.L.,Milligan T.G,2000.Flow and sediment transport on a tidal salt marsh surface.Estuary,Coastal and Shelf Science,50,315-331.
    Christie M.C.,Dyer K.R.,Turner P.,1999.Sediment flux and bed level measurements from a macrotidal mud flat.Estuarine Coastal and Shelf Science,49,667-688.
    Davidson-arnott R.GD.,Proosdij D.,Ollerhead J.,et al.,2002.Hydrodynamics and sedimentation in salt marshes:examples from a macrotidal marsh,Bay of Fundy.Geomorphology,48,209-231.
    Dijkema K.S.,1984.Geography of salt marshes in Europe.Zeitschriftfur Geomorphologie,31,489-499.
    Dyer K.R.,1986.Coastal and Estuarine Sediment Dynamics.Chichester.UK:John Wiley & Sons,1-339.
    Dyer K.R.,Christie M.C.,Feates N.,Fennessy M.J.,Pejrup M.,van der Lee W.,2000.An Investigation into Processes Influencing the Morphodynamics of an Intertidal Mudflat,the Dollard Estuary,The Netherlands:1.Hydrodynamics and Suspended Sediment.Estuarine,coastal and shelf science.50(5),607-625.
    Evans P.R.,Ward R.M.,Bone M.,1998.Creation of temperate climate intertidal mudflats:factors affecting colonization and use by benthic invertebrates and their bird predation.Marine Pollution Bulletin,37(8-12),535-545.
    Fisher K.R.,1996.Handbook for assessment of hydraulic performance of environmental channels.Report S R draft.HR Wallin,Wallingford gford,Great Britain.
    Fonseca M.S.,Fisher J.S.,1986.A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration.Marine Ecology Progress Series,29,15-22
    French J.R,Spencer T.,1993.Dynamics of sedimentation in a tidedominated backbarrier salt marsh,Norfolk,UK.Marine Geology,110,315-331.
    French J.R.,Reed D.J.,2001.Habitat Conservation,Managing the Physical Environment.In:Warren A.,French J.R.,Physical Contexts for Saltmarsh Conservation,179-228.
    Frey R.W.,Basan P.B.,1985.Coastal salt marshes.In:Davis J.R.A.,1985.Coastal Sedimentary Environments,Springer-Verlag.New York,225-301.
    Gambi M.C.,Nowell A.R.M.,Jumars P.A.,1990.Flume observations on flow dynamics in Zostera marinas(eelgrass)beds.Marine Ecology Progress Series,61,159-169.
    Gleason M.L.,Elmer D.A.,Pien N.C.,et al.,1979.Effects of storm density upon sediment retention by saltmarsh cord grass,Spartina alterniflora Loisel.Estuaries,2,271-273.
    Goodwin P.,Mehta A.J.,Zedler J.B.,2001.Coastal wetland restoration:an introduction.Journal of Coastal Research,27,1-6.
    Green M.O.,Black K.P.,Amos C.L.,1997.Control of estuarine sediment dynamics by interactions between currents and waves at several scales.Marine Geology,144,97-116.
    Hir P.L.,2000.Characterization of intertidal flat hydrodynamics.Continental shelf research,20(12-13),1433-1459.
    Jacobson H.,Jacobson J.G.L.,1987.Variability of vegetation in tidal marshes of Maine,USA.Canadian Journal of Botany,67,230-238.
    Kadlec R.H.,1990.Overland-Flow in Wetlands-Vegetation Resistance.Journal of Hydraulic Engineering-ASCE,116(5),691-706.
    Kelley J.T.,Gehrels W.R.,Belknap D.F.,1995.Late Holocene sea-level rise and the geological development of tidal marshes at Wells.Maine,U.S.A.Journal of Coastal Research,11,136-153.
    Knutson P.L.,Brochu R.A.,Seelig W.N.,et al.,1982.Wave damping in Spartina alterniflora marshes.Wetlands,2,87-104.
    Komar P.D.,1976.Beach Processes and Sedimentation.Prentice-Hall,Englewood Cliffs,New Jersey,USA,1-429.
    Larson M.,Kraus N.C.,1994.Temporal and spatial scales of beach profile change,Duck,North Carolina.Marine Geology,177,75-94.
    Leonard L.A.,Hine A.C.,Luther M.E.,1995a.Surficial sediment transport and deposition processes in a Juncus roemerianus marsh,west-central Florida.Journal of Coastal Research,11,322-336.
    Leonard L.A.,Luther M.E.,1995.Flow hydrodynamics in tidal marsh canopies.Limnology and Oceanography,40,1474-1484.
    Leonard L.A.,Reed D.J.,2002.Hydrodynamics and sediment transport through tidal marsh canopies.Journal of Coastal Research,36,459-469.
    Li H.,Yang S.L.,2009.Trapping effect of tidal marsh vegetation on suspended sediment,Yangtze Delta.Journal of Coastal Research,DOI:10.2112/08-1010.1.
    Luternauer J.L.,Atkins R.J.,Moody A.I.,et al.,1995.Salt marshes.In:Perillo G.M.E.,1995.Geomorphology and Sedimentology of Estuaries.Developments in Sedimentology,Elsevier,Amsterdam,53,307-332.
    Moller I.,Spencer T,French J.R.,et al.,1999.Wave transformation over salt marshes:a field and numerical modeling study from North Norfolk,England.Estuary.Coastal and Shelf Science,49,411-426.
    M(o|¨)ller I.,Spencer T.,French J.R.,et al.,2001.The sea-defense value of salt marshes:field evidence from North Norfolk.In:Chart J.,Water and Environment Management,15,109-116.
    Morris J.T.,Sundareshwar P.V.,Nietch C.T.,Kjerfve B.,Cahoon D.R.,2002.Responses of coastal wetlands to rising sea level.Ecology,83,2869-2877.
    Mudd S.M.,Fagherazzi S.,Morris J.T.,Furbish D.J.,2004.Flow,sedimentation,and biomass production on a vegetated tidal marsh in South Carolina:toward a predictive model of marsh morphologic and ecologic evolution.In:Fagherazzi S.,Marani A.,Blum L.K.,(eds.),The Ecogeomorphology of Tidal Marshes.American Geophysical Union,Washington,D.C.,165-187.
    Nepf H.M.,Vivoni E.R.,2000.Flow structure in depth limited,vegetated flow.Journal of Geophysical Research,105/C12,28547-28557.
    Neumeier U.,Amos C.L.,2006.The influence of vegetation on turbulence and flow velocities in European.Sedimentology,53,259-277.
    Oh S.H.,Koh C.H.,1995.Distribution of diatoms in surface sediments of Mangyung-Dongjin tidal flat,west coast of Korea(eastern yellow Sea).Marine Biology,122(3),487-496.
    Pasternack G.B.,Brush G.S.,2001.Seasonal variations in sedimentation and organic content in five plant associations on a Chesapeake Bay tidal freshwater delta.Estuarine,Coastal and Shelf Science,53(1),93-106.
    Pethick J.,Leggett D.,Husain L.,1990.Boundary layers under salt marsh vegetation developed in tidal currents.In:Thornes J.B.,1990.Vegetation and Erosion.113-124.
    Ranwell,D.S.,1964.Spartina TidalMarshes in Southern England.2.Rate and Seasonal Pattern of Sediment Accretion.Journal of Ecology,52(1),79-94.
    Raupach M.R.,Thom A.S.,1981.Turbulence in and above plant canopies.Annual Review of Fluid Mechanics,13,97-129.
    Reed D.J.,Luca N.,Foote A.L.,1997.Effect of hydrologic management on marsh surface sediment deposition in coastal Louisiana.Estuaries,20,301-311.
    Sanchez J.M.,Sanleon D.G,Izco J.,2001.Primary colonization of mudflat estuaries by Spartina maritima(Curtis)Fernald in Northwest Spain:vegetation structure and sediment accretion.Aquatic Botany,69,15-25.
    Schwimmer R.A.,Pizzuto J.E.,2000.A model for the evolution of marsh shorelines.Journal of Sedimentation Research,70,1026-1035.
    Shi Z.,Hamilton L.J.,Wolanski E.,2000.Near-bed currents and suspended sediment transport in salt-marsh canopies.Journal of Coastal Research,16,909-914.
    Shi Z.,Pethick J.S.,Burd F.,et al.,1996.Velocity profiles in a salt marsh canopy.Geo-Marine Letters,16,319-323.
    Shi Z.,Pethick J.S.,Pye K.,1995.Flow structure in and above the various heights of a saltmarsh canopy:a laboratory flume study.Journal of Coastal Research,11,1204-1209.
    Stevenson J.C.,Ward L.G.,1988.Kearney M S.Sediment transport and trapping in marsh system:Implication of tidal flux students.Marine Geology,80,37-59.
    Stumpe R.P.,1983.The processes of sedimentation on the surface of a salt marsh.Estuarine,Coastal and Shelf Science,17,495-508.
    Uncles R.J.,Stephens J.A.,Harris C.,1998.Seasonal variability of subtidal and intertidal sediment distributions in a muddy,macrotidal estuary,the Humber-Ouse,UK.In:Black K.S.,Paterson D.M.,Cramp A.,1998.Sedimentary Processes in the Intertidal Zones.London,UK:The Geological Society,211-220.
    Van de Koppel J.,Herman P.M.J.,Thoolen P.,et al.,2001.Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat.Ecology,82(12),3449-3461.
    van Hulzen J.B.,van Soelen J.,Bouma T.J.,2007.Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica(common cordgrass).Estuaries and Coasts,30,3-11.
    Volkman J.K.,Rohjans D.,RullkoK(o|¨)tter J.,et al.,2000.Sources and diagenesis of organic matter in tidal sediments from the German Wadden Sea.Continental Shelf Research,20(10),1139-1158.
    Wang F.C.,Lu T.S.,Sikora W.B.,1993.Intertidal marsh suspended sediment transport processes,Terrebonne Bay,Louisiana,U.S.A.Journal of Coastal Research,9,209-220.
    Wayne C.J.,1976.The effects of sea and marsh grass on wave energy.Coastal Research Notes,4,6-8.
    Webster T.,Lemckert C.,2002.Sediment resuspension within a microtidal estusry/embayment and the implication to channel management.Journal of Coastal Research,36,753-756.
    Widdows J.,Brinsley M.,2002.Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone.Journal of Sea Research,48,143-156.
    Williams H.F.L.,Hamilton T.S.,1995.Sedimentary dynamics of an eroding tidal marsh derived from stratigraphic records of 137Cs fallout,Fraser Delta,British Columbia,Canada.Journal of Coastal Research,11(4),1145-1156.
    Woodroffe C.D.,2003.Coasts:Form,processes and evolution.Cambridge University Press,Cambridge,623.
    Yang S.L.,Chen J.Y.,1995.Coastal salt marshes and mangrove swamps in China.Chinese Journal of Oceanology and Limnology,13(4),318-324.
    Yang S.L.,Ding P.X.,Chen S.L.,2001.Changes in progradation rate of the tidal flats at the mouth of the Changejiang River,China.Geomorphology,38,167-180.
    Yang S.L.,Friedrichs C.T.,Ding P.X.,et al.,2003.Morphological response of tidal marshes,flats and channels of the outer Yangtze River mouth to a major storm.Estuaries,26,1416-1425.
    Yang S.L.,Zhang J.,Zhu J.,et al.,2005.Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response.Journal of Geophysical.Research,110,F03006,doi:10.1029/2004JF000271.
    Yang S.L.,1999a.Sedimentation on a growing intertidal island in the Yangtze River Mouth.Estuarine,Coastal and Shelf Science,49,401-410.
    Yang S.L.,1998.The role of Scirpus marsh in attenuation of hydro-dynamics and retention of fine-grained sediment in the Yangtze Estuary.Estuarine,Coastal and Shelf Science,47,227-233.
    Zhang C.,Wang L.,Li G.,Dong S.,Yang J.,Wang X.,2002.Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay.China,Appl.Geochem.,17,59-68.
    Zhou J.L.,WU Y.,Kang Q.S.,Zhang J.,2006.Spatial variations of carbon,nitrogen,phosphorous and sulfur in salt marsh sediments of the Changjiang Estuary,China.Estuarine,Coastal and Shelf Science,71,47-59.
    曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟.海洋学报,1993,15(1),107-118.
    陈才俊.江苏滩涂大米草促淤护岸效果.海洋通报,1994,13,55-61.
    陈吉余,沈焕庭,恽才兴.长江河口动力过程和地貌演变.上海科学技术出版社,1988,454.
    陈吉余.上海市海岸带和海涂资源综合调查报告.上海科学技术出版社,1988,394.
    陈沈良,谷国安.杭州湾口悬沙浓度变化与模拟.泥沙研究,2000,5,45-50.
    陈沈良,张国安,杨世伦,虞志英.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报,2004,59(2),260-266.
    窦国仁.紊动力学(上册).人民教育出版社,1981,309.
    方圣琼,胡雪峰,徐巍.长江口潮滩沉积物的性状对重金属累积的影响.环境化学,2005,24(5),586-589.
    傅宗甫.互花米草消浪效果试验研究.水利水电科技进展,1997,5,45-47.
    贺宝根.长江口潮滩水动力过程、泥沙输移与冲淤变化.博士学位论文.2004.
    康勤书,吴莹,张经.崇明东滩湿地重金属分布特征及其污染状况.海洋学报,2003,25(增刊2),1-7.
    孔亚珍,贺松林,丁平兴,胡克林.长江口盐度的时空变化特征及其指示意义.海洋学报,2004,16(4),9-18.
    李华,杨世伦.潮间带盐沼植物对海岸沉积动力过程影响的研究进展.地球科学进展,2007,22(6),583-591.
    李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律.地理研究,1994,13(1),51-59.
    李九发,沈焕庭,徐海根.长江河口底沙运动规律.海洋与湖沼,1995,26(2),138-145.
    李占海,高抒,柯贤坤,汪亚平.江苏大丰海岸碱蓬滩潮沟及滩面的沉积动力特征.海洋学报,2005,27(6),75-82.
    卢声明,吴绍镇,林孝悌.互花米草对海岸的保护.江苏水利科技,1996,2,40-43.
    陆健健.河口生态学.北京:海洋出版社,2003,318.
    钱宁,张仁,周志德.河床演变学.科学出版社,1987,92-93.
    邵虚生,严钦尚.上海潮坪沉积.地理学报,1982,37(3):241-249.
    邵虚生,严钦尚.上海潮坪沉积.严钦尚,许世远.长江三角洲现代沉积研究.上海:华东师范大学出版社,1987,27-36.
    沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001,1,39-61.
    沈焕庭.长江河口河海相互作用探讨.海岸与海洋资源环境学术研讨会SCORE 2000,高雄中山大学,2000,11,114-126.
    沈永明,张忍顺,王艳红.互花米草盐沼潮沟地貌特征.地理研究,2003,22(4),520-.527.
    时钟.海岸盐沼冠层水流平均流速分布的实验研究.海洋工程,2002,19(3),51-59.
    宋连清.互花米草及其对海岸的防护作用.东海海洋,1997,15:11-19.
    汪亚平,张忍顺,高抒.论盐沼-潮沟系统的地貌动力响应.科学通报,1998,43(21):2315-2320.
    徐志明.崇明东部潮滩沉积.海洋与湖沼,1985,16(3),231-239.
    许世远,严钦尚,陈中原.长江三角洲风暴沉积系列研究.中国科学(B辑).1989,7,97-103.
    杨世伦(主编).海岸环境和地貌过程.北京:海洋出版社,2003,240.
    杨世伦,杜景龙,郜昂,李鹏,李明,赵华云.近半个世纪长江口九段沙湿地的冲淤演变.地理科学,2006,26(3),335-339.
    杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响.海洋学报,2001,23(4),75-81.
    杨世伦,徐海根.长江口长兴、横沙岛潮滩沉积特征及其影响机制.地理学报,1994,49(5),449-456.
    杨世伦,陈吉余.试论植物在潮滩发育演变中的作用.海洋与湖沼,1994,15(6),631-635.
    杨世伦,傅德健,陈小华等,潮汐和潮汐作用为主的海岸.杨世伦.海岸环境和地貌过程导论.北京:海洋出版社,2003,7-115.
    杨世伦,朱骏,李鹏.长江口前沿潮滩对来沙锐减和海面上升的响应.海洋科学进展,2005,23(2),152-158.
    杨世伦.长江三角洲潮滩季节性冲淤循环的多因子分析.地理学报,1997,7(4),374-382.
    杨世伦.崇明东部滩涂沉积物的理化特性.华东师范大学学报(自然科学版),1990,3,89-91.
    杨世伦.风浪在开敞潮滩短期演变中的作用——以南汇东滩为例.海洋科学,1991,2,59-63.
    张国安,虞志英,何青等.长江口一期工程前后泥沙运动特性初步研究.泥沙研究,2003,6,31-38.
    张文祥,ADP和OBS观测支持下的长江口悬沙动力过程研究.博士学位论文.2006.
    朱慧芳,恽才兴,茅志昌等.长江河口的风浪特性和风浪经验关系.长江河口动力过程和地貌演变.上海科学技术出版社,1988,166-177.
    祝廷成,钟章成,李建东.植物生态学.北京:高等教育出版社,1988,1-355.
    庄武艺,J.谢佩尔.海草对沉积作用的影响.海洋学报,1991,13:230-239.
    左书华,李九发,万新宁,沈焕庭,付桂.长江河口悬沙浓度变化特征分析.泥沙研究,2006,6(3),68-75.