血浆microRNA与急性心梗发病风险和焦炉工心率变异性改变的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国空气污染问题日趋严重,由此导致环境相关疾病(如心血管疾病)的发病率和死亡率增加,以及人体早期健康损害(如心率变异性下降)的增加。冠心病是世界上最常见,也是致死率最高的环境相关性疾病之一,我国每年有大约100万人死于冠心病,而急性心梗占了一半,是对人民生命和健康威胁最大的心血管疾病之一。为此,加强开展急性心梗的基础研究和人群防治工作,是保障我国经济可持续发展以及构建和谐社会的重大社会需求。急性心梗病因复杂,是环境与基因共同作用的结果。心率变异性反映中枢通过自主神经系统对心脏节律的调节。流行病学研究结果显示,空气污染可导致人群心率变异性水平下降,而心率变异性改变在预测急性心血管事件(如急性心梗)方面具有重要意义。
     越来越多的研究表明,在一些疾病状态下,某些基因的序列不发生改变,只是基因的修饰加工和表达发生异常,这就是表观遗传学的主要研究内容。表观遗传学是连接外在环境因素和内在遗传因素的桥梁和纽带,表观遗传学调节异常可产生多种疾病,如心血管疾病等。microRNA(miRNA)是表观遗传调控机制中最重要的组成部分之一,在心血管疾病的发生与发展中发挥重要的作用。许多研究表明,miRNA参与调节心血管系统的生长、发育以及血管生成等生理过程。同时,miRNAs也可稳定存在于外周血液循环系统中(包括血浆和血清),而那些在某疾病状态下具有特征性表达谱的循环miRNA有望成为该疾病的生物标记物,因此具有潜在的临床价值。然而,关于血浆miRNA与急性心梗发病风险之间的关系,尚缺乏流行病学证据。
     体内外研究结果显示,miRNA可调节空气污染物暴露(包括吸烟)引起的氧化应激和免疫炎症反应等。焦炉逸散物是一种由煤燃烧释放出来的空气污染物,含有许多有毒有害的化学物质,可经呼吸道进入人体。本实验室之前的研究表明,焦炉工人心率变异性下降可能与焦炉逸散物中多环芳烃的暴露水平有关。然而,目前尚未有研究表明空气颗粒物暴露是否可以导致人体血浆miRNA表达谱改变;而miRNA作为一种重要的基因表达调控机制,其血浆水平与HRV之间是否存在关联性,也未有文献报道。
     鉴于miRNA在心血管疾病以及空气污染致人体早期健康损害中的作用,本研究开展了如下几个方面的工作:(1)将20名急性心梗病人或20名年龄性别匹配的健康对照人群血浆混合后提取总RNA进行Solexa测序,筛选在两组中有表达差异的miRNA,用实时荧光定量PCR的方法初步验证这些miRNA的表达量,接着在两个独立的大样本病例对照人群中对表达水平有差异的miRNA再次进行验证,并分析吸烟和miRNA的交互作用对于急性心梗发病风险的影响(2)对与急性心梗发病风险有显著关联性的miRNA进行功能探讨(3)根据本实验室前期测序结果和文献报道选择若干与心血管疾病密切相关的miRNA,在暴露于焦炉逸散物的焦炉工人中检测其血浆miRNA表达水平,并对焦炉工人尿羟基PAHs浓度、血浆miRNA水平以及心率变异性三者之间的关系进行关联性分析。
     第一部分血浆microRNA与急性心梗发病风险的关联性研究
     本研究用于Solexa测序的发现阶段人群是从验证人群I中挑选出来的20名急性心梗病人和20名健康对照。验证人群I包括从2008年到2010年在武汉同济医院和协和医院两个医院进行住院治疗的178例急性心梗病人,以及来自于武汉社区,年龄和性别频率与病例组匹配的198名社区居民(健康对照)。验证人群II包括从2008年到2010年在武汉武钢医院进行住院治疗的150例急性心梗病人和随机选择的150例同一时期收集的年龄和性别频率与病例组匹配的武汉社区健康对照人群。验证人群II主要用于验证人群I得到的阳性结果。血浆MiRNA表达水平的检测采用实时荧光定量PCR的方法。同时,我们还利用ROC曲线计算了血浆miRNA作为急性心梗诊断标记物的曲线下面积。
     Solexa测序结果显示,共有77个miRNA的表达水平在急性心梗和对照组间存在显著差异。我们共选择5个miRNA用qRT-PCR的方法首先在测序人群中进行验证。miRNA选择标准为:(1)在病例组或对照组至少一组中miRNA的拷贝数>50;(2)在这两组样本间的表达差异倍数>4。最终,我们选择了同时满足这两个条件,且差异倍数最大的5个miRNA(分别为miR-483-5p, miR-106b, miR-25,miR-125b和miR-320b)。结果显示,miR-125b和miR-320b的表达水平在急性心梗组中显著低于对照人群,与测序结果一致,而其他3个miRNA的表达水平在两组间无显著差异。因此,我们选择在验证阶段I和验证阶段II人群中进一步验证这个结果。
     验证阶段I结果显示,miR-125b和miR-320b在急性心梗人群中的相对表达量显著低于健康对照。验证阶段II结果显示,miR-320b和miR-125b在急性心梗人群中的相对表达量也显著低于对照人群。当我们把验证人群I和验证人群II合并分析时,结果显示:低表达水平的miR-320b与急性心梗发病风险的增加有显著关联性(校正后OR=4.15,95%CI为2.71-6.34,P<0.0001)。同样地,低表达水平的miR-125b与急性心梗发病风险的增加也有显著关联性(校正后OR=3.89,95%CI为2.57-5.86,P<0.0001)。这两个血浆miRNA对急性心梗的发病风险也有累积作用。与携带高表达水平miRNA的人群相比,随着携带低表达水平的miRNA的个数的增加,个体急性心梗发病风险也逐渐增加(携带一个低表达miRNA的人校正后OR=3.46,95%CI为1.87-6.40;携带两个低表达miRNA的人校正后OR=7.79,95%CI为4.47-13.57;趋势检验Ptrend<0.0001)。然而,吸烟和这两个miRNA的交互作用无统计学意义。混合人群的ROC曲线分析结果显示,miR-125b的曲线下面积为0.72(95%置信区间为0.68-0.75),miR-320b的曲线下面积为0.75(95%置信区间为0.71-0.79)。两个miRNA合并分析结果显示曲线下面积为0.76(95%置信区间为0.72-0.80)。
     急性心梗的发生常常是由于冠状动脉粥样斑块破裂导致血栓形成,从而使冠脉闭塞心肌缺血坏死所致。许多研究表明,血浆miRNA也参与动脉粥样硬化的发生发展过程,而血管内皮细胞往往是血浆miRNA发挥生物学作用的重要受体细胞。由于血浆miR-125b和miR-320b的细胞来源未明,因此,我们选择在人脐静脉内皮细胞(HUVEC)中对这两个miRNA进行初步的功能探讨。我们将miR-320mimics或者miR-125b mimics转染到HUVEC中,利用基因芯片的方法筛选HUVEC转染前后表达改变的基因。结果显示,miR-320b mimics转染组中共1042个基因的表达水平发生了改变,而miR-125b mimics转染组中共2737个基因的表达水平发生了改变。对这些表达水平发生了改变的基因进行生物信息学分析,结果显示,miR-320b调节与翻译、细胞增殖、细胞迁移、转化生长因子-beta信号通路和炎症免疫反应有关的基因的表达,而这些基因也富集在与心血管疾病病理机制有关的信号通路上,比如转化生长因子-beta和细胞因子-细胞因子受体作用通路。miR-125b调节与翻译、细胞凋亡、血小板激发和炎症反应相关的基因的表达,这些基因也富集在与心血管疾病相关的信号通路上,包括凋亡通路和细胞因子-细胞因子受体作用通路。我们接着在100个健康对照、100个稳定冠心病病人和100个急性心梗病人的血浆中检测了这两个miRNA的表达水平,发现血浆miR-125b和miR-320b的表达水平在健康对照、稳定冠心病和急性心梗三组中有显著下降趋势。
     总之,我们的实验结果表明,miR-320b和miR-125b在急性心梗病人血浆中的表达水平显著低于健康对照人群,并且低表达水平的miR-125b和miR-320b与急性心梗发病风险增加有显著关联性。同时,这两个miRNA也调节血管内皮细胞中与冠心病发病机制有关的一系列信号通路中的基因的表达。
     第二部分血浆microRNA与焦炉工心率变异性改变的关联性研究
     我们选取了365名在目前的岗位上至少工作了一年的健康男性焦炉工人作为研究对象。采用气相色谱-质谱联用仪检测焦炉工人尿中各羟基多环芳烃代谢产物的浓度,采用Holter测量工人的心率变异性,并用实时荧光定量PCR的方法检测了血浆miRNA的表达水平。
     尿羟基多环芳烃与miRNA的剂量反应关系结果显示:在校正了年龄、工龄、吸烟、吸烟包年、饮酒和体重指数后,miR-24、miR-27a、miR-320b和miR-142-5p的表达水平与4-羟基菲浓度呈显著负相关,而miR-150的表达水平与1-羟基萘、2-羟基萘、2-羟基菲和羟基总多环芳烃均呈显著正相关。miR-126表达水平与尿羟基多环芳烃之间无显著相关性。
     miRNA与心率变异性的关联性分析结果显示:在校正了年龄、工龄、吸烟、吸烟包年、饮酒、体重指数和锻炼后,miR-24和miR-27a的表达水平与rMSSD呈显著负相关。miR-320b的表达水平与SDNN和rMSSD指标都呈显著负相关。miR-142-5p的表达水平也与SDNN和rMSSD指标呈显著负相关。而miR-150的表达水平与HRV各指标之间都无显著关联性。尽管血浆miR-126表达水平并不受PAH暴露的影响,然而,我们发现,血浆miR-126表达水平与工人的rMSSD指标之间呈显著负相关。总之,本部分实验结果表明,空气PAH暴露与焦炉工人血浆miRNA的表达水平之间呈一定的剂量反应关系,且血浆miRNA的表达水平与心率变异性之间也有显著关联性。因此,血浆miRNA可能是一种潜在的空气污染致人体早期健康损害的生物标志物。
     综上所述,本研究主要探讨了急性心梗患者和健康对照人群血浆中的miRNA表达谱差异,并系统分析了差异表达的miRNA与急性心梗发病风险之间的关系;同时,还对与急性心梗发病风险有显著关联性的血浆miRNA进行了初步的功能探讨。另外,我们还在暴露于焦炉逸散物的焦炉工人中探讨了血浆miRNA表达水平与焦炉逸散物致心率变异性改变之间的关系。总的来说,我们的研究结果表明:
     1)在急性心梗病人和健康对照人群血浆中,共77个miRNA存在表达差异,且miR-125b和miR-320b的表达水平在急性心梗病人中显著低于健康对照人群;
     2)低表达水平的血浆miR-125b和miR-320b与急性心梗发病风险的增加有显著关联性,ROC曲线显示这两个miRNA作为急性心梗诊断标记物时具有较好的准确度;
     3) miR-125b和miR-320b能调节血管内皮细胞中与冠心病发病机制密切相关的一系列信号通路中的基因的表达;
     4)血浆miR-125b和miR-320b在健康对照、稳定冠心病和急性心梗人群中表达水平呈显著下降趋势;
     5)血浆miR-24、miR-27a、miR-320b和miR-142-5p的表达水平不仅与空气PAH暴露有剂量反应关系,而且还与焦炉工人的心率变异性有显著关联性。本研究的创新之处:
     1)本研究发现血浆miR-125b和miR-320b表达水平与急性心梗的发病风险之间有显著关联性;
     2)发现miR-125b和miR-320b可能参与调节血管内皮细胞中与动脉粥样硬化发病机制相关的一系列基因的表达;
     3)血浆miR-125b和miR-320b可能作为疾病进程的生物标记物,可能在评价冠心病预后方面具有重要意义
     4)发现血浆miR-24、miR-27a、miR-320b和miR-142-5p的表达水平与焦炉工的空气多环芳烃暴露水平和心率变异性改变之间存在显著关联性,揭示血浆miRNA可能是潜在的空气污染致人体早期健康损害的生物标志物
     然而,尽管本研究已经取得了一些重要的发现,但由于时间的限制,尚有许多不足有待更为深入的研究,包括:
     1)第一部分研究中只选择了5个miRNA在大样本人群中进行验证
     2)队列研究仍处于起步阶段,还没有进行空气污染致心率变异性改变以及急性心梗发病的前瞻性研究;
     3)环境因素以及生活方式与miRNA的交互作用对急性心梗易感性的影响,需要进一步研究
The air pollution problem becomes worse in recent years, and it has resulted inincreaing morbidity and mortality of cardiovascular diseases and varieties of adverse healtheffects, such as decreased heart rate variability. Coronary heart disease (CHD) is the mostcommon environment-related disease with the leading cause of morbidity and mortalityworldwide. The WHO declared that about one million people would die from CHD, andhalf of them were diagnosed as acute myocardial infarction (AMI), which will be a seriousthreat to people’s health and a heavy burden for the society and families. To improve healthcare of the chronic non-infectious diseases, the Healthy China2020programme has beenrecently announced by Chinese government with the goal to strengthen public health andmedicine, which is critical in the process of constructing a harmonious society of China.The development of AMI is a complex process caused by multiple genetic andenvironmental factors. Heart rate variability (HRV) reflects the cardiac rhythm regulationby the autonomic nervous system. Epidemiologic studies suggest that alteration of cardiacautonomic function as measured by HRV is considered to be one of the pathophysiologicalpathways through which air pollution influences the cardiovascular system, whileconsistent associations between decreased HRV and myocardial infarction have alreadybeen observed in previous studies.
     An increasing body of evidence has suggested that the epigenetic changes of genesalso associate with cardiovascular diseases. Recently, microRNAs (miRNAs) have attractedextensive interests among researchers in the exploration of the field of cardiovasculardiseases. miRNAs are short, endogenous, non-coding RNAs that regulate gene expressionsat the posttranscriptional level by binding to the3' untranslated regions (3' UTRs) of theirtarget mRNAs. MiRNAs have now emerged as key regulators of cardiac growth, vasculardevelopment, and angiogenesis. Recent studies demonstrated that miRNAs can be detectedin circulating blood and may be useful as disease biomarkers. The levels and identities ofcirculating miRNAs in cardiovascular diseases have been evaluated in a series of studies.However, the sample sizes of these studies were small, and the roles of plasma miRNAs inAMI remain to be determined.
     Recently, an increasing body of evidence in vitro and in vivo has also shown thatexposure to environmental insults can result in a modification of miRNAs expression,which are related to the oxidative stress, immune and inflammatory status. Coke ovenemissions (COEs) are complex coal-combustion related air pollutants which containvarious toxic chemical substances, such as polycyclic aromatic hydrocarbons (PAHs). Ourprevious study suggested that occupational exposure to COEs is associated with adose-response decrease in HRV. However, the associations between plasma miRNAs,occupational PAHs exposure levels and the alteration of HRV are unknown.
     In this study, we explored the difference in plasma miRNA expression profilesbetween20AMI patients and20healthy controls by Solexa sequencing. Differentiallyexpressed miRNAs were validated in178AMI patients and198controls, and furtherreplicated in150AMI patients and150controls. A preliminary functional study was alsoperformed in human umbilical vein endothelial cells (HUVECs) overexpressing miR-320bor miR-125b. Moreover, six candidate miRNAs, which were identified by Solexasequencing in one of our previous studies (unpublished data) and were related to thecardiovascular diseases by literature review, were detected in the plasma of365coke ovenworkers with exposre to COEs, and the associations between urinary PAH metabolites, plasma miRNA expressions and HRV indices were analyzed.
     Section I. Plasma miRNAs and the occurrence of acute myocardialinfarction in Chinese population
     An initial screening of genome-wide plasma miRNA expression profiles (discoverystage) followed by two independent case-control studies (validation stage I and validationstage II) were performed. AMI patients in discovery stage and validation stage I wereconsecutively recruited from Wuhan Tongji and Union Hospital between2008and2010.Patients in validation stage II were recruited from Wugang hospital between2008and2010.Healthy subjects without medical history of cardiovascular diseases were selected ascontrols during a physical health examination at hospital, and they were matched by age,sex, and area of residence with AMI patients. The miRNAs assocaited with AMI werefurther valiated in a second case-control study (validation stage II). The expression levls ofplasma miRNAs in the validation stages were detected by q RT-PCR assays.
     In the discovery stage, seventy-seven miRNAs were found to be differentiallyexpressed between AMI patients and controls. We selected five miRNAs for q RT-PCRassays first in the discovery stage according to the following criteria:1) having at least50copies in either AMI or control group;2) and showing at least four-fold altered expressionbetween the two pooled samples. Results show that the expression levels of miR-125b andmiR-320b were lower in AMI patients compared with controls. These two miRNAs werefurther detected in the validation stage I.
     Results in validation stage I suggest that levels of plasma miR-320b and miR-125bwere both significantly lower in AMI patients than controls. Results in validation stage IIsuggest that levels of plasma miR-320b and miR-125b were consistently lower in AMIpatients compared with controls. Pooled analysis of the two validation populations showsthat lower levels of plasma miR-320b and miR-125b were consistently associated with AMI (adjusted OR=4.15,95%CI2.71to6.34, p<0.0001; and OR=3.89,95%CI2.57to5.86, p<0.0001respectively). Additionally, participants carrying one or both of the twodecreased miRNAs had significantly increased occurrence of AMI (adjusted OR=3.46,95%CI1.87to6.40for one decreased miRNA and OR=7.79,95%CI4.47to13.57for twodecreased miRNAs, ptrend <0.0001) compared with those with high levels of miRNAs. Nosignificant interaction was found between smoking and the two miRNAs in predicting AMIrisk. Moreover, miR-125b and miR-320b were able to discriminate AMI cases fromcontrols with an AUC of0.72(95%CI,0.68-0.75) and0.75(95%CI,0.71-0.79)respectively. Combined determination of miR-125b and miR-320b showed an AUC of0.76(95%CI,0.72-0.80).
     Accumulating evidence has suggested that besides as biomarkers, circulating miRNAsmay also act as extracellular communicators. AMI is a thrombosis-related disease, andmiRNAs have been implicated in the development and progression of atherosclerosis.Moreover, the vascular endothelial cells are found to be the most common recipient cellsfor the circulating miRNAs. Therefore, we performed gene expression profiling in HUVECcells transfected with miRNA mimics to search for genes with altered expression. Genechip results suggest that1042and2737genes were deregulated in HUVECs transfectedwith miR-320b or miR-125b, respectively. GO mapping analysis shows that besides thetranslation process, miR-320b also regulated genes relevant to the process of cellproliferation, cell migration, transforming growth factor (TGF)-beta signaling, immune andinflammatory response. The differentially expressed genes are enriched in thecardiovascular disease-related pathways including TGF-beta signaling (p=0.0007) andcytokine-cytokine receptor interaction (p=0.02). Likewise, up-regulation of miR-125b inHUVECs interfered with the expression of genes involved in apoptosis, platelet activation,and inflammatory response. The differentially expressed genes are enriched in thecardiovascular disease-related pathways including apoptosis (p<0.0001) andcytokine-cytokine receptor interaction pathway (p=0.0008) by KEGG pathway analysis.We also detected the plasma levels of miR-125b and miR-320b in100healthy controls,100 stable CHD patients and100AMI patients, and the results suggested that there was agradual decrease in the plasma levels of miR-320b and miR-125b across categories ofhealthy control, stable CHD and AMI.
     In this study we found that levels of plasma miR-320b and miR-125b were lower inAMI patients compared with controls, and lower levels of miR-320b and miR-125b wereconsistently associated with the occurrence of AMI in Chinese populations. Thepreliminary functional study further suggested that miR-320b and miR-125b could regulatethe expression profiles of genes enriched in several signal transduction pathways criticalfor CHD in human vascular endothelial cells.
     Section2Associations of plasma miRNAs with the alteration of heart ratevariability in coke oven workers
     We recruited365healthy male coke oven workers from different work places in a cokeoven plant (Wuhan, China). All the workers had been working in their current job positionfor at least one year. The internal airborne PAHs exposure levels of the workers weredetected by urinary PAHs metabolites using gas chromatography-mass spectrometry. HRVindices of the workers were measured by the three-channel digital Holter monitory. PlasmamiRNAs levels were measured by quantitative reverse transcriptase polymerase chainreaction.
     The results of the association between PAH exposure and miRNA expression suggestthat the expression of miR-24, miR-27a, miR-320b, and miR-142-5p showedconcentration-dependent decrease for urinary4-OHPHE. The expression of miR-150elicited concentration-dependent increase for urinary1-OHNAP,2-OHNAP,2-OHPHE,and ΣOH-PAHs. However, the expression of miR-126was not significantly associated withany of the PAHs metabolites.
     The results of the association between miRNA expression and HRV indices suggest that miR-24and miR-27a were both negatively associated with rMSSD. miR-320b andmiR-142-5p were both negatively associated with SDNN and rMSSD. No association wasfound between miR-150expression and any of the HRV indices. Although miR-126wasnot associated with any of the PAH metabolites, we found that the levels of miR-126werenegatively associated with rMSSD of the workers.
     In this study, we evaluated the effect of airborne PAHs exposure on the plasma levelsof six cardiovascular disease-related miRNAs (miR-24, miR-27a, miR-126, miR-150,miR-320b, and miR-142-5p). We found that the expression levels of four miRNAs,including miR-24, miR-27a, miR-320b, and miR-142-5p, showed concentration-dependentdecrease for urinary PAHs metabolites, while the expression of miR-150was positivelyassociated with the urinary PAHs metabolites. Moreover, inverse associations were alsofound between four miRNAs and HRV indices of the workers, including SDNN andrMSSD.
     To summarize, our results suggest:
     1) Seventy-seven miRNAs were found to be differentially expressed between AMIpatients and controls. Levels of miR-125b and miR-320b were found to be lower inAMI patients compared with controls.
     2) Lower levels of two miRNAs (miR-320b and miR-125b) were associated with AMIafter adjustment for traditional risk factors, and ROC curve analysis showed thatmiR-125b and miR-320b were able to discriminate AMI from controls with modestdiagnostic accuracy.
     3) These two miRNAs may also regulate the expression of genes related to CHD invascular endothelial cells.
     4) There was a gradual decrease in the plasma levels of miR-125b and miR-320b acrosscategories of healthy control, stable CHD and AMI.
     5) Four miRNAs (including miR-24, miR-27a, miR-320b and miR-142-5p) wereassociated with the urinary PAH metabolites and the HRV of coke oven workers. Noteworthy strengths of this study are:
     1) We showed that plasma levels of miR-125b and miR-320b were lower in AMI patientscompared with controls, and their plasma levels were significantly associated with theoccurrence of AMI, which was validated in two independent case-control studies;
     2) We suggested that the two miRNAs may also be involved in the pathogenesis of AMI
     3) Plasma miR-125b and miR-320b may hold prognostic value for CHD
     4) The relationship between plasma miRNAs, HRV, and the occurrence of AMI are novelfindings, which highlights a critical role of miRNAs in regulating environmentalfactor-induced adverse health effect or diseases.However, several potential limitations should also be addressed in the present study.First, limited miRNAs were selected for validation in Section I study. Second, cohort studyis clearly needed to evaluate the effect of air pollution on HRV and the onset of AMI. Third,the interaction between environmental factors and plasma miRNAs needs to be investigatedin future studies.
引文
1. Mathers C D, Loncar D. Projections of global mortality and burden of disease from2002to2030. PLoS Med.2006;3(11):e442
    2. Lopez A D. The evolution of the global burden of disease framework for disease,injury and risk factor quantification: Developing the evidence base for national,regional and global public health action. Global Health.2005;1(1):5
    3. Murray C J, Lopez A D. Global mortality, disability, and the contribution of riskfactors: Global burden of disease study. Lancet.1997;349(9063):1436-1442
    4. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics--2008update: A report from the american heart association statistics committee and strokestatistics subcommittee. Circulation.2008;117(4):e25-146
    5. Roger V L, Go A S, Lloyd-Jones D M, et al. Heart disease and strokestatistics--2011update: A report from the american heart association. Circulation.2011;123(4):e18-e209
    6. Lopez A D, Murray C C. The global burden of disease,1990-2020. Nat Med.1998;4(11):1241-1243
    7. Sing C F, Stengard J H, Kardia S L. Genes, environment, and cardiovascular disease.Arterioscler Thromb Vasc Biol.2003;23(7):1190-1196
    8. Wang Q. Molecular genetics of coronary artery disease. Curr Opin Cardiol.2005;20(3):182-188
    9. Small E M, Frost R J, Olson E N. MicroRNAs add a new dimension tocardiovascular disease. Circulation.2010;121(8):1022-1032
    10. Hui A B, Shi W, Boutros P C, et al. Robust global microRNA profiling withformalin-fixed paraffin-embedded breast cancer tissues. Lab Invest.2009;89(5):597-606
    11. Ambros V. The functions of animal microRNAs. Nature.2004;431(7006):350-355
    12. Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell.2004;116(2):281-297
    13. Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease. Circ Res.2012;110(3):508-522
    14. Latronico M V, Catalucci D, Condorelli G. Emerging role of microRNAs incardiovascular biology. Circ Res.2007;101(12):1225-1236
    15. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel classof biomarkers for diagnosis of cancer and other diseases. Cell Res.2008;18(10):997-1006
    16. Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stableblood-based markers for cancer detection. Proc Natl Acad Sci U S A.2008;105(30):10513-10518
    17. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients withcoronary artery disease. Circ Res.2010;107(5):677-684
    18. Wang G K, Zhu J Q, Zhang J T, et al. Circulating microRNA: A novel potentialbiomarker for early diagnosis of acute myocardial infarction in humans. Eur HeartJ.31(6):659-666
    19. Brook R D, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease: Astatement for healthcare professionals from the expert panel on population andprevention science of the american heart association. Circulation.2004;109(21):2655-2671
    20. Baccarelli A, Martinelli I, Zanobetti A, et al. Exposure to particulate air pollutionand risk of deep vein thrombosis. Arch Intern Med.2008;168(9):920-927
    21. Dominici F, Peng R D, Bell M L, et al. Fine particulate air pollution and hospitaladmission for cardiovascular and respiratory diseases. JAMA.2006;295(10):1127-1134
    22. Pope C A,3rd, Burnett R T, Thurston G D, et al. Cardiovascular mortality andlong-term exposure to particulate air pollution: Epidemiological evidence of generalpathophysiological pathways of disease. Circulation.2004;109(1):71-77
    23. Pope C A,3rd, Burnett R T, Krewski D, et al. Cardiovascular mortality andexposure to airborne fine particulate matter and cigarette smoke: Shape of theexposure-response relationship. Circulation.2009;120(11):941-948
    24. Program N T. Coke-oven emissions. Rep Carcinog.2011;12:120-122
    25. Burstyn I, Kromhout H, Partanen T, et al. Polycyclic aromatic hydrocarbons andfatal ischemic heart disease. Epidemiology.2005;16(6):744-750
    26. Baccarelli A, Cassano P A, Litonjua A, et al. Cardiac autonomic dysfunction:Effects from particulate air pollution and protection by dietary methyl nutrients andmetabolic polymorphisms. Circulation.2008;117(14):1802-1809
    27. Chahine T, Baccarelli A, Litonjua A, et al. Particulate air pollution, oxidative stressgenes, and heart rate variability in an elderly cohort. Environ Health Perspect.2007;115(11):1617-1622
    28. Wheeler A, Zanobetti A, Gold D R, et al. The relationship between ambient airpollution and heart rate variability differs for individuals with heart and pulmonarydisease. Environ Health Perspect.2006;114(4):560-566
    29. Li X, Feng Y, Deng H, et al. The dose-response decrease in heart rate variability:Any association with the metabolites of polycyclic aromatic hydrocarbons in cokeoven workers? PLoS One.2012;7(9):e44562
    30. Tsuji H, Larson M G, Venditti F J, Jr., et al. Impact of reduced heart rate variabilityon risk for cardiac events. The framingham heart study. Circulation.1996;94(11):2850-2855
    31. Jardim M J. MicroRNAs: Implications for air pollution research. Mutat Res.2011;717(1-2):38-45
    32. Jardim M J, Fry R C, Jaspers I, et al. Disruption of microRNA expression in humanairway cells by diesel exhaust particles is linked to tumorigenesis-associatedpathways. Environ Health Perspect.2009;117(11):1745-1751
    33. Farraj A K, Hazari M S, Haykal-Coates N, et al. St depression, arrhythmia, vagaldominance, and reduced cardiac microRNA in particulate-exposed rats. Am J RespirCell Mol Biol.2011;44(2):185-196
    34. Izzotti A, Larghero P, Longobardi M, et al. Dose-responsiveness and persistence ofmicroRNA expression alterations induced by cigarette smoke in mouse lung. MutatRes.2011;717(1-2):9-16
    35. Bollati V, Marinelli B, Apostoli P, et al. Exposure to metal-rich particulate mattermodifies the expression of candidate microRNAs in peripheral blood leukocytes.Environ Health Perspect.2010;118(6):763-768
    36. D'Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new andsensitive biomarkers of myocardial infarction. Eur Heart J.2010;31(22):2765-2773
    37. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss ofendothelial mir-126and other microRNAs in type2diabetes. Circ Res.2010;107(6):810-817
    38. Fichtlscherer S, Zeiher A M, Dimmeler S. Circulating microRNAs: Biomarkers ormediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol.2011;31(11):2383-2390
    39. Devaux Y, Vausort M, Goretti E, et al. Use of circulating microRNAs to diagnoseacute myocardial infarction. Clin Chem.2012;58(3):559-567
    40. Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulatingmicroRNAs and risk of myocardial infarction. J Am Coll Cardiol.2012;60(4):290-299
    41. Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in agenome-wide serum microRNA expression profiling predict survival ofnon-small-cell lung cancer. J Clin Oncol.2010;28(10):1721-1726
    42. Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified fromgenome-wide serum microRNA expression profiling serves as a fingerprint forgastric cancer diagnosis. Eur J Cancer.2011;47(5):784-791
    43. Creemers E E, Tijsen A J, Pinto Y M. Circulating microRNAs: Novel biomarkersand extracellular communicators in cardiovascular disease? Circ Res.2012;110(3):483-495
    44. Zhang Y, Liu D, Chen X, et al. Secreted monocytic mir-150enhances targetedendothelial cell migration. Mol Cell.2010;39(1):133-144
    45. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126by apoptoticbodies induces CXCL12-dependent vascular protection. Sci Signal.2009;2(100):ra81
    46. Vacchi-Suzzi C, Hahne F, Scheubel P, et al. Heart structure-specific transcriptomicatlas reveals conserved microRNA-mRNA interactions. PLoS One.2013;8(1):e52442
    47. Huang da W, Sherman B T, Lempicki R A. Systematic and integrative analysis oflarge gene lists using david bioinformatics resources. Nat Protoc.2009;4(1):44-57
    48. Harris M A, Clark J, Ireland A, et al. The gene ontology (GO) database andinformatics resource. Nucleic Acids Res.2004;32(Database issue):D258-261
    49. Kanehisa M, Goto S. Kegg: Kyoto encyclopedia of genes and genomes. NucleicAcids Res.2000;28(1):27-30
    50. Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expressionprofiles in normal human tissues. BMC Genomics.2007;8:166
    51. Ren X P, Wu J, Wang X, et al. MicroRNA-320is involved in the regulation ofcardiac ischemia/reperfusion injury by targeting heat-shock protein20. Circulation.2009;119(17):2357-2366
    52. Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communicationbetween endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol.2012;14(3):249-256
    53. Zomer A, Vendrig T, Hopmans E S, et al. Exosomes: Fit to deliver small RNA.Commun Integr Biol.2010;3(5):447-450
    54. Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renalcancer stem cells stimulate angiogenesis and formation of lung premetastatic niche.Cancer Res.2011;71(15):5346-5356
    55. Li D, Yang P, Xiong Q, et al. MicroRNA-125a/b-5p inhibits endothelin-1expression in vascular endothelial cells. J Hypertens.2010;28(8):1646-1654
    56. Feng B, Chakrabarti S. Mir-320regulates glucose-induced gene expression indiabetes. ISRN Endocrinol.2012;2012:549875
    57. Robertson A K, Rudling M, Zhou X, et al. Disruption of TGF-beta signaling in Tcells accelerates atherosclerosis. J Clin Invest.2003;112(9):1342-1350
    58. Heimark R L, Twardzik D R, Schwartz S M. Inhibition of endothelial regenerationby type-beta transforming growth factor from platelets. Science.1986;233(4768):1078-1080
    59. Bell L, Madri J A. Effect of platelet factors on migration of cultured bovine aorticendothelial and smooth muscle cells. Circ Res.1989;65(4):1057-1065
    60. Durand E, Scoazec A, Lafont A, et al. In vivo induction of endothelial apoptosisleads to vessel thrombosis and endothelial denudation: A clue to the understandingof the mechanisms of thrombotic plaque erosion. Circulation.2004;109(21):2503-2506
    61. Gong J, Zhang J P, Li B, et al. MicroRNA-125b promotes apoptosis by regulatingthe expression of Mcl-1, Bcl-w and IL-6R. Oncogene.2012
    62. Le M T, Shyh-Chang N, Khaw S L, et al. Conserved regulation of p53networkdosage by microRNA-125b occurs through evolving miRNA-target gene pairs.PLoS Genet.2011;7(9):e1002242
    63. Huang H C, Yu H R, Huang L T, et al. MiRNA-125b regulates TNF-alphaproduction in cd14+neonatal monocytes via post-transcriptional regulation. JLeukoc Biol.2012;92(1):171-182
    64. Rich D Q, Schwartz J, Mittleman M A, et al. Association of short-term ambient airpollution concentrations and ventricular arrhythmias. Am J Epidemiol.2005;161(12):1123-1132
    65. Brook R D, Rajagopalan S, Pope C A,3rd, et al. Particulate matter air pollution andcardiovascular disease: An update to the scientific statement from the americanheart association. Circulation.2010;121(21):2331-2378
    66. Hoffmann B, Moebus S, Mohlenkamp S, et al. Residential exposure to traffic isassociated with coronary atherosclerosis. Circulation.2007;116(5):489-496
    67. Pope C A,3rd, Muhlestein J B, May H T, et al. Ischemic heart disease eventstriggered by short-term exposure to fine particulate air pollution. Circulation.2006;114(23):2443-2448
    68. Brunekreef B, Holgate S T. Air pollution and health. Lancet.2002;360(9341):1233-1242
    69. Gold D R, Litonjua A, Schwartz J, et al. Ambient pollution and heart rate variability.Circulation.2000;101(11):1267-1273
    70. Park S K, Auchincloss A H, O'Neill M S, et al. Particulate air pollution, metabolicsyndrome, and heart rate variability: The multi-ethnic study of atherosclerosis(mesa). Environ Health Perspect.2010;118(10):1406-1411
    71. Weichenthal S, Kulka R, Dubeau A, et al. Traffic-related air pollution and acutechanges in heart rate variability and respiratory function in urban cyclists. EnvironHealth Perspect.2011;119(10):1373-1378
    72. Wu S, Deng F, Niu J, et al. Association of heart rate variability in taxi drivers withmarked changes in particulate air pollution in Beijing in2008. Environ HealthPerspect.2010;118(1):87-91
    73. Heart rate variability: Standards of measurement, physiological interpretation andclinical use. Task force of the european society of cardiology and the northamerican society of pacing and electrophysiology. Circulation.1996;93(5):1043-1065
    74. van Boven A J, Jukema J W, Haaksma J, et al. Depressed heart rate variability isassociated with events in patients with stable coronary artery disease and preservedleft ventricular function. Regress study group. Am Heart J.1998;135(4):571-576
    75. Billman G E. Cardiac autonomic neural remodeling and susceptibility to suddencardiac death: Effect of endurance exercise training. Am J Physiol Heart CircPhysiol.2009;297(4):H1171-1193
    76. Huikuri H V, Makikallio T H. Heart rate variability in ischemic heart disease. AutonNeurosci.2001;90(1-2):95-101
    77. Nolan J, Batin P D, Andrews R, et al. Prospective study of heart rate variability andmortality in chronic heart failure: Results of the united kingdom heart failureevaluation and assessment of risk trial (uk-heart). Circulation.1998;98(15):1510-1516
    78. Schroeder E B, Liao D, Chambless L E, et al. Hypertension, blood pressure, andheart rate variability: The atherosclerosis risk in communities (aric) study.Hypertension.2003;42(6):1106-1111
    79. Wang Z, Neuburg D, Li C, et al. Global gene expression profiling in whole-bloodsamples from individuals exposed to metal fumes. Environ Health Perspect.2005;113(2):233-241
    80. He L, Hannon G J. MicroRNAs: Small RNAs with a big role in gene regulation.Nat Rev Genet.2004;5(7):522-531
    81. Motta V, Angelici L, Nordio F, et al. Integrative analysis of miRNA andinflammatory gene expression after acute particulate matter exposure. Toxicol Sci.2013
    82. Hou L, Wang D, Baccarelli A. Environmental chemicals and microRNAs. MutatRes.2011;714(1-2):105-112
    83. Izzotti A, Calin G A, Arrigo P, et al. Downregulation of microRNA expression inthe lungs of rats exposed to cigarette smoke. FASEB J.2009;23(3):806-812
    84. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel classof biomarkers for diagnosis of cancer and other diseases. Cell Res.2008;18(10):997-1006
    85. Lewtas J. Air pollution combustion emissions: Characterization of causative agentsand mechanisms associated with cancer, reproductive, and cardiovascular effects.Mutat Res.2007;636(1-3):95-133
    86. Chen W J, Yin K, Zhao G J, et al. The magic and mystery of microRNA-27inatherosclerosis. Atherosclerosis.2012;222(2):314-323
    87. Zhu H, Fan G C. Role of microRNAs in the reperfused myocardium towardspost-infarct remodelling. Cardiovasc Res.2012;94(2):284-292
    88. Sharma S, Liu J, Wei J, et al. Repression of mir-142by p300and mapk is requiredfor survival signalling via gp130during adaptive hypertrophy. EMBO Mol Med.2012;4(7):617-632
    89. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr OpinPediatr.2009;21(2):243-251
    90. Fiedler J, Jazbutyte V, Kirchmaier B C, et al. MicroRNA-24regulates vascularityafter myocardial infarction. Circulation.2011;124(6):720-730
    91. Wang J, Huang W, Xu R, et al. MicroRNA-24regulates cardiac fibrosis aftermyocardial infarction. J Cell Mol Med.2012;16(9):2150-2160
    92. Li D F, Tian J, Guo X, et al. Induction of microRNA-24by hif-1protects againstischemic injury in rat cardiomyocytes. Physiol Res.2012;61(6):555-565
    93. Zhang H B, Li R C, Xu M, et al. Ultrastructural uncoupling between t-tubules andsarcoplasmic reticulum in human heart failure. Cardiovasc Res.2013
    94. Li R C, Tao J, Guo Y B, et al. In vivo suppression of microRNA-24prevents thetransition toward decompensated hypertrophy in aortic-constricted mice. Circ Res.2013;112(4):601-605
    95. Nelin T D, Joseph A M, Gorr M W, et al. Direct and indirect effects of particulatematter on the cardiovascular system. Toxicol Lett.2012;208(3):293-299
    96. Duan H, Jiang Y, Zhang H, et al. Mir-320and mir-494affect cell cycles of primarymurine bronchial epithelial cells exposed to benzo[a]pyrene. Toxicol In Vitro.2010;24(3):928-935
    97. Zidar N, Bostjancic E, Glavac D, et al. MicroRNAs, innate immunity andventricular rupture in human myocardial infarction. Dis Markers.2011;31(5):259-265
    98. Li T, Cao H, Zhuang J, et al. Identification of mir-130a, mir-27b and mir-210asserum biomarkers for atherosclerosis obliterans. Clin Chim Acta.2011;412(1-2):66-70
    99. Staszel T, Zapala B, Polus A, et al. Role of microRNAs in endothelial cellpathophysiology. Pol Arch Med Wewn.2011;121(10):361-366
    100. Voellenkle C, van Rooij J, Cappuzzello C, et al. MicroRNA signatures in peripheralblood mononuclear cells of chronic heart failure patients. Physiol Genomics.2010;42(3):420-426
    101. Harris T A, Yamakuchi M, Ferlito M, et al. MicroRNA-126regulates endothelialexpression of vascular cell adhesion molecule1. Proc Natl Acad Sci U S A.2008;105(5):1516-1521
    102. Simkhovich B Z, Kleinman M T, Kloner R A. Air pollution and cardiovascularinjury epidemiology, toxicology, and mechanisms. J Am Coll Cardiol.2008;52(9):719-726
    103. Lu Y, Zhang Y, Shan H, et al. MicroRNA-1downregulation by propranolol in a ratmodel of myocardial infarction: A new mechanism for ischaemic cardioprotection.Cardiovasc Res.2009;84(3):434-441
    104. Lamping K G, Wess J, Cui Y, et al. Muscarinic (m) receptors in coronary circulation:Gene-targeted mice define the role of m2and m3receptors in response toacetylcholine. Arterioscler Thromb Vasc Biol.2004;24(7):1253-1258
    105. Gesto M, Tintos A, Soengas J L, et al. Effects of acute and prolonged naphthaleneexposure on brain monoaminergic neurotransmitters in rainbow trout(oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol.2006;144(2):173-183
    1. Ambros V. The functions of animal microRNAs. Nature.2004;431(7006):350-355
    2. van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics forheart disease: The sense in antisense. Circ Res.2008;103(9):919-928
    3. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stableblood-based markers for cancer detection. Proc Natl Acad Sci U S A.2008;105(30):10513-10518
    4. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel classof biomarkers for diagnosis of cancer and other diseases. Cell Res.2008;18(10):997-1006
    5. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels oftumour-associated microRNAs in serum of patients with diffuse large b-celllymphoma. Br J Haematol.2008;141(5):672-675
    6. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2complexes carry a populationof circulating microRNAs independent of vesicles in human plasma. Proc NatlAcad Sci U S A.2011;108(12):5003-5008
    7. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126by apoptoticbodies induces CXCL12-dependent vascular protection. Sci Signal.2009;2(100):ra81
    8. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs andmicroRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol.2007;9(6):654-659
    9. Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported inplasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol.2011;13(4):423-433
    10. Zhang Y, Liu D, Chen X, et al. Secreted monocytic mir-150enhances targetedendothelial cell migration. Mol Cell.2010;39(1):133-144
    11. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potentialbiomarker for early diagnosis of acute myocardial infarction in humans. Eur HeartJ.2010;31(6):659-666
    12. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients withcoronary artery disease. Circ Res.2010;107(5):677-684
    13. Tijsen AJ, Creemers EE, Moerland PD, et al. Mir423-5p as a circulating biomarkerfor heart failure. Circ Res.2010;106(6):1035-1039
    14. Li S, Zhu J, Zhang W, et al. Signature microRNA expression profile of essentialhypertension and its novel link to human cytomegalovirus infection. Circulation.2011;124(2):175-184
    15. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss ofendothelial mir-126and other microRNAs in type2diabetes. Circ Res.2010;107(6):810-817
    16. Kamm RC, Smith AG. Nucleic acid concentrations in normal human plasma. ClinChem.1972;18(6):519-522
    17. Wang K, Zhang S, Weber J, et al. Export of microRNAs and microRNA-protectiveprotein by mammalian cells. Nucleic Acids Res.2010;38(20):7248-7259
    18. Borer RA, Lehner CF, Eppenberger HM, et al. Major nucleolar proteins shuttlebetween nucleus and cytoplasm. Cell.1989;56(3):379-390
    19. Maggi LB, Jr., Kuchenruether M, Dadey DY, et al. Nucleophosmin serves as arate-limiting nuclear export chaperone for the mammalian ribosome. Mol Cell Biol.2008;28(23):7050-7065
    20. Nawa Y, Kawahara K, Tancharoen S, et al. Nucleophosmin may act as an alarmin:Implications for severe sepsis. J Leukoc Biol.2009;86(3):645-653
    21. Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellularcirculating microRNA. Nucleic Acids Res.2011;39(16):7223-7233
    22. El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulatingRNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem.2004;50(3):564-573
    23. Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellulartransfer of microRNAs in living cells. J Biol Chem.2010;285(23):17442-17452
    24. Pigati L, Yaddanapudi SC, Iyengar R, et al. Selective release of microRNA speciesfrom normal and malignant mammary epithelial cells. PLoS One.2010;5(10):e13515
    25. Chen TS, Lai RC, Lee MM, et al. Mesenchymal stem cell secretes microparticlesenriched in pre-microRNAs. Nucleic Acids Res.2010;38(1):215-224
    26. Janas T, Yarus M. Specific RNA binding to ordered phospholipid bilayers. NucleicAcids Res.2006;34(7):2128-2136
    27. Kim SI, Shin D, Choi TH, et al. Systemic and specific delivery of small interferingRNAs to the liver mediated by apolipoprotein a-i. Mol Ther.2007;15(6):1145-1152
    28. Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: Mediators ofextracellular communication during cancer progression. J Cell Sci.2010;123(Pt10):1603-1611
    29. Koppler B, Cohen C, Schlondorff D, et al. Differential mechanisms of microparticletransfer tob cells and monocytes: Anti-inflammatory propertiesof microparticles.Eur J Immunol.2006;36(3):648-660
    30. Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNAand proteins that promote tumour growth and provide diagnostic biomarkers. NatCell Biol.2008;10(12):1470-1476
    31. Morel O, Toti F, Hugel B, et al. Cellular microparticles: A disseminated storage poolof bioactive vascular effectors. Curr Opin Hematol.2004;11(3):156-164
    32. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesiclesreprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNAand protein delivery. Leukemia.2006;20(5):847-856
    33. Etheridge A, Lee I, Hood L, et al. Extracellular microRNA: A new source ofbiomarkers. Mutat Res.2011;717(1-2):85-90
    34. Corsten MF, Dennert R, Jochems S, et al. Circulating microRNA-208b andmicroRNA-499reflect myocardial damage in cardiovascular disease. CircCardiovasc Genet.2010;3(6):499-506
    35. Ji X, Takahashi R, Hiura Y, et al. Plasma mir-208as a biomarker of myocardialinjury. Clin Chem.2009;55(11):1944-1949
    36. D'Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new andsensitive biomarkers of myocardial infarction. Eur Heart J.2010;31(22):2765-2773
    37. Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs mir-1, mir-133a, mir-133b andmir-208are dysregulated in human myocardial infarction. Cardiology.2010;115(3):163-169
    38. Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1and microRNA-133alevels in serum of patients with cardiovascular disease indicate myocardial damage.Circ Cardiovasc Genet.2011;4(4):446-454
    39. Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA499as a biomarker ofacute myocardial infarction. Clin Chem.2010;56(7):1183-1185
    40. Ai J, Zhang R, Li Y, et al. Circulating microRNA-1as a potential novel biomarkerfor acute myocardial infarction. Biochem Biophys Res Commun.2010;391(1):73-77
    41. Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-freemicroRNA-1in acute myocardial infarction. Clin Sci (Lond).2010;119(2):87-95
    42. van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growthand gene expression by a microRNA. Science.2007;316(5824):575-579
    43. van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded bymyosin genes governs myosin expression and muscle performance. Dev Cell.2009;17(5):662-673
    44. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1andmicroRNA-133in skeletal muscle proliferation and differentiation. Nat Genet.2006;38(2):228-233
    45. Wu AH, Feng YJ. Biochemical differences between ctnt and ctni and theirsignificance for diagnosis of acute coronary syndromes. Eur Heart J.1998;19SupplN:N25-29
    46. Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in agenome-wide serum microRNA expression profiling predict survival ofnon-small-cell lung cancer. J Clin Oncol.2010;28(10):1721-1726
    47. Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasmaof patients with colorectal cancer: A potential marker for colorectal cancerscreening. Gut.2009;58(10):1375-1381
    48. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating thebiology of atherosclerosis. Nature.2011;473(7347):317-325
    49. Lobbes MB, Kooi ME, Lutgens E, et al. Leukocyte counts, myeloperoxidase, andpregnancy-associated plasma protein a as biomarkers for cardiovascular disease:Towards a multi-biomarker approach. Int J Vasc Med.2010;2010:726207
    50. Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: A potentialprognostic marker for atherosclerotic vascular disease. Hypertension.2006;48(2):180-186
    51. Urbich C, Dimmeler S. Endothelial progenitor cells: Characterization and role invascular biology. Circ Res.2004;95(4):343-353
    52. Fukushima Y, Nakanishi M, Nonogi H, et al. Assessment of plasma miRNAs incongestive heart failure. Circ J.2011;75(2):336-340
    53. Taurino C, Miller WH, McBride MW, et al. Gene expression profiling in wholeblood of patients with coronary artery disease. Clin Sci (Lond).2010;119(8):335-343
    54. Hoekstra M, van der Lans CA, Halvorsen B, et al. The peripheral bloodmononuclear cell microRNA signature of coronary artery disease. Biochem BiophysRes Commun.2010;394(3):792-797
    55. Cheng J, Ke Q, Jin Z, et al. Cytomegalovirus infection causes an increase of arterialblood pressure. PLoS Pathog.2009;5(5):e1000427
    56. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med.1993;328(23):1676-1685
    57. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNAmir-126governs vascular integrity and angiogenesis. Dev Cell.2008;15(2):261-271
    58. Fish JE, Santoro MM, Morton SU, et al. Mir-126regulates angiogenic signaling andvascular integrity. Dev Cell.2008;15(2):272-284
    59. Lee LW, Zhang S, Etheridge A, et al. Complexity of the microRNA repertoirerevealed by next-generation sequencing. RNA.2010;16(11):2170-2180
    60. Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomir regulation indrosophila development. RNA.2010;16(10):1881-1888
    61. Ebhardt HA, Tsang HH, Dai DC, et al. Meta-analysis of small RNA-sequencingerrors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res.2009;37(8):2461-2470
    62. Borel C, Antonarakis SE. Functional genetic variation of human miRNAs andphenotypic consequences. Mamm Genome.2008;19(7-8):503-509