基于计算智能的基因调控网络建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基因组测序工作的完成,单个基因或蛋白质的功能研究已经不能从根本上揭示生命现象的发生和发展规律,所以,在过去的十年中,系统生物学逐渐成为生物学众多分枝中的关注中心。系统生物学是一门快速发展的新兴交叉学科,它结合了生物、化学、物理、数学和计算机科学等学科的知识和技能,其目的在于以系统的、全局的角度来研究生物系统的生理机制。利用基因表达数据实现基因调控网络建模是近年来研究系统生物学的有效手段之一。准确地构建基因调控网络,会大大影响疾病治疗的精度,对于加深细胞活动和致病基因功能机制的理解以及复杂疾病的预防、诊断和治疗具有深远的影响。虽然国内外的研究已经取得了一些成果,但是基因调控网络具有强耦合性、随机性、时变性、强非线性等特点,是一个复杂而庞大的系统,现有的方法较为简单,不能精确地识别基因间的转录调控关系,并且得到太多的假阳性关系。如何有效地建立精确的基因调控模型是目前研究的热点。
     本论文采用智能计算方法,通过对基因表达数据进行挖掘,实现基因调控网络的重构和基因调控过程中生化反应的建模,并应用到基因芯片得到的冠状动脉粥样硬化斑块基因表达谱中。具体而言,论文的主要工作和创新点描述如下:
     1.宏观角度建模。
     针对现有模型构建基因调控网络不准确的现状,本论文提出使用柔性神经树模型(Flexible Neural Tree, FNT)来构建基因调控网络和预测来自于基因表达谱的时间序列。该方法采用类似遗传编程的结构进化算法优化FNT模型的层次结构,编码在结构中的参数则使用模拟退火算法进行优化。这两种优化算法交替使用,直到找到满意的解或者达到规定的迭代上限则循环结束。为了改善构建基因调控网络的准确性,本论文使用模型选择标准AIC和大数表决方法来识别靶基因的最小调控基因集。实验结果表明,相比于Elman神经网络、模糊神经网络、径向基神经网络、递归神经网络、递归模糊神经网络以及这些模型的集成,FNT模型能够更加准确地预测基因表达谱的时间序列,并构造出更精确的基因调控网络。
     构建基因调控网络的单一模型各有优缺点,使用过程中具有一定的局限性。结合多种模型的系统生物学方法构造的基因调控网络相比单一的模型会更加准确和稳定,这也是模型研究的一个趋势。本论文首次提出了一种多个模型结合的基因调控网络重构方法,即基于互信息混合模型的基因调控网络构建。在该方法中,线性模型和非线性模型分别用来构造基因调控网络,然后对这两种模型对应的网络结构进行整合,得到最终的基因调控网络。使用灵活树模型编码线性和非线性模型,遗传编程和粒子群优化算法分别优化模型的结构和参数。适应值函数包含稀疏系数和相关系数。稀疏系数满足了在实际基因调控网络中,每个靶基因只有极小部分的候选调控因子作为真实因子这个条件,而相关系数充分利用互信息值来评估基因对的相关性,选择与靶基因相关性较大的调控因子。实验结果表明,基于互信息混合模型的基因调控网络构建方法相比于其他经典的单一方法更加准确,不仅在真阳率上保持很高的水平,而且假阳率也很低。
     2.基因芯片数据处理、调控途径构建和致病基因染色体分布规律分析。
     本论文采用人类全基因组微阵列HU133Plus2.0基因芯片,使用齐鲁医院和聊城人民医院提供的粥样硬化斑块病人的冠状动脉和正常冠状动脉的样本组织,构建冠状动脉粥样硬化斑块和正常组织的基因表达谱。通过两组表达谱对比,筛选出1104个差异表达基因,然后采用GO功能分类、pathway分析等生物学方法分析这些表达基因,了解其生物功能和生物通路的变化。GO分析发现冠状动脉粥样硬化差异表达基因涉及多个生物功能,如细胞黏附,生物黏附等。Pathway分析发现基因在黏着斑通路显著性富集。在第四章提出的基于互信息混合模型的基因调控网络构建方法用来预测黏着斑通路中差异表达基因间的调控关系,正确预测了Rho激酶调控机制,证明了基因调控网络构造方法的有效性。
     论文收集了包括人类、小鼠、斑马鱼、果蝇和线虫五种物种的基因组数据,14种疾病的蛋白编码致病基因和与白血病相关突变数据,分析它们在染色体上的基因密度分布情况。结果发现,基因在染色体间的分布显示了一种异质性模式,蛋白质编码致病基因有着相似的染色体间分布模式,并且涉及某些生物过程的蛋白编码致病基因富集在一个或少量几个染色体上。人类19号染色体拥有最高的或者第二高的蛋白编码致病基因分布频率,这可能和这个染色体拥有更多参与转录调控过程的基因有关。这些发现可以针对特定的染色体,改善疾病相关基因筛选研究的效率,如GWAS,全基因组连锁分析和全基因组测序。
     3.微观和随机角度建模。
     基因调控涉及大量的生化反应过程,在这些过程中,尤其是在含有少量调控分子物种并且相互作用速度很慢的情况下,离散性和随机性可能起到重要的作用。本论文提出了一种新的随机和延迟随机生化反应模型自动推导模拟框架。灵活反应模型(Additive Reaction Model)编码化学反应模型,首次结合了随机、离散和延迟三种元素。使用遗传算法和粒子群优化算法嵌套使用的混合进化策略来识别灵活反应模型的结构和参数。实验结果表明,灵活反应模型和混合进化策略能够准确地识别出生化反应模型。
With the completion of genome sequencing, research on the function of single gene or protein, could not reveal fundamentally the occurrence and development law of biological phenomena, so in the past decade, systems biology has been becoming the center of concerns among numerous biology branches. Systems biology is a new, rapidly developing interdisciplinary, which combines the knowledge and skills in many disciplines, such as biology, chemistry, physics, mathematics and computer science. The purpose is to study physiological mechanisms of biological systems in the system and global perspectives. It is one of the effective means of systems biology research in recent years that the modeling of gene regulatory networks utilizes gene expression data. To construct accurately gene regulatory networks (GRN) will greatly affect the accuracy of disease treatment, deepen understanding the cellular activities and the function mechanisms of causative gene, and have a profound impact on prevention, diagnosis and treatment of complex diseases. Although some achievements have been made, gene regulatory network with some characteristics, such as strong coupling, random, time-varying, strongly nonlinear, etc., is a complex and huge system. The existing methods which are very simple, could not accurately identify transcriptional regulatory relationships among genes, and create too many false positive relationships. How to effectively establish the precise model of gene regulation is a hot research currently.
     Computational intelligent methods were used in this dissertation to achieve the mining of gene expression data, gene regulatory network reconstruction and modeling of biochemical reactions in the process of gene regulation. The methods were applied to the microarray gene expression spectrum resulting from the coronary atherosclerotic plaque. Specifically, the main contributions and innovations of the thesis were described as follows.
     1. Modeling in the macro perspective.
     Based on the notorious performance of existing models, flexible neural tree model (FNT) was proposed to construct gene regulatory networks and forecast time series from gene expression profiling. Genetic programming like tree structure-based evolutionary algorithm was used to optimize the hierarchical structure of the FNT model, and simulated annealing algorithm was proposed to evolve the parameters encoded in the structure. Both optimization algorithms were used interchangeably. This loop continued, until a satisfactory solution was found, or the iteration limit was reached. In order to improve the accuracy of gene regulatory networks, akaike information criterion (AIC) and majority voting method were used to identify minimal regulatory elements of a target gene. Experimental results showed that, compared to the Elman neural network, fuzzy neural network, RBF neural networks, recurrent neural networks, fuzzy recurrent neural networks, and these models ensemble, the FNT model could improve the forecasting accuracy of gene expression profiles and reconstruct networks more accurately.
     All existing methods of inferring gene regulatory networks have their strengths and weaknesses. Compared with the single model, combining multiple models is more accurate and stable for constructing gene regulatory networks, and also the research trend. This paper first presented a novel method which combined multiple models, namely RMIHM (Gene Regulatory Network Reconstruction Based on Mutual Information and Hybrid Models). In the method, the linear/nonlinear models were used to construct gene regulatory networks respectively, and the overall network integrated network topologies from linear and nonlinear models. The additive tree models were proposed to encode the linear/nonlinear model, genetic programming and particle swarm optimization were used to evolve and evaluate each additive tree model respectively. Fitness function contained sparse and correlation coefficients. Sparse coefficient satisfied the condition that each target gene had a tiny fraction of the candidate regulators as true regulators, and the correlation coefficient utilized mutate information from information theory to evaluate the correlation between gene pairs in order to select maximum relevance regulatory factors of each target gene. Experimental results showed that the method was more accurate than classical single method. Not only was the true positive rate higher, but also false positive rate was lower.
     2. Microarray data processing, regulatory pathway construction and features of inter-chromosomal distribution of disease-related genes in human genome.
     In the paper, all atherosclerotic plaques in coronary artery and normal coronary artery tissue samples were provided by the tissue bank in Qilu Hospital and Liaocheng People's Hospital. Human Genome U133Plus2.0Array (Affymetrix) was used to build gene expression profiles of atherosclerotic plaques and normal tissue samples. By comparing two kinds of expression profiles,1104differentially expressed genes were screened. These genes were analyzed using GO functional classification and pathway analysis, in order to understand the biological functions and pathways. GO analysis found that coronary atherosclerosis differentially expressed genes involved the multiple biological functions, such as cell adhesion, biological adhesive and so on. Pathway analysis revealed that genes significantly enriched in focal adhesion pathway. Gene regulatory network reconstruction based on mutual information and hybrid models, which was introduced in the fourth chapter, was proposed to predict the regulation relationships among differentially expressed genes in the focal adhesion pathway. We correctly predicted the Rho kinase regulatory mechanisms, which demonstrated the effectiveness of the approach.
     The paper collected the genomic data of model animals including human, mouse, zebrafish, fruit fly and C. elegans, disease-related protein-coding genes of14diseases and related data, and leukemia-associated mutations. By analyzing the spatial inter-chromosomal distribution of genes, we found that inter-chromosomal distribution of genes displayed a heterogeneous pattern. Disease-associated protein-coding genes had a similar inter-chromosomal distribution pattern, and involved in certain biological processes tended to be enriched in one or a few chromosomes. Human chromosome19had the highest or second highest frequency of harboring disease-associated protein-coding genes; and this might be related to the fact that this chromosome harbored more genes involved in transcriptional regulation. These findings could be useful in improving the efficiency of disease-associated gene screening studies, such as GWAS, Genome-wide Linkage analysis and whole-genome sequencing, by targeting specific chromosomes.
     3. Modeling in the microscopic and stochastic perspectives.
     Gene regulation involves a large number of biochemical reactions. Discreteness and stochasticity may play important roles, particularly in the system where low number of molecular species or slow interactions between them. This paper presented a new modeling approach for the automated design of stochastic and delayed stochastic biochemical reactions. Additive reaction model was proposed to encode the chemical reaction, first integrating stochastic, discrete and delayed modeling into a computational framework. Genetic algorithm and particle swarm optimization algorithm were used as nested hybrid evolutionary strategy to identify the structure and parameters of model. Experimental results showed that additive reaction model and nested hybrid evolutionary strategy could accurately identify the stochastic and delayed stochastic biochemical reaction models.
引文
[1]Y. Q. Chen, J. Zhu, P. Y. Lum and E. E. Schadt et al., "Variations in DNA elucidate molecular networks that cause disease," Nature, vol.452, pp.429-435,2008.
    [2]V. Emilsson, G Thorleifsson and E. E. Schadt et al., "Genetics of gene expression and its effect on disease," Nature, vol.452, pp.423-428,2008.
    [3]付旭平,曹明,莫文娟,姜梅,李瑶,利用小样本表达谱数据构造前列腺癌基因网络,复旦学报(自然科学版),vol.49, no.1, pp.1-8,2010.
    [4]骆许静,张进芳,刘晓力,杜庆锋,许娜,许露露,黄彬涛,肖小珍,慢性髓系白血病急变期差异表达基因的筛选,南方医科大学学报,vol.32, no.6, pp. 840-842,846,2012.
    [5]S. A. Kauffinan, "Metabolic stability and epigenesis in randomly connected nets," J. Theoret. Biol., vol.22, pp.437-467,1969.
    [6]M. Wahde and J. Hertz, "Coarse-grained reverse engineering of genetic regulatory networks," Biosystems, vol.55, pp.129-136,2000.
    [7]D. Repsilber, H. Liljenstrom and S. G. Andersson, "Reverse engineering of regulatory networks:simulation studies on a genetic algorithm approach for ranking hypotheses," Biosystems, vol.66, pp.31-41,2002.
    [8]H. Iba and A. Mimura, "Inference of a gene regulatory network by means of interactive evolutionary computing," Inform. Sci., vol.145, pp.225-236,2002.
    [9]N. K. Kasabov, "Knowledge-based neural networks for gene expression data analysis modelling and profile discovery," Biosilico, vol.2, pp.253-261,2004.
    [10]B. Haibe-Kains, C. Olsen, A Djebbari, G Bontempi, M. Correll, C. Bouton and J. Quackenbush, "Predictive networks:a flexible, open source, web application for integration and analysis of human gene networks," Nucleic Acids Res, vol. 40(Database issue), pp. D866-875,2012.
    [11]M. Kotera, Y. Yamanishi, Y. Moriya, M. Kanehisa and S. Goto, "GENIES:gene network inference engine based on supervised analysis," Nucleic Acids Res, vol. 40(Web Server issue), pp. W162-167,2012.
    [12]F. Mordelet and J. P. Vert, "SIRENE:supervised inference of regulatory networks," Bioinformatics, vol.24, no.16, pp.76-82,2008.
    [13]Z. Li, P. Li, A. Krishnan and J. D. Liu, "Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis," Bioinformatic, vol.27, no.19, pp.2686-2691,2011.
    [14]L. Z. Liu, F. X. Wu and W. J. Zhang, "Reverse engineering of gene regulatory networks from biological data," WIREs Data Mining Knowl Discov, vol.2, no.5, pp.365-385,2012.
    [15]J. P. de Magalhaes and O. Toussaint, "How bioinformatics can help reverse engineer human aging," Ageing Res. Rev., vol.3, pp.125-141,2004.
    [16]I. Shmulevich, E. R. Dougherty and W. Zhang, "Gene perturbation and intervention in probabilistic Boolean networks," Bioinformatics, vol.18, pp.1319-1331,2002.
    [17]I. Shmulevich, E. R. Dougherty, S. Kim and W. Zhang, "Probabilistic Boolean networks:a rule-based uncertainty model for gene regulatory networks," Bioinformatics, vol.18, pp.261-274,2002.
    [18]X. Chen, W. K. Ching, Y. Cong and N. K. Tsing, "Construction of Probabilistic Boolean Networks from a prescribed transition probability matrix:a maximum entropy rate approach," East Asian Journal of Applied Mathematics, vol.1, pp. 132-154,2011.
    [19]L. Wang, X. Wang, A. P. Arkin and M. S. Samoilov, "Inference of gene regulatory networks from genome-wide knockout fitness data," Bioinformatics, vol.29, no.3, pp.338-46,2012.
    [20]A. Butte, P. Tamayo, D. Slonim, T. Golub and I. Kohane, "Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks," Proc Natl Acad Sci USA, vol.97, no.22, pp.12182-6,2000.
    [21]A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Favera and A. Califano, "ARACNE:an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context," BMC Bioinformatics, vol.7, pp. S7, 2006.
    [22]J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G Cottarel, S. Kasif, J. J. Collins and T. S. Gardner, "Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles," PLoS Biol, vol.5, no.1, pp. e8,2007.
    [23]G. Altay and F. Emmert-Streib, "Inferring the conservative causal core of gene regulatory networks," BMC Syst Biol, vol.4, pp.132,2010.
    [24]A. de la Fuente, N. Bing, I. Hoeschele and P. Mendes, "Discovery of meaningful associations in genomic data using partial correlation coefficients," Bioinformatics, vol.20, pp.3565-3574,2004.
    [25]A. Wille and P. Buhlmann, "Low-order conditional independence graphs for inferring genetic networks," Stat Appl Genet Mol Biol, vol.5, no.1,2006.
    [26]Y. M. Zuo, G. Q. Yu, M. G Tadesse and H. W. Ressom, "Reconstructing biological networks using low order partial correlation," 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, December 18-21,2013, pp. 171-175.
    [27]N. Friedman, M. Linial, I. Nachman and D. Pe'er, "Using Bayesian networks to analyze expression data," J Comput Biol, vol.7, pp.601-620,2000.
    [28]W. C. Young, A. E. Raftery and K. Y. Yeung, "Fast Bayesian inference for gene regulatory networks using ScanBMA," BMC Syst Biol, vol.8, no.1, pp.47,2014.
    [29]B. E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet and F. d'Alche-Buc, "Gene regulatory networks inference using dynamic Bayesian networks," Bioinformatics, vol.19, pp.138-148,2003.
    [30]R. Chen, S. M. Resnick, C. Davatzikos and E. H. Herskovits, "Dynamic Bayesian network modeling for longitudinal brain morphometry," Neuroimage, vol.59, no.3, pp.2330-8,2011.
    [31]M. A. Savageau, "Finding multiple roots of nonlinear algebraic equations using s-system methodology," Applied Mathematics and Computation, vol.55, pp. 187-199,1993.
    [32]D. Tominaga, N. Koga and M. Okamoto, "Efficient numerical optimization algorithm based on genetic algorithm for inverse problem," Proceedings of Genetic and Evolutionary Computation Computation Conference, Las Vegas, Nevada, USA, July 8-12,2000, pp.251-258.
    [33]Y. T. Hsiao and W. P. Lee, "Inferring robust gene networks from expression data by a sensitivity-based incremental evolution method," BMC Bioinformatics, vol.13, no. Suppl 7, pp. S8,2012.
    [34]S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi and M. Tomita, "Dynamic modeling of genetic networks using genetic algorithm and S-system," Bioinformatics, vol.19, pp.643-650,2003.
    [35]S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui, N. Nakagawa, S. Yokoyama, S. Kuramitsu and A. Konagaya, "Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm," Bioinformatics, vol.21, pp.1154-1163,2005.
    [36]S. Y. Ho, C. H. Hsieh, F. C. Yu and H. L. Huang, "An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles," IEEE/ACM Trans Comput Biol Bioinform, vol.4, pp.648-704,2007.
    [37]B. Yang, M. Y. Jiang and Y. H. Chen, "A fast and efficient method for inferring structure and parameters of S-system models," 11th International Conference on Hybrid Intelligent Systems,, Malacca, Malaysia, December 5-8,2011, pp.235-240.
    [38]T. Chen, H. L. He and G. M. Church, "Modeling gene expression with differential equations," Pac. Symp. Biocomput., vol.4, pp.29-40,1999.
    [39]X. Deng, H. Geng and H. Ali, "EXAMINE:a computational approach to reconstructing gene regulatory networks," Biosystems, vol.81, pp.125-136,2005.
    [40]苏兰莹,刘桂霞,杨雅辉,刘昱昊,周春光,采用结构与参数训练相结合的RNN蝌模型构建基因调控网络,吉林大学学报(理学版),vol.48, no.2, pp. 284-290,2010.
    [41]J. Raser and E. O'Shea, "Noise in gene expression:origins, consequences, and control," Science, vol.309, pp.2010-2013,2005.
    [42]E. Mayr, D. Sagan and D. Sagan, "Acquiring genomes:a theory of the origin of species," Perseus Publishing, pp.387-396,2003.
    [43]M. Acar, J. Mettetal and A. van Oudenaarden, "Stochastic switching as a survival strategy in fluctuating environments," Nature Genetics, vol.40, pp.471-475,2008.
    [44]G. Suel, J. Garcia-Ojalvo, L. Liberman and M. Elowitz, "An excitable gene regulatory circuit induces transient cellular differentiation". Nature, vol.440, pp. 545-550,2006.
    [45]H. Chang, M. Hemberg, M. Barahona, D. Ingber and S. Huang, Transcriptome-wide noise controls lineage choice in mammalian progenitor cells," Nature, vol.453, pp.544-547,2008.
    [46]S. Reinker, R. M. Altman and J. Timmer, "Parameter estimation in stochastic biochemical reactions," Syst Biol (Stevenage), vol.153, no.4, pp.168-78,2006.
    [47]T. Tian, "Stochastic models for inferring genetic regulation from microarray gene expression data," BioSystems, vol.99, no.3, pp.192-200,2010.
    [48]M. A. Shea and G. K. Ackers, "The OR control system of bacteriophage lambda:A physical-chemical model for gene regulation," Journal of molecular biology, vol. 181, no.2, pp.211-230,1985.
    [49]A. Arkin, J. Ross and H. H. McAdams, "Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells," Genetics, vol.149, no.4, pp.1633-1648,1998.
    [50]王曦,汪小我,王立坤,冯智星,张学工,新一代高通量RNA测序数据的处理与分析,生物化学与生物物理进展,vol.37, no.8, pp.834-846,2010.
    [51]祁云霞,刘永斌,荣威恒,转录组研究新技术RNA-Seq及其应用,遗传,vol.33,no.11,pp.1191-1202,2011.
    [52]O. D. Iancu, S. Kawane, D. Bottomly, R. Searles, R. Hitzemann and S. McWeeney, "Utilizing RNA-Seq data for de novo coexpression network inference," Bioinformatics, vol.28, no.12, pp.1592-7,2012.
    [53]M. Jain, "Next-generation sequencing technologies for gene expression profiling in plants," Brief Funct Genomics, vol.11, no.1, pp.63-70,2012.
    [54]L. Tierney, J. Linde, S. Miiller, S. Brunke, J. C. Molina, B. Hube, U. Schock, R. Guthke and K. Kuchler. "An interspecies regulatory network inferred from simultaneous RNA-seq of candida albicans invading innate immune cells," Front Microbiol, vol.3, pp.85,2012.
    [55]C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac and T. W. Danford, "Transcriptional regulatory code of a eukaryotic genome," Nature, vol. 431, pp.99-104,2004.
    [56]M. C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes and N. P. Mira, 'The YEASTRACT database:A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae," Nucleic Acids Research, vol.34, no. Suppl 1, pp. D446-D451,2006.
    [57]C. Cheng, K. Yan, W. Hwang, J. Qian, N. Bhardwaj, J. Rozowsky, Z. Lu, W. Niu, P. Alves, M. Kato, M. Snyder and M. Gerstein, "Gerstein construction and analysis of an integrated regulatory network derived from high-throughput sequencing data," PLoS Computational Biology, vol.7, no.11, pp. e 1002190,2011.
    [58]P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, "Cytoscape:a software environment for integrated models of biomolecular interaction networks," Genome Res, vol.13, no.11, pp. 2498-504,2003.
    [59]J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, vol.79 no.8 pp.2554-2558,1982.
    [60]D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol.323, no.6088, pp.533-536,1986.
    [61]D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, vol.2, pp.321-355,1988.
    [62]C. Cortes and V. Vapnik, "Support-Vector networks," Machine Learning, vol.20, no.3, pp.273-297,1995.
    [63]王鸿斌,张立毅,胡志军,人工神经网络理论及其应用,山西电子技术,vol.2,pp.41-43,2006.
    [64]张斌,武广号,人工神经网络与改进遗传算法的协作求解,西安电力高等专科学校学报,vol.4,pp.4-7,2009.
    [65]D. Neagu and V. Palade, "A neuro-fuzzy approach for functional genomics data interpretation and analysis," Neural Comput. Appl., vol.12, pp.153-159,2003.
    [66]S. I. Ao and V. Palade, "Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks," Appl. Soft Comput, vol.11, no.2, pp.1718-1726,2011.
    [67]I. A. Maraziotis, A. Dragomir and A. Bezerianosh, "Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks," IET Syst. Biol., vol.1, no. pp.41-50,2007.
    [68]S. Knott, S. Mostafavi and P. Mousavi, "A neural network based modeling and validation approach for identifying gene regulatory networks," Neurocomputing, vol. 73, pp.2419-2429,2010.
    [69]S. E. Fahlman and L. Christian, "The cascade-correlation learning architecture," Advances in Neural Information Processing Systems, vol.2, pp.524-532,1990.
    [70]J. P. Nadal, "Study of a growth algorithm for a feedforward network," International Journal of Neural Systems, vol.1, pp.55-59,1989.
    [71]P. J. Angeline, G. M. Saunders and J. B. Pollack, "An evolutionary algorithm that constructs recurrent neural networks," IEEE Transactions on Neural Networks, vol. 5, pp.54-65,1994.
    [72]X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Transactions on Neural Networks, vol.8, pp.694-713,1998.
    [73]K. O. Stanley and R. Miikkulainen, "Evolving neural networks through augmenting topologies," Evolutionary Computation, vol.10, pp.99-127,2002.
    [74]Y. H. Chen, B. Yang, J. Dong and A. Abraham, "Time series forecasting using flexible neural tree model," Inf. Sci., vol.174, no.3/4, pp.219-235,2005.
    [75]K. Chellapilla, "Evolving computer programs without subtree crossover," IEEE Trans. Evol. Comput, vol.1, pp.209-216,1997.
    [76]S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, "Optimization by simulated annealing," Science, vol.220, pp.671-680,1983.
    [77]L. Sanchez, I. Cousob and J. A. Corrales, "Combining GP operators with SA search to evolve fuzzy rule based classifiers," Inf.Sci., vol.136, pp.175-191,2001.
    [78]K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference:a practical information-theoretic approach, Springer,2nd Edition,2002.
    [79]P. Spellman, "Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization," Mol.Biol.Cell, vol.9, pp.3273-3297,1998.
    [80]M. Ronen, R. Rosenberg, B. I. Shraiman and U. Allon, "Assigning number to the arrows:parameterizing a gene regulation network by using accurate expression kinetics," Proc. Natl. Acad. Sci. U.S.A., vol.99, pp.10555-10560,2002.
    [81]R. Xu, D. C. Wunsch and R. L. Frank, "Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol.4, no.4, pp. 681-692,2007.
    [82]K.Y. Yip, R. P. Alexander, K. K. Yan and M. Gerstein, "Improved reconstruction of in Silico gene regulatory networks by integrating knockout and perturbation data," PLoS ONE, vol.5, no.1, pp. e8121,2010.
    [83]M. Vignes, J. Vandel, D. Allouche, N. Ramadan-Alban, C. Cierco-Ayrolles, T. Schiex, B. Mangin and S. de Givry, "Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis," PLoS One, vol.6, no.12, pp. e29165,2011.
    [84]R. Gupta, A. Stincone, P. Antczak, S. Durant, R. Bicknell, A. Bikfalvi and F. Falciani, "A computational framework for gene regulatory network inference that combines multiple methods and datasets," BMC Syst Biol, vol.5, pp.52,2011.
    [85]X. Zhang, K. Liu, Z. P. Liu, B. Duval, J. M. Richer, X. M. Zhao, J. K. Hao and L. Chen, "NARROMI:a noise and redundancy reduction technique improves accuracy of gene regulatory network inference," Bioinformatics, vol.29, no.1, pp.106-113, 2013.
    [86]M. K. S. Yeung, J. Tegner and J. J. Collins, "Reverse engineering gene regulatory networks using singular value decomposition and robust regression," Proc Natl Acad Sci USA, vol.99, pp.6163-6168,2002.
    [87]倪春生,孙保存,冯玉梅,张丹芳,李晓青,董骝焕,张亮,乳腺癌转移相关基因表达调控网络的线性微分方程模型的初步研究,生物化学与生物物理进展,vol.32, no.12, pp.1165-1164,2005.
    [88]J. Mazur, D. Ritter, G. Reinelt and L. Kaderali, "Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling," BMC Bioinformat, vol.10, pp.448,2009.
    [89]王拓,基因调控网络的线性回归模型及其鲁棒性分析,硕士毕业论文,西安电子科技大学,2012.
    [90]M. Kato, T. Tsunoda and T. Takagi, "Inferring genetic networks from DNA microarray data by multiple regression analysis," Genome Inform Ser Workshop Genome Inform, vol.11, pp.118-28,2000.
    [91]Y. H. Chen, J. Yang, Y. Zhang and J.W. Dong, "Evolving Additive tree models for System Identification," International Journal of Computational Cognition, vol.3, no. 2, pp.19-26,2005.
    [92]Y. H. Chen, B. Yang, Q. F. Meng and Y.O. Zhao, "Time-series forecasting using a system of differential equations", Information Science, vol.181, no.1, pp.106-114, 2010.
    [93]C. M. Chen, C. Lee, C. L. Chuang, C. C. Wang and G. S. Shieh, "Inferring genetic interactions via a nonlinear model and an optimization algorithm," BMC Syst Biol, vol.4, pp.16,2010.
    [94]T. T. Vu and J. Vohradsky, "Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae," Nucleic Acids Res, vol.35, no.1, pp.279-287,2007.
    [95]L. Marucci, S. Santini, M. di Bernardo and D. di Bernardo, "Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast," J Math Biol, vol.62, no.5, pp.685-706,2011.
    [96]X. Zhang, X. M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J. K. Hao, Z. P. Liu and L, Chen, "Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information," Bioinformatics, vol.28, no.1, pp.98-104,2012.
    [97]J. Kennedy and R. Eberhart, "Particle swarm optimization". Proceedings of IEEE International Conference on Neural Networks, the University of Western Australia, Perth, Western Australia,27 November-1 December,1995, pp.1942-1948.
    [98]Q. H. Bai, "Analysis of particle swarm optimization algorithm," Computer and Information Science, vol.3, no.1, pp.180-184,2010.
    [99]Y. Shi, Y. Guo and D. Schuurmans, "Kernel-based gene regulatory network inference," 9th Annual International Conference on Computational Systems Bioinformatics, Stanford, California, USA, August 16-18,2010, pp.156-165.
    [100]Y. F. Gao, B. Q. Li, Y. D. Cai, K. Y. Feng, Z. D. Li and Y. Jiang, "Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection," Mol Biosyst, vol.9, no.1, pp.61-9,2013.
    [101]D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano and G. Stolovitzky, "Revealing strengths and weaknesses of methods for gene network inference," Proc Natl Acad Sci USA, vol.107, no.14, pp.6286-91,2010.
    [102]S. Gama-Castro, H. Salgado and M. Peralta-Gil et al., "RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)," Nucleic Acids Res, vol.39, no. suppl 1, pp. D98-D105.2011.
    [103]G Geeven, R. E. van Kesteren, A. B. Smit and M. C. de Gunst, "Identification of context-specific gene regulatory networks with GEMULA-gene expression modeling using Lasso," Bioinformatics, vol.28, pp.214-221,2012.
    [104]V. A. Huynh-Thu, A. Irrthum, L. Wehenkel and P. Geurts, "Inferring regulatory networks from expression data using tree-based methods," PLoS One, vol.5, pp.9, 2010.
    [105]N. Noman and H. Iba, "Reverse engineering genetic networks using evolutionary computation," Genome Informatics, vol.16, no.2, pp.205-214,2005.
    [106]L. Palafox, H. Iba and N. Noman, "Reverse engineering of gene regulatory networks using dissipative particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol.17, no.4, pp.577-587,2013.
    [107]S. Kimura, K. Sonoda, S. Yamane, H. Maeda, K. Matsumura and M. Hatakeyama, "Function approximation approach to the inference of reduced NGnet models of genetic networks," BMC Bioinformatics, vol.9, pp.23,2008.
    [108]J. Faith, M. Driscoll, V. Fusaro, E. Cosgrove, B. Hayete, F. Juhn, S. Schneider and T. Gardner, "Many Microbe Microarrays Database:uniformly normalized Affymetrix compendia with structured experimental metadata," Nucleic Acids Res, vol.36, pp. D866-D870,2008.
    [109]张涛,缺血性脑血管病和颈动脉粥样硬化斑及脂蛋白(a)的相关性研究,中国医药指南,vol.10, no.20, pp.481-483,2012.
    [110]李瑶,基因芯片数据分析与处理,化学工业出版社,2006.
    [111]G Gibson, S. V. Muse, A primer of genome science, Sunderland, MA:Sinauer Associates,2002.
    [112]张瑾,基因微阵列数据的双向聚类算法研究,硕士毕业论文,苏州大学,2008.
    [113]V. Tusher, R. Tibshirani and G. Chu, "Significance analysis of microarrays applied to transcriptional responses to ionizing radiation," Proc. Natl. Acad. Sci. USA., vol.98, pp.5116-5121,2001.
    [114]王娟,戴耀晖,贾丽华,洪筠,程斌,夏娟,口腔黏膜白斑的基因表达谱分析,中华口腔医学研究杂志(电子版),vol.4, no.6, pp.35-39,2010.
    [115]黄小玲,顾立萍,骆元斌,血小板反应蛋白-1在肿瘤血管生成中的作用,兰州大学学报(医学版),vol.37, no.2, pp.74-79,2011.
    [116]E. J. Topol, J. McCarthy, S. Gabriel, D. J. Moliterno, W. J. Rogers, L. K. Newby, M. Freedman, J. Metivier, R. Cannata, C. J. O'Donnell, K. Kottke-Marchant, G Murugesan, E. F. Plow, O. Stenina and G. Q. Daley, "Single nucleotide polymorphisms inmultiple novel thrombospondin genes may be associatedwith familial premature myocardial infarction," Circulation, vol.104, no.22, pp. 2641-2644,2001.
    [117]李志强,郑慧哲,整合素、黏着斑激酶与动脉粥样硬化研究进展,医学研究杂志,38, no.5, pp.22-24,2009.
    [118]尹航,汪丽惠,彭旭等,黏着斑激酶反义寡核苷酸对平滑肌细胞黏附迁移和凋亡的影响,基础医学与临床,vol.21, no.5, pp.416-419,2001.
    [119]刘智敏,韩梅,温进坤,细胞外基质促血管平滑肌细胞迁移及β3整合素和黏着斑激酶表达,中国病理生理杂志,、19, no.2, pp.163-166,2003.
    [120]刘定辉,Caveolin-1、Caveolae和动脉粥样硬化,国际内科学杂志,vol.36, no.9, pp.509-511,2009.
    [121]孙倩倩,吉爱国,ROCK与动脉粥样硬化,生命化学,vol.33, no.6, pp. 690-694,2013.
    [122]T. Hidaka, T. Hata, J. Soga, Y. Fujii, N. Idei, N. Fujimura, Y. Kihara, K. Noma, J. K. Liao and Y. Higashi, "Increased leukocyte rho kinase (ROCK) activity and endothelial dysfunction in cigarette smokers," Hypertens Res, vol.33, pp.354-359, 2010.
    [123]陈娜,李芳,Rho/Rho激酶信号通路异常激活与心血管疾病,大连医科大学学 报,vol.34, no.6, pp.613-616,2012.
    [124]李晓辉,李虹伟,赵树梅,Rho/Rho激酶信号通路与冠心病,心血管病学进展,vol.32, no.6, pp.792-795,2011.
    [125]J. Surralles, S. Sebastian and A. T. Natarajan, "Chromosomes with high gene density are preferentially repaired in human cells," Mutagenesis, vol.12, pp. 437-442,1997.
    [126]A. Nekrutenko and W. H. Li, "Assessment of compositional heterogeneity within and between eukaryotic genomes," Genome Res, vol.10, pp.1986-1995,2000.
    [127]J. L. Oliver, P. Bernaola-Galvan, P. Carpena and R. Roman-Roldan, "Isochore chromosome maps of eukaryotic genomes," Gene, vol.276, pp.47-56,2001.
    [128]C. Federico, C. Scavo, C. D. Cantarella, S. Motta, S. Saccone and G Bernardi, "Gene rich and gene-poor chromosomal regions have different locations in the interphase nuclei of cold-blooded vertebrates," Chromosoma, vol.115, pp.123-128, 2006.
    [129]S. Saccone, C. Federico and G Bernardi, "Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds," Gene, vol. 300, pp.169-178,2002.
    [130]A. M. Boutanaev, L. M. Mikhaylova and D. I. Nurminsky, "The pattern of chromosome folding in interphase is outlined by the linear gene density profile," Mol Cell Biol, vol.25, pp.8379-8386,2005.
    [131]R. Mayer, A. Brero, J. V. Hase, T. Schroeder, T. Cremer and S. Dietzel, "Common themes and cell type specific variations of higher order chromatin arrangements in the mouse," BMC Cell Biol, vol.6, pp.44,2005.
    [132]A. Bonnefond, J. Philippe, E. Durand, A. Dechaume, M. Huyvaert, L. Montagne, M. Marre, B. Balkau, I. Fajardy and A. Vambergue et al, "Whole-Exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene," PLoS One, vol.7, pp. e37423,2012.
    [133]周天寿,生物系统的随机动力学,科学出版社,北京,2009.
    [134]H. Q. Cao, F. J. Romero-Campero, S. Heeb, M. Cmara and N. Krasnogor, "Evolving cell models for systems and synthetic biology," Systems and synthetic biology, vol.4, pp.55-84,2010.
    [135]D. T. Gillespie, "Stochastic simulation of chemical kinetics," Annu. Rev. Phys. Chem, vol.58, pp.35-55,2007.
    [136]J. Mason, P. S. Linsay, J. J. Collins and L. Glass, "Evolving complex dynamics in electronic models of genetic networks," Chaos, vol.14, no.3, pp.707-715,2004.
    [137]H. Cao, L. Kang and Y. Chen, J. Yu, "Evolutionary modeling of systems of ordinary differential equations with genetic programming," Genetic Programming and Evolvable Machines, vol.40, pp.309-337,2000.
    [138]H. Iba and A. Mimura, "Inference of differential equation models by genetic programming," Information Sciences, vol.145, pp.225-236,2002.
    [139]B. Yang, Y. H. Chen and Q. F Meng, "Inference of differential equations for modeling chemical reactions," LNCS, vol.5551, pp.1014-1023,2009.
    [140]D. Bratsun, D. Volfson, L. S. Tsimring and J. Hasty, "Delay-induced stochastic oscillations in gene regulation," Proc Natl Acad Sci U S A, vol.102, pp.14593-8, 2005.
    [141]M. R. Roussel, "The use of delay differential equations in chemical kinetics," J. Phys. Chem., vol.100, pp.8323-30,1996.
    [142]A. S. Ribeiro, "Stochastic and delayed stochastic models of gene expression and regulation," Mathematical Biosciences, vol.223, pp.1-11,2010.
    [143]T. Tian, S. Xu, J. Gao and K. Burrage, "Simulated maximum likelihood method for estimating kinetic rates in gene expression," Bioinformatics, vol.23, pp.84-91, 2007.
    [144]G. Yosiphon and E. Mjolsness, "Towards the inference of stochastic biochemical network and parameterized grammar models," Learning and Inference in Computational Systems Biology, pp.297-314,2009.
    [145]R. J. Boys, D. J. Wilkinson and T. B. L. Kirkwood, "Bayesian inference for a discretely observed stochastic kinetic model," Stat Comput, vol.18, pp.125-135, 2008.
    [146]H. Mannerstrom, O. Y. Harja and A. S. Ribeiro, "Inference of kinetic parameters of delayed stochasticModels of gene expression using a Markov chain approximation," EURASIP Journal on Bioinformatics and Systems Biology, vol.1, pp.572-876,2011.
    [147]M. Schmidt and H. Lipson, "Automated modeling of stochastic reactions with large measurement time-Gaps," Proceedings of the Genetic and Evolutionary Computation Conference, Dublin, Ireland, July 12-16,2011, pp.307-314.
    [148]张焕明,统计学教学案例,南京大学出版社,2012.
    [149]B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC, London,1998.
    [150]W. Q. Xiong, Y. P. Zhang and P. Wei, "An improved real-code genetic algorithm," Machine Learning and Cybernetics, vol.4, pp.2361-2364,2004.
    [151]D. J. Wilkinson, "Stochastic modelling for quantitative description of heterogeneous biological systems," Nat Rev Genet, vol.10, pp.122-133,2009.
    [152]Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, Singapore,1996.
    [153]I. Golding, J. Paulsson, S. M. Zawilski and E. C. Cox, "Real-time kinetics of gene activity in individual bacteria," Cell, vol.123, pp.1025-1036,2005.
    [154]A. Ribeiro, R. Zhu and S. A. Kauffman, "A general modeling strategy for gene regulatory networks with stochastic dynamics," Journal of Computational Biology, vol.13, no.9, pp.1630-1639,2006.