GDNF和NT-3双基因诱导BMSCs分化为神经样细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立体外培养扩增、检测鉴定SD大鼠骨髓间充质干细胞(BMSCs)的方法,观察其生物学特性;
     方法:采取全骨髓培养法分离和纯化大鼠BMSCs,用显微镜观察细胞形体,用流式细胞仪检测细胞纯度,观察BMSCs在诱导条件下向成骨细胞分化的能力;
     结果:全骨髓培养法培养的BMSCs具有良好的贴壁性,流式细胞仪检测:CD44(96.49%)、CD90(95.63%)、CD45(0.64%)、CD34(0.39%);第3代细胞经诱导剂诱导可向成骨细胞分化;
     结论:本实验用全贴壁筛选法培养出高纯度的BMSCs,增殖稳定,在条件诱导下具有多分化的潜能。
     目的:利用GDNF和NT-3双基因转染诱导大鼠骨髓间充质干细胞(BMSCs)分化为神经样细胞,为其治疗神经性疾病提供实验基础;
     方法:全骨髓法分离培养BMSCs,流式细胞术及成骨诱导预实验检测BMSCs纯度及特性。转染GDNF和NT-3双基因后,在显微镜下观察细胞形态变化;利用RT-PCR和免疫荧光检测神经细胞特异性标志物表达;
     结果:BMSCs能在体外成功分离培养,诱导分化后,BMSCs胞体变圆,伸出明显突起,并可见多数细胞相互交织成网状结构,呈神经细胞样形态。RT-PCR检测GDNF、NT-3、NSE、nestin、MAP-2基因表达,免疫荧光标记检测可见表达MAP-2和GFAP;
     结论:GDNF和NT-3双基因修饰诱导的BMSCs可分化为神经样细胞,并表达神经元的标志,为基因治疗神经系统疾病如先天性巨结肠提供实验基础。
     目的:本研究利用膜片钳技术,比较MSCs及诱导后神经样细胞之间通道电流的情况,进一步确认分化后神经样细胞的电生理功能,将为肠神经系统缺如疾病的治疗提供前期工作基础。
     方法:应用膜片钳技术,采用全细胞记录方式,对由GDNF和NT-3双基因诱导的分化前BMSCs和分化后的神经样细胞进行电生理功能检测;
     结果:分化前记录到延迟整流样钾电流(IKDR)在+60mV时电流大小为583.6536±74.75945pA,电流密度为10.25393±1.313413pA/pF;钙激活钾通道电流(IKCa)在+60mV时记录到电流峰值为370.775±49.57507pA,电流密度为6.513967±0.87096pA/pF;瞬时外向钾通道电流(Ito)在+60mV时电流峰值为467.03±68.44461pA,电流密度为8.205025±1.20247pA/pF;分化后IKDR在+60mV时电流大小为850.32±53.5708pA,电流密度为18.72207±1.578505pA/pF; IKCa在+60mV时电流峰值为452.6455±13.4805pA,电流密度为8.058586±0.943178pA/pF; Ito电流峰值为621.194±66.039pA,电流密度为15.00152±1.918339pA/pF;分化前BMSCs的IKDR和分化后神经样细胞的IKDR在+60mV时电流峰值相比较具有明显的统计学差异(t=2.721,P值=0.015);分化前IKDRBMSCs电流密度和分化后神经样细胞IKDR电流密度相比较亦具有明显的统计学差异(t=2.441,P值=0.030);
     结论:大鼠骨髓BMSCs诱导分化的神经元样细胞初步具有神经元的电生理特性,是BMSCs由神经前体细胞向成熟神经元这一终点转化过程中由未成熟逐渐迈向成熟的过程。
Object: To explore the approaches to isolate, culture and identifythe bone marrow mesenchymal stem cells (BMSCs) of SD rat in vitro.
     Methods: The BMSCs were enriched and expanded by whole bone marrowculture. The morphology of the BMSCs was examined and analyzed by lightmicroscopy and the purity and phemotype were analyzed by flow cytometry. Theability of osteogenic differentiation of the BMSCs under different inductionconditions was assessed.
     Results: The BMSCs expanded by whole bone marrow culture were adherentcells with a similar spindle-shaped morphologh during different passages. Thephemotypes are CD44(96.49%), CD90(95.63%), CD45(0.64%), CD34(0.39%)respectively. The BMSCs could be induced to differentiate into osteoblasts.
     Conclusion: Rat BMSCs can be isolated and expanded by whole bone marrowculture, which is an efficient and simple method with high purity and good stability.
     Objective: Use glial cell line-derived neurotrophic factor (GDNF) andneurotrophin-3(NT-3) gene transfected rat bone marrow mesenchymal stem cells(BMSCs), to provide the experiment basis of treating neurological disease;
     Methods: BMSCs were isolated by the whole bone marrow culture,Characterized by flowcytometry and osteogenic induction. BMSCs with GDNF and NT-3gene were transfected, and morphological changes were measured bymicroscope. The expression of neural specific markers were detected by RT-PCR andimmunofluorescence assay;
     Results: BMSCs were cultured and purified in vitro. After the induction ofdifferentiation, BMSCs became round or cone-shaped with distinctive outgrowth ofprotrusions. These cells revealed neuron-like morphological changes, and most ofthese cells were intertwined into a network structure. RT-PCR showed positiveexpressions of GDNF, NT-3, NSE, nestin and MAP-2, and immunofluorescence assayshowed MAP-2and GFAP expression;
     Conclusions: Genetically modified BMSCs of co-expressing GDNF and NT-3were able to differentiate into neuronal-like cells and express nerve markers. Thereprovides all experimental basis for gene therapy to treat nervous system-relateddisorders, such as Hirschsprung disease.
     Object: The study which compare ion channel current betweenBMSCs and induced neuron-like cells by path clamp technique,and affirm theinduced-neuron electrophysiological function, provide experimental data for entericnervous system diseases therapy;
     Methods: Whole-cell patch and perforated patch technique were performed toelucidate the electrical behavior of MSC and induced neuron-like cells by inductorGDNF and NT-3;
     Results: Before differentiation, The IKDRcurrent peak is583.6536±74.75945pAat+60mV, current density is10.25393±1.313413pA/pF, the IKCacurrent peak is370.775±49.57507pA,current density is6.513967±0.87096pA/pF, the Itocurrent peak is467.03±68.44461pA,current density is8.205025±1.20247pA/pF; afterdifferentiation, The IKDRcurrent peak is583.6536±74.75945pA at+60mV, currentdensity is10.25393±1.313413pA/pF, the IKCacurrent peak is370.775±49.57507pA,current density is6.513967±0.87096pA/pF, the Itocurrent peak is467.03±68.44461pA,current density is8.205025±1.20247pA/pF; after differentiation, the IKDRcurrentpeak is850.32±53.5708pA, current density is18.72207±1.578505pA/pF, the IKCacurrent peak is452.6455±13.4805pA, current density is8.058586±0.943178pA/pF,theItocurrent peak is621.194±66.039pA, current density is15.00152±1.918339pA/pF.The changes of current peak and current density between before and afterdifferentiation are significant different (P<0.05);
     Conclusion: the neuron-like cells differentiated from BMSCs called preliminaryelectrophysiology characteristic of neuron cells, it is in the process from immatureneuron to mature neuron gradually.
引文
1.王果,冯杰雄.《先天性巨结肠及其同源病》[M].人民卫生出版社,2011.8.200-204,262-263.
    2. Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spot withmesenchymal stromal cells[J]. Stem Cells,2010,28(8):1446-1455.
    3. Korbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeuticconcept?[J]. N Engl J Med,2003,349(6):570-582.
    4.陈慧丽,李小林.骨髓间充质干细胞免疫调节作用的研究进展[J].中国美容医学,2011(12):2007-2009.
    5. Zhang W, Qin C, Zhou Z M. Mesenchymal stem cells modulate immuneresponses combined with cyclosporine in a rat renal transplantation model[J].Transplant Proc,2007,39(10):3404-3408.
    6. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppresslymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. ExpHematol,2002,30(1):42-48.
    7. Mo S J, Zhong Q, Zhou Y F, et al. Bone marrow-derived mesenchymal stem cellsprevent the apoptosis of neuron-like PC12cells via erythropoietin expression[J].Neurosci Lett,2012,522(2):92-97.
    8. Ma K, Fox L, Shi G, et al. Generation of neural stem cell-like cells from bonemarrow-derived human mesenchymal stem cells[J]. NeurolRes,2011,33(10):1083-1093.
    9. Hofstetter C P, Holmstrom N A, Lilja J A, et al. Allodynia limits the usefulness ofintraspinal neural stem cell grafts; directed differentiation improves outcome[J].Nat Neurosci,2005,8(3):346-353.
    10. Cao Q L, Zhang Y P, Howard R M, et al. Pluripotent stem cells engrafted into thenormal or lesioned adult rat spinal cord are restricted to a glial lineage[J]. ExpNeurol,2001,167(1):48-58.
    11. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromalcells differentiate into neural cells in vitro[J]. Exp Neurol,2000,164(2):247-256.
    12. Woodbury D, Schwarz E J, Prockop D J, et al. Adult rat and human bone marrowstromal cells differentiate into neurons[J]. J Neurosci Res,2000,61(4):364-370.
    13. Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotentstromal cells: the state of transdifferentiation and modes of tissue repair--currentviews[J]. Stem Cells,2007,25(11):2896-2902.
    14. Mammadov B, Karakas N, Isik S. Comparison of long-term retinoic acid-basedneural induction methods of bone marrow human mesenchymal stem cells[J]. InVitro Cell Dev Biol Anim,2011,47(7):484-491.
    15. Safford K M, Safford S D, Gimble J M, et al. Characterization of neuronal/glialdifferentiation of murine adipose-derived adult stromal cells[J]. ExpNeurol,2004,187(2):319-328.
    16. Lu P, Blesch A, Tuszynski M H. Induction of bone marrow stromal cells toneurons: differentiation, transdifferentiation, or artifact?[J]. J NeurosciRes,2004,77(2):174-191.
    17. Goldman S A, Chen Z. Perivascular instruction of cell genesis and fate in theadult brain[J]. Nat Neurosci,2011,14(11):1382-1389.
    18. Sango K, Yanagisawa H, Kawakami E, et al. Spontaneously immortalizedSchwann cells from adult Fischer rat as a valuable tool for exploringneuron-Schwann cell interactions[J]. J Neurosci Res,2011,89(6):898-908.
    19. Ding Y, Yan Q, Ruan J W, et al. Electroacupuncture Promotes the Differentiationof Transplanted Bone Marrow Mesenchymal Stem Cells Overexpressing TrkCInto Neuron-Like Cells in Transected Spinal Cord of Rats[J]. CellTransplant,2013,22(1):65-86.
    20. Crigler L, Robey R C, Asawachaicharn A, et al. Human mesenchymal stem cellsubpopulations express a variety of neuro-regulatory molecules and promoteneuronal cell survival and neuritogenesis[J]. Exp Neurol,2006,198(1):54-64.
    21. Zhang W, Yan Q, Zeng Y S, et al. Implantation of adult bone marrow-derivedmesenchymal stem cells transfected with the neurotrophin-3gene and pretreatedwith retinoic acid in completely transected spinal cord[J]. BrainRes,2010,1359:256-271.
    1Bianco P, Robey P G, Simmons P J. Mesenchymal stem cells: revisitinghistory, concepts, and assays[J]. Cell Stem Cell,2008,2(4):313-319.
    2Wang S, Kan Q, Sun Y, et al. Caveolin-1regulates neural differentiation ofrat bone mesenchymal stem cells into neurons by modulating Notchsignaling[J]. Int J Dev Neurosci,2013,31(1):30-35.
    3Duan P, Zhang Y, Han X, et al. Effect of neuronal induction on NSE, Tau,and Oct4promoter methylation in bone marrow mesenchymal stem cells[J].In Vitro Cell Dev Biol Anim,2012,48(4):251-258.
    4Hua J, Yu H, Dong W, et al. Characterization of mesenchymal stem cells(MSCs) from human fetal lung: potential differentiation of germ cells[J].Tissue Cell,2009,41(6):448-455.
    5Zeng R, Wang L W, Hu Z B, et al. Differentiation of human bone marrowmesenchymal stem cells into neuron-like cells in vitro[J]. Spine (Phila Pa1976),2011,36(13):997-1005.
    6Zhu H, Guo Z K, Jiang X X, et al. A protocol for isolation and culture ofmesenchymal stem cells from mouse compact bone[J]. NatProtoc,2010,5(3):550-560.
    7Potian J A, Aviv H, Ponzio N M, et al. Veto-like activity of mesenchymalstem cells: functional discrimination between cellular responses toalloantigens and recall antigens[J]. J Immunol,2003,171(7):3426-3434.
    8Doorn J, Moll G, Le Blanc K, et al. Therapeutic applications of mesenchymalstromal cells: paracrine effects and potential improvements[J]. Tissue EngPart B Rev,2012,18(2):101-115.
    9赵林,冯智慧,焦淑贤,等.全骨髓贴壁法分离培养大鼠骨髓间充质干细胞及其生物学特性[J].中国组织工程研究与临床康复,2011,15(32)
    10杨亚丽,孙涛,付仅,等.克隆筛选法体外纯化骨髓间充质干细胞[J].中国医师杂志,2012,14(03)
    11徐金霞,李家锋,韩建国,等.大鼠骨髓间充质干细胞生物学特性的研究[J].中国医药科学,2012,02(09).
    12Hung S C, Cheng H, Pan C Y, et al. In vitro differentiation of size-sievedstem cells into electrically active neural cells[J]. StemCells,2002,20(6):522-529.
    13Dominici M, Le BK, Mueller I, et al. Minimal criteria for de finingmultipotent mesenchymal stromal cells. The International Society forCellular Therapy position statement [J]. Cytotherapy,2006,8(4):315-317.
    14Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spotwith mesenchymal stromal cells[J]. Stem Cells,2010,28(8):1446-1455.
    15Korbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeuticconcept?[J]. N Engl J Med,2003,349(6):570-582.
    16Gao H, Wei M, Wang Y, et al. Differentiation of GDNF and NT-3dualgene-modified rat bone marrow mesenchymal stem cells into entericneuron-like cells[J]. J Huazhong Univ Sci Technolog MedSci,2012,32(1):87-91.
    17Young R A. Control of the embryonic stem cell state[J].Cell,2011,144(6):940-954.
    18Wagner W, Horn P, Castoldi M, et al. Replicative senescence ofmesenchymal stem cells: a continuous and organized process[J]. PLoSOne,2008,3(5):e2213.
    19Vacanti V, Kong E, Suzuki G, et al. Phenotypic changes of adult porcinemesenchymal stem cells induced by prolonged passaging in culture[J]. J CellPhysiol,2005,205(2):194-201.
    20Guillot P V, Gotherstrom C, Chan J, et al. Human first-trimester fetal MSCexpress pluripotency markers and grow faster and have longer telomeresthan adult MSC[J]. Stem Cells,2007,25(3):646-654.
    21Ito T, Sawada R, Fujiwara Y, et al. FGF-2suppresses cellular senescence ofhuman mesenchymal stem cells by down-regulation of TGF-beta2[J].Biochem Biophys Res Commun,2007,359(1):108-114.
    1. Dharmasaroja P. Bone marrow-derived mesenchymal stem cells for the treatmentof ischemic stroke[J]. J Clin Neurosci,2009,16(1):12-20.
    2. Liu Z, Li Y, Zhang R L, et al. Bone marrow stromal cells promote skilled motorrecovery and enhance contralesional axonal connections after ischemic stroke inadult mice[J]. Stroke,2011,42(3):740-744.
    3. Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain[J]. J NeurolSci,2008,265(1-2):97-101.
    4. Liu W, Wu R D, Dong Y L, et al. Neuroepithelial stem cells differentiate intoneuronal phenotypes and improve intestinal motility recovery aftertransplantation in the aganglionic colon of the rat[J]. NeurogastroenterolMotil,2007,19(12):1001-1009.
    5. De Giorgio R, Stanghellini V, Barbara G, et al. Primary enteric neuropathiesunderlying gastrointestinal motor dysfunction[J]. Scand J Gastroenterol,2000,35(2):114-122.
    6. Hattan N, Kawaguchi H, Ando K, et al. Purified cardiomyocytes from bonemarrow mesenchymal stem cells produce stable intracardiac grafts in mice[J].Cardiovasc Res,2005,65(2):334-344.
    7. Chivu M, Dima S O, Stancu C I, et al. In vitro hepatic differentiation of humanbone marrow mesenchymal stem cells under differential exposure toliver-specific factors[J]. Transl Res,2009,154(3):122-132.
    8. Lin Y, Weisdorf D J, Solovey A, et al. Origins of circulating endothelial cells andendothelial outgrowth from blood[J]. J Clin Invest,2000,105(1):71-77.
    9. Park H J, Lee P H, Bang O Y, et al. Mesenchymal stem cells therapy exertsneuroprotection in a progressive animal model of Parkinson's disease[J]. JNeurochem,2008,107(1):141-151.
    10. Xin H, Li Y, Shen L H, et al. Increasing tPA activity in astrocytes induced bymultipotent mesenchymal stromal cells facilitate neurite outgrowth after strokein the mouse[J]. PLoS One,2010,5(2):e9027.
    11. Shen L H, Xin H, Li Y, et al. Endogenous tissue plasminogen activator mediatesbone marrow stromal cell-induced neurite remodeling after stroke in mice[J].Stroke,2011,42(2):459-464.
    12. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic braininjury[J]. Neurosci Lett,2009,456(3):120-123.
    13. Ma K, Fox L, Shi G, et al. Generation of neural stem cell-like cells from bonemarrow-derived human mesenchymal stem cells[J]. Neurol Res,2011,33(10):1083-1093
    14. Hofstetter C P, Holmstrom N A, Lilja J A, et al. Allodynia limits the usefulnessof intraspinal neural stem cell grafts; directed differentiation improvesoutcome[J]. Nat Neurosci,2005,8(3):346-353
    15. Cao Q L, Zhang Y P, Howard R M, et al. Pluripotent stem cells engrafted into thenormal or lesioned adult rat spinal cord are restricted to a glial lineage[J]. ExpNeurol,2001,167(1):48-58.
    16. Goldman S A, Chen Z. Perivascular instruction of cell genesis and fate in theadult brain[J]. Nat Neurosci,2011,14(11):1382-1389.
    17. Widenfalk J, Nosrat C, Tomac A, et al. Neurturin and glial cell line-derivedneurotrophic factor receptor-beta (GDNFR-beta), novel proteins related to GDNFand GDNFR-alpha with specific cellular patterns of expression suggesting rolesin the developing and adult nervous system and in peripheral organs[J]. JNeurosci,1997,17(21):8506-8519.
    18. Takaku S, Yanagisawa H, Watabe K, et al. GDNF promotes neurite outgrowthand upregulates galectin-1through the RET/PI3K signaling in cultured adult ratdorsal root ganglion neurons[J]. Neurochem Int,2013,62(3):330-339.
    19. Sango K, Yanagisawa H, Kawakami E, et al. Spontaneously immortalizedSchwann cells from adult Fischer rat as a valuable tool for exploringneuron-Schwann cell interactions[J]. J Neurosci Res,2011,89(6):898-908.
    20. Airaksinen M S, Saarma M. The GDNF family: signalling, biological functionsand therapeutic value[J]. Nat Rev Neurosci,2002,3(5):383-394.
    21. Yamamoto M, Sobue G, Yamamoto K, et al. Expression of mRNAs forneurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors(p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous systemand nonneural tissues[J]. Neurochem Res,1996,21(8):929-938.
    22. Crigler L, Robey R C, Asawachaicharn A, et al. Human mesenchymal stem cellsubpopulations express a variety of neuro-regulatory molecules and promoteneuronal cell survival and neuritogenesis[J]. Exp Neurol,2006,198(1):54-64.
    23. Zhang W, Yan Q, Zeng Y S, et al. Implantation of adult bone marrow-derivedmesenchymal stem cells transfected with the neurotrophin-3gene and pretreatedwith retinoic acid in completely transected spinal cord[J]. BrainRes,2010,1359:256-271.
    24. Saini H S, Gorse K M, Boxer L M, et al. Neurotrophin-3and a CREB-mediatedsignaling pathway regulate Bcl-2expression in oligodendrocyte progenitorcells[J]. J Neurochem,2004,89(4):951-961.
    25. Woolley A G, Tait K J, Hurren B J, et al. Developmental loss of NT-3in vivoresults in reduced levels of myelin-specific proteins, a reduced extent ofmyelination and increased apoptosis of Schwann cells[J]. Glia,2008,56(3):306-317.
    26. Zhang Y Q, Zeng X, He L M, et al. NT-3gene modified Schwann cells promoteTrkC gene modified mesenchymal stem cells to differentiate into neuron-likecells in vitro[J]. Anat Sci Int,2010,85(2):61-67.
    27. Xiong Y, Zeng Y S, Zeng C G, et al. Synaptic transmission of neural stem cellsseeded in3-dimensional PLGA scaffolds[J]. Biomaterials,2009,30(22):3711-3722.
    28. Ding Y, Yan Q, Ruan J W, et al. Electroacupuncture Promotes the Differentiationof Transplanted Bone Marrow Mesenchymal Stem Cells Overexpressing TrkCInto Neuron-Like Cells in Transected Spinal Cord of Rats[J]. CellTransplant,2013,22(1):65-86.
    1. Burlacu A. Tracking the mesenchymal stem cell fate after transplantation into theinfarcted myocardium[J]. Curr Stem Cell Res Ther,2013.
    2. Choi Y K, Cho H, Seo Y K, et al. Stimulation of sub-sonic vibration promotes thedifferentiation of adipose tissue-derived mesenchymal stem cells into neuralcells[J]. Life Sci,2012,91(9-10):329-337.
    3. Li G R, Deng X L, Sun H, et al. Ion channels in mesenchymal stem cells from ratbone marrow[J]. Stem Cells,2006,24(6):1519-1528.
    4. Nurgali K, Stebbing M J, Furness J B. Correlation of electrophysiological andmorphological characteristics of enteric neurons in the mouse colon[J]. J CompNeurol,2004,468(1):112-124.
    5. Mo S J, Zhong Q, Zhou Y F, et al. Bone marrow-derived mesenchymal stem cellsprevent the apoptosis of neuron-like PC12cells via erythropoietin expression[J].Neurosci Lett,2012,522(2):92-97.
    6. Bianco P, Robey P G, Simmons P J. Mesenchymal stem cells: revisiting history,concepts, and assays[J]. Cell Stem Cell,2008,2(4):313-319.
    7. Osorio N, Delmas P. Patch clamp recording from enteric neurons in situ[J]. NatProtoc,2010,6(1):15-27.
    8.郭洪波,邹飞.大鼠海马神经干细胞外向电压门控性钾通道的电生理特性[J].中华医学杂志,2008,88(03).
    9. Expression of Kv1potassium channels in mouse hippocampal primary cultures:development and activity-dependent regulation.[J]. The Journal ofNeuroscience,2000,20(5):14.
    10. Zeng R, Wang L W, Hu Z B, et al. Differentiation of human bone marrowmesenchymal stem cells into neuron-like cells in vitro[J]. Spine (Phila Pa1976),2011,36(13):997-1005.
    11. Brohlin M, Kingham P J, Novikova L N, et al. Aging effect on neurotrophicactivity of human mesenchymal stem cells[J]. PLoS One,2012,7(9):e45052.
    1. Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spot withmesenchymal stromal cells[J]. Stem Cells,2010,28(8):1446-1455.
    2. Korbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeuticconcept?[J]. N Engl J Med,2003,349(6):570-582.
    3.陈慧丽,李小林.骨髓间充质干细胞免疫调节作用的研究进展[J].中国美容医学,2011(12):2007-2009.
    4. Zhang W, Qin C, Zhou Z M. Mesenchymal stem cells modulate immuneresponses combined with cyclosporine in a rat renal transplantation model[J].Transplant Proc,2007,39(10):3404-3408.
    5. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppresslymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. ExpHematol,2002,30(1):42-48.
    6. Ma K, Fox L, Shi G, et al. Generation of neural stem cell-like cells from bonemarrow-derived human mesenchymal stem cells[J]. Neurol Res,2011,33(10):1083-1093.
    7. Hofstetter C P, Holmstrom N A, Lilja J A, et al. Allodynia limits the usefulnessof intraspinal neural stem cell grafts; directed differentiation improvesoutcome[J]. Nat Neurosci,2005,8(3):346-353.
    8. Cao Q L, Zhang Y P, Howard R M, et al. Pluripotent stem cells engrafted intothe normal or lesioned adult rat spinal cord are restricted to a glial lineage[J].Exp Neurol,2001,167(1):48-58.
    9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromalcells differentiate into neural cells in vitro[J]. Exp Neurol,2000,164(2):247-256.
    10. Woodbury D, Schwarz E J, Prockop D J, et al. Adult rat and human bone marrowstromal cells differentiate into neurons[J]. J Neurosci Res,2000,61(4):364-370.
    11. Yanjie J, Jiping S, Yan Z, et al. Effects of Notch-1signalling pathway ondifferentiation of marrow mesenchymal stem cells into neurons in vitro[J].Neuroreport,2007,18(14):1443-1447.
    12. Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of culturedmesenchymal stem cells: switch from nestin-positive to excitable neuron-likephenotype[J]. Stem Cells,2005,23(3):392-402.
    13. Kondo T, Matsuoka A J, Shimomura A, et al. Wnt signaling promotes neuronaldifferentiation from mesenchymal stem cells through activation of Tlx3[J]. StemCells,2011,29(5):836-846.
    14. Park H E, Kim D, Koh H S, et al. Real-time monitoring of neural differentiationof human mesenchymal stem cells by electric cell-substrate impedancesensing[J]. J Biomed Biotechnol,2011,2011:485173.
    15. Munoz-Elias G, Woodbury D, Black I B. Marrow stromal cells, mitosis, andneuronal differentiation: stem cell and precursor functions[J]. StemCells,2003,21(4):437-448.
    16. Okada Y, Shimazaki T, Sobue G, et al. Retinoic-acid-concentration-dependentacquisition of neural cell identity during in vitro differentiation of mouseembryonic stem cells[J]. Dev Biol,2004,275(1):124-142.
    17. Mammadov B, Karakas N, Isik S. Comparison of long-term retinoic acid-basedneural induction methods of bone marrow human mesenchymal stem cells[J]. InVitro Cell Dev Biol Anim,2011,47(7):484-491.
    18. Liu H, Xue W J, Xie Y F, et al. Tea polyphenol-induced neuron-likedifferentiation of mouse mesenchymal stem cells[J]. Chin JPhysiol,2011,54(2):111-117.
    19.刘云云,赵兴绪。赵红斌,等.Ca2+信号介导川芎嗪诱导小鼠骨髓间充质干细胞向神经细胞的定向分化.甘肃农业大学学报.2010;45(2):1-5
    20. Hu L, Yu J, Li F, et al. Effects of Salvia miltorrhiza in neural differentiation ofrat mesenchymal stem cells with optimized protocol[J]. JEthnopharmacol,2011,136(2):334-340.
    21. Zhao Y, Xin J, Sun C, et al. Safrole oxide induced neuronal differentiation of ratbone-marrow mesenchymal stem cells by elevating Hsp70[J].Gene,2012,509(1):85-92.
    22. Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotentstromal cells: the state of transdifferentiation and modes of tissue repair--currentviews[J]. Stem Cells,2007,25(11):2896-2902.
    23. Safford K M, Safford S D, Gimble J M, et al. Characterization of neuronal/glialdifferentiation of murine adipose-derived adult stromal cells[J]. ExpNeurol,2004,187(2):319-328.
    24. Lu P, Blesch A, Tuszynski M H. Induction of bone marrow stromal cells toneurons: differentiation, transdifferentiation, or artifact?[J]. J NeurosciRes,2004,77(2):174-191.
    25. Jing L, Jia Y, Lu J, et al. MicroRNA-9promotes differentiation of mouse bonemesenchymal stem cells into neurons by Notch signaling[J].Neuroreport,2011,22(5):206-211.
    26. Han R, Kan Q, Sun Y, et al. MiR-9promotes the neural differentiation of mousebone marrow mesenchymal stem cells via targeting zinc finger protein521[J].Neurosci Lett,2012,515(2):147-152.
    27. Kitada M, Dezawa M. Parkinson's disease and mesenchymal stem cells: potentialfor cell-based therapy[J]. Parkinsons Dis,2012,2012:873706.
    28. Edalat H, Hajebrahimi Z, Movahedin M, et al. p75NTR suppression in rat bonemarrow stromal stem cells significantly reduced their rate of apoptosis duringneural differentiation[J]. Neurosci Lett.2011,498(1):15-19.
    29. Egea V, von Baumgarten L, Schichor C, et al. TNF-alpha respecifies humanmesenchymal stem cells to a neural fate and promotes migration towardexperimental glioma[J]. Cell Death Differ,2011,18(5):853-863.
    30. Wang Y, He W, Bian H, et al. Small molecule induction of neural-like cells frombone marrow-mesenchymal stem cells[J]. J Cell Biochem,2012,113(5):1527-1536.
    31. Sun D, Bullock M R, Mcginn M J, et al. Basic fibroblast growth factor-enhancedneurogenesis contributes to cognitive recovery in rats following traumatic braininjury[J]. Exp Neurol,2009,216(1):56-65.
    32. Wang X, He D, Chen L, et al. Cell-surface ultrastructural changes during the invitro neuron-like differentiation of rat bone marrow-derived mesenchymal stemcells[J]. Scanning,2011,33(2):69-77.
    33. Zeng R, Wang L W, Hu Z B, et al. Differentiation of human bone marrowmesenchymal stem cells into neuron-like cells in vitro[J]. Spine (Phila Pa1976),2011,36(13):997-1005.
    34. Munoz J L, Greco S J, Patel S A, et al. Feline bone marrow-derivedmesenchymal stromal cells (MSCs) show similar phenotype and functions withregards to neuronal differentiation as human MSCs[J]. Differentiation,2012,84(2):214-222.
    35. Long X, Olszewski M, Huang W, et al. Neural cell differentiation in vitro fromadult human bone marrow mesenchymal stem cells[J]. Stem CellsDev,2005,14(1):65-69.
    36. Tang Y, Cui Y C, Wang X J, et al. Neural progenitor cells derived from adultbone marrow mesenchymal stem cells promote neuronal regeneration[J]. LifeSci,2012,91(19-20):951-958.
    37. Ye Y, Zeng Y M, Wan M R, et al. Induction of human bone marrowmesenchymal stem cells differentiation into neural-like cells using cerebrospinalfluid[J]. Cell Biochem Biophys,2011,59(3):179-184.
    38. Wang S, Kan Q, Sun Y, et al. Caveolin-1regulates neural differentiation of ratbone mesenchymal stem cells into neurons by modulating Notch signaling[J]. IntJ Dev Neurosci,2013,31(1):30-35.
    39. Park H W, Cho J S, Park C K, et al. Directed induction of functional motorneuron-like cells from genetically engineered human mesenchymal stem cells[J].PLoS One,2012,7(4):e35244.
    40. Liu Z, Huang D, Zhang M, et al. Cocaine-and amphetamine-regulated transcriptpromotes the differentiation of mouse bone marrow-derived mesenchymal stemcells into neural cells[J]. BMC Neurosci,2011,12:67.
    41. Bai L, Lennon D P, Caplan A I, et al. Hepatocyte growth factor mediatesmesenchymal stem cell-induced recovery in multiple sclerosis models[J]. NatNeurosci,2012,15(6):862-870.
    42. Gao H, Wei M, Wang Y, et al. Differentiation of GDNF and NT-3dualgene-modified rat bone marrow mesenchymal stem cells into enteric neuron-likecells[J]. J Huazhong Univ Sci Technolog Med Sci,2012,32(1):87-91.
    43. Duan P, Zhang Y, Han X, et al. Effect of neuronal induction on NSE, Tau, andOct4promoter methylation in bone marrow mesenchymal stem cells[J]. In VitroCell Dev Biol Anim,2012,48(4):251-258.
    44. Guilak F, Cohen D M, Estes B T, et al. Control of stem cell fate by physicalinteractions with the extracellular matrix[J]. Cell Stem Cell,2009,5(1):17-26.
    45. Lee J H, Yu H S, Lee G S, et al. Collagen gel three-dimensional matricescombined with adhesive proteins stimulate neuronal differentiation ofmesenchymal stem cells[J]. J R Soc Interface,2011,8(60):998-1010.
    46. Christopherson G T, Song H, Mao H Q. The influence of fiber diameter ofelectrospun substrates on neural stem cell differentiation and proliferation[J].Biomaterials,2009,30(4):556-564.
    47. Xie J, Willerth S M, Li X, et al. The differentiation of embryonic stem cellsseeded on electrospun nanofibers into neural lineages[J]. Biomaterials,2009,30(3):354-362.
    48. Yim E K, Pang S W, Leong K W. Synthetic nanostructures inducingdifferentiation of human mesenchymal stem cells into neuronal lineage[J]. ExpCell Res,2007,313(9):1820-1829.
    49. Cho Y I, Choi J S, Jeong S Y, et al. Nerve growth factor (NGF)-conjugatedelectrospun nanostructures with topographical cues for neuronal differentiationof mesenchymal stem cells[J]. Acta Biomater,2010,6(12):4725-4733.
    50. Jiang X, Cao H Q, Shi L Y, et al. Nanofiber topography and sustainedbiochemical signaling enhance human mesenchymal stem cell neuralcommitment[J]. Acta Biomater,2012,8(3):1290-1302.
    51. Cho H, Seo Y K, Jeon S, et al. Neural differentiation of umbilical cordmesenchymal stem cells by sub-sonic vibration[J]. Life Sci,2012,90(15-16):591-599.
    52. Chen J, Liu R, Yang Y, et al. The simulated microgravity enhances thedifferentiation of mesenchymal stem cells into neurons[J]. NeurosciLett,2011,505(2):171-175.
    53. Park J S, Yang H N, Woo D G, et al. Exogenous Nurr1gene expression inelectrically-stimulated human MSCs and the induction of neurogenesis[J].Biomaterials,2012,33(29):7300-7308.
    54. Wang Y, Lee W C, Manga K K, et al. Fluorinated graphene for promotingneuro-induction of stem cells[J]. Adv Mater,2012,24(31):4285-4290.
    55. Crobu F, Latini V, Marongiu M F, et al. Differentiation of single cell derivedhuman mesenchymal stem cells into cells with a neuronal phenotype: RNA andmicroRNA expression profile[J]. Mol Biol Rep,2012,39(4):3995-4007.
    56. Zeng G, Wang G, Guan F, et al. Human amniotic membrane-derivedmesenchymal stem cells labeled with superparamagnetic iron oxidenanoparticles: the effect on neuron-like differentiation in vitro[J]. Mol CellBiochem,2011,357(1-2):331-341.