基于数据挖掘的钱塘江河口水沙运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钱塘江河口潮强流急,涌潮汹涌,河床冲淤变化剧烈,是最具代表性的强潮河口。探索与运用钱塘江河口水沙运动规律,一直是治理和保护该河口的一项重要的基础性工作。历经几代人的努力,钱塘江河口水沙运动规律研究发展了实测资料分析、数值模拟计算与河工模型试验等多种预测手段并取得了系列的研究成果。近几年,灰色理论、神经网络、分形理论、小波分析等现代数据挖掘技术的出现,为水沙运动规律研究提供了新的研究思路与途径。
     论文在总结前人研究的基础上,利用钱塘江河口大量的实测资料,采用小波分析、人工神经网络及其藕合模型等数据挖掘技术,结合理论分析、水槽试验等研究手段,揭示钱塘江河口径流、涌潮、细颗粒泥沙起动流速与沉降速度、潮流挟沙能力以及河床冲淤等变化特征与运动规律,以便为钱塘江河口的整治及重大涉水工程建设提供技术基础,主要工作内容归纳如下:
     (1)基于人工神经网络的预测模型研究。针对钱塘江涌潮高度、泥沙起动流速、细颗粒泥沙絮凝沉降速度及潮流挟沙能力与其影响因素之间存在复杂的非线性关系,在识别各影响因子与分析训练样本代表性的基础上,运用神经网络的最佳函数逼近性能,建立了基于径向基函数(RBF)网络的预测模型。经实测与试验数据的检验,该类模型均具有较好的泛化能力,并在定量评价各影响因子的贡献程度中得到了成功应用。
     (2)基于小波分析的水动力与河床冲淤的长周期特性研究。依据长系列的水文与地形资料,在分析复Morlet小波函数基本特性的基础上,选用该小波对标准化序列进行了小波变换,根据小波变换系数与小波方差,揭示了钱塘江河口年径流、潮差、沙坎高程以及河床容积的变化过程伴随着21a左右的显著周期,预计2010年以后,该河口径流将转入偏丰期。并以显著周期为纽带,提出了钱塘江河口水沙运动的长周期演变模式。
     (3)涌潮高度对影响因素与治江缩窄工程的响应研究。通过涌潮高度的神经网络模型,结合正交试验设计理论,定量地分析了各因素与大规模治江缩窄工程对涌潮的影响程度,结果表明,涌潮高度与下游潮汐呈正相关关系,而与河道地形呈负相关关系,当径流流量小于7000 m3/s时,涌潮高度随径流增大而增大,超过此范围后,则随径流增大而减小。大规模治江缩窄后,涌潮沿程强度分布趋于稳定,在顺直江道条件下,盐官涌潮高度减小了0.17m,而弯曲江道,则增大了0.39m。
     (4)细颗粒泥沙起动流速、沉降速度与潮流挟沙能力的经验公式研究。基于大量的水沙实测资料与试验数据,通过量纲分析与多元回归率定相关参数,建立了适合于钱塘江河口水流特性的细颗粒泥沙起动流速、沉降速度与潮流挟沙能力的经验拟合公式。经实测与试验资料检验,公式具有良好的拟合精度与应用范围。此外,文中还提出了从非恒定实测水沙过程中提取泥沙起动流速与潮流挟沙能力的方法。
     (5)基于小波分析与神经网络的河床容积预报模型研究。针对河床容积变化具有趋势性、周期性和随机性的特点,在小波分析将时间序列分解成若干细节序列和背景序列的基础上,结合人工神经网络技术,建立了钱塘江河口河床容积的预报模型。经实测资料检验,最优的预报模型(方案6),其拟合阶段与检验阶段的合格率可达97.5%与88.2%,确定性系数可达0.90与0.71,计算结果总体令人满意,为河床容积预报提供了一种可行的技术方案。
The Qiantang River estuary is the most representative estuary with strong tide, because of it's strong tide, tidal bore and the tempestuously change of erosion-deposit on the river bed. It is always an important basic work of estuary treatments and protection that researching and using the hydraulic characteristics of water and sediment movement at the Qiantang River estuary. The hydraulic characteristics aforementioned are developed by methods, such as analysis of field data, numerical model and physical model and a series of achievements are obtained basing on the past studies. Recently, the modern data analysis technologies, such as gray theory, neural network, fractal theory and wavelet analysis, provide a new approaching methods and thinking for the studies on hydraulic characteristics.
     In this paper, the characteristics of run off of the Qiantang estuary, bore, sediment-moving incipient velocity, sedimentation velocity of fine sediment, the sediment carrying capacity of tide and riverbed scouring-siltation are discussed by new data analysis technologies, wavelet analysis, neural network and the combination of the later two methods, theoretical analysis and experimental research, basing on the past studies. And it also provides a technological support for the Qiantang River estuary treatment and important wading water management projects. The mainly work contents are as below:
     (1) The model for predicting the height of tidal bore basing on neural network. According to complex non-linear relationship between the tidal height of the Qiantang bore, sediment-moving incipient velocity, flocculation and sedimentation velocity of fine sediment and sediment carrying capacity of tide and their influence factors, a predicting model is established by RBF (Radial Basis Function) basing on identifying the major influence factors and improving the representativeness of learning sample. The comparison of the simulated results with the observation data shows that the model has good generalization ability and it is successfully adopted to quantitatively analyze the contributions of each influence factor.
     (2)Study on hydrodynamic force and long-periodic feature of riverbed scouring-siltation by wavelet analysis. In accordance with the non-stationary hydrological time series and topographical data, the wavelet method was adopted to analyze the periodic feature and the trend of the runoff in the Qiantang estuary. The complex Morlet function, whose basic characteristic is discussed, is selected to transform the standardized time-series of the annual runoff discharge. Basing on the distribution of module and real of wavelet transform coefficients and wavelet variance, the prominent period of the annual runoff discharge in the Qiantang River estuary is 21 years approximately, and it is predicted that the trend of the annual flow is in the low flow period till 2010, and then the annual discharge is increase. According to the prominent period, the long-term evolution model of water and sediment movement at the Qiantang River estuary is proposed.
     (3)Study on response of height of tidal bore to influence factors and regulation works. Based on qualitatively analyzing influence factors, the model for predicting the height of tidal bore at Yanguan is established by using BP neural network. The comparison of the simulated results with the observation data shows that the model has good generalization ability. Combining the theory of orthogonal experiment design, the major affecting factors such as tide, runoff and river topography are quantitatively analyzed. It is found that the height of tidal bore is positively related to the tide, and negatively related to the river topography. The height of tidal bore is positively related to the runoff when the discharge is less than 7000m3/s. However they are negative correlation relationship if the discharge is greater than 7000m3/s. Then the model is used in a case to study on the effect of large-scale reclamation and regulation works on the tidal bore in the Qiantang estuary. The influence extent to the bore height at Yanguan is quantitatively analyzed under different hydrodynamic and river-bed condition. The results show that the bore height decreased by 0.17m after reclamation under straight alignment of river course, and increased by 0.39m under curved alignment of river course.
     (4) Study on empirical formula of incipient velocity of fine sediment, sedimentation velocity, sediment carrying capacity of tide. Basing on Large amounts of field data and experimental results, the empirical formulas are established by dimensional analysis and multiple regression analysis, which adapt the flow characteristics of Qiantang River estuary. Comparison with the field data and experimental results, it indicates that computation results by the formulas have a good agreement and application extent. In this paper, a method for deciding incipient velocity of sediment and sediment carrying capacity of tide through a non-stationary flow and sediment process is established.
     (5)Study on prediction model for riverbed volume by wavelet analysis and neural network. Due to the change of riverbed volume has characteristics of tendency, periodicity, randomness, a prediction model for riverbed volume of the Qiantang River estuary is established by using the technologies of wavelet analysis and neural network. Comparison with the field data, the model reaches 97.5% and 88.2% accuracy rate in fitting and testing process and 0.90 and 0.71 coefficient of determination, respectively. The computation results are acceptable and it provides a feasible technical solution for riverbed volume prediction.
引文
[1]Abbott, M.R., A theory of the propagation of bores in channels and rivers:Proceedings[J], Cambridge Philosophical Society,1956,52:344-362.
    [2]Abry P, Veitch D. Wavelet analysis of long-rang-dependent on traffic[J], IEEE Transactions on information Theros,1999,44(1):2-15.
    [3]Ani,S.Al et al. Measurement of the influence of salinity on floc density and strength[J]. Geo-Marine Letters,1991, (11):154-158.
    [4]Cao Hangyue. Predicting chaotic time series with wavelet network[J], Physical D,1995,85:225-238
    [5]Chanson H, Mixing and dispersion in tidal bores. a Review[A], Proceedings of International Conference on Estuaries & Coasts,2003, Hangzhou, China.
    [6]Chanson H., Physical Modelling of the Flow Field in an Undular Tidal Bore. Journal of Hydraulic Research,2005,43(3):234-244.
    [7]Deloffre J, Lafite R, Lesueur P, et al. Sedimentary processes on an intertidal mudflat in the upper macrotidal Seine estuary, France[J], Estuarine, Coastal and Shelf Science,2005,64(4):710-720
    [8]Ellis K.M.et al. A study of the temporal variability in particle size in a high-energy regime[J]. Estuarine, Coastal and Shelf Science,2004.
    [9]Gleizon P, Punt A G, Lyons M G. Modeling hydrodynamicssediment flux within a macrotidal estuary: Problems and solutions [J].The Science of The Total Environment,2003,314-316(1):589-597.
    [10]Gusev A.V. and Yu V. Lyapidevskii, Turbulent Bore in a Supercritical Flow over an Irregular Bed[J], Fluid Dynamics,2005,40(1):54-61.
    [11]Han Z C, Cheng H P.2-dimensional sediment mathematical model for Hangzhou Bay[C], Pro 3rd Intern Symp[A]. On River Sedimentation. The Univ. of Mississippi, USA, March 31-April 4, 1986:463-471
    [12]Hill Paul S.I, Syvitski James P., Ellen A. Cowan and Ross D. Powell. In situ observation of floc setting velocities in Glacier Bay, Alaska [J]. Marine Geology,1998(145):85-94.
    [13]Hjulstrom, F. Study of the morphological Activity of River as Illustrated by the River Fyris, Bulletin of the Geolgical Inst. of Uppsala,1935,25(3).
    [14]Koch, C and Chanson, An Experimental Study of Tidal Bores and Positive Surges:Hydrodynamics and Turbulence of the Bore Front[R], Department of Civil Engineering, The University of Queensland,2005.
    [15]Kranck, K. Experiments on the significance of flocculation in the settling behaviour of fine grained sediment in still-water[J], Can. J. Earth Sci.,1980,(17):1517-1526.
    [16]Kranenburg C., The fractal structures of cohesive sediment aggregates [J]. Estuarine, Coastal and Shelf Science,1994, (39):451-460.
    [17]Kumar P, Foufoula-Georgiou E. A multicomponent decomposition of spatial rainfall fields segregution of large-and Small-Scale features using Wavelet transforms [J], Water Resources Research, 1993,29(8):2515-2532
    [18]Lin Bingliang, Roger A Falconer. Numerical modeling of three-dimensional suspend sediment for estuarine and coastal waters[J], Journal of Hydraulic Research,1996,34(4):435-456
    [19]Lu Yongjun, Chen Guoxiang. A new 2-D sediment mathematical model[C], River Sedimentation Theory and Applications[A],1999:783-788.
    [20]Manning A. J., Dyer K. R.. A laboratory examination of floc characteristics with regard to turbulent shearing [J]. Marine Geology,1999, (160):147-170.
    [21]McLaughlin, R. T. Jr., The Settling Properties of Suspensions[J], J. of the Hydraulics Division,ASCE, 1961,85(12):9-41.
    [22]Migniot C, Study of the physical properties of various forms of very fine sediment and their behavior under hydrodynamic action[J], La Houille Blanche,1968,(7):591-620.
    [23]Mitchell S B, Couperthwaite J S, West J R, et al. Measuring sediment exchange rates on an intertidal bank at Blacktofl, Humber Estuary, UK[J], The Science of the Total Environment,2003,314-316: 535-549
    [24]Moore, W.u, Further report on the bore of the Tsien-Tang-Kiang[R], London, Potter, Poultry.1893.
    [25]Moore,W.u, The Bore of the Tsien-Tang kiang(Hang-Chau Bay) [J], J. China Branch, Royal Asiatic Society,1888, (23):185-247.
    [26]O'Brien D J, Whitehouse R J S, Cramp A. The cyclic development of a macrotidal mudflat on varying timescales[J], Continental Shelf Research,2000,20(12-13):1593-1619
    [27]Paarlberg A J, Knaapen M A F, de Vries M B, et al. Biological influences on morphology and bed composition of an intertidal fiat[J], Estuarine, Coastal and Shelf Science,2005,64(4):577-590
    [28]Partheniades E., J.F. Kennedy, R.J. Etter and R.P. Hoyer, Investigations of the Depositional Behaviour of Fine Cohesive Sediments in an Annular Rotating Channel, Report 96, Hydrodynamics Lab., M.I.T., June,Cambridge, USA,1966.
    [29]Partiot H L, Memoire sur le mascaret, Paris[R], Dunod,1861.
    [30]Paterson D M, Tolhurst T J, Kelly J A, et al. Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK[J], Continental Shelf Research,2000,20(10):1373-1396.
    [31]Rayleigh Lord, On The Theory of Long Waves and Bores [J], Proceedings of the Royal Society of London, Series A,1914,90(619):324-328.
    [32]Shi Yinbiao.1-D Unsteady Mobile-bed Model of the Qiantang Estuary[C], Proceeding of the Seventh international symposium on river sedimentation[A],1998.
    [33]Shozo, Tokinaga. Forecasting of time series with fractal geometry by using scale transformations and parameters estimation obtained by the wavelet transform[J], Electronics and Communications in Japan, Part3,1997,80(8):20-30.
    [34]Shu An-ping, Fei Xiang-jun. Sediment transport capacity of hyperconcentrated flow[J]. Science in China Series G,2008,51(8):961-975.
    [35]Simpson J.H., N.R. Fisher and P. Wiles, Reynolds stress and TKE production in an estuary with a tidal bore[J], Estuarine, Coastal and Shelf Science,60 (2004):619-627.
    [36]Sternberg R.W., Berhane I.,Ogston A.S., Measurement of size and settling velocity of suspended aggregates onthe northern California continental shelf [J]. Marine Geology,1999 (154):43-53.
    [37]Tayfur G. Applicability of sediment transport capacitymodels for nonsteady state erosion from steep slopes [J].Journal of Hydrologic Engineering,2002,127(3):252-259.
    [38]Temmerman S, Govers G, Wartel S, et al. Modelling estuarine variations in tidal marsh sedimentation:response to changing sea level and suspended sediment concentrations[J], Marine Geology,2004,212(1-4):1-19.
    [39]Uncles R.J., J.A. Stephens, D.J. Law, Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK:Flccs, fluid mud, stationary suspensions and tidal bores[J], Estuarine, Coastal and Shelf Science,2006,67:30-52.
    [40]Venckp V, Foufoula-GeorgiOU E. Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets[J]. Journal of Hydrology,1996,27(3):3-27.
    [41]Verney R, Deloffre J, Brun. Cottan J C, et al. The effect of wave-induced turbulence on intertidal mudflats:Impact of boat trafic and wind[J], Continental Shelf Research,2007,27(5):594-612
    [42]Voulgaris George et al, Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek[J]. Continental Shelf Research,2004.
    [43]Widdows J, Brown S, Brinsley M D, et al. Temporal changes in intertidal sediment erodability: influence of biological and climatic factors[J], Continental Shelf Research,2000,20(10):1275-1289.
    [44]Willem T.B. Van der Lee,Temporal variation of floc size and settling velocity in the Dollard estuary.Continental Shelf Research [J],2000 (20):1495-1511.
    [45]Wolanskia E, Williamsb D, Spagnola S, Chanson H, Undular tidal bore dynamics in the Daly Estuary, Northern Australia[J], Estuarine, Coastal and Shelf Science,2004,60:629-636.
    [46]Xia X.M. Li Y et al, Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research,2004 (24):1809-1826.
    [47]Yang,C.T. Incipient motion and sediment transport[J], ASCE,1973,99(10):1679-1704.
    [48]Yang C T. Sediment Transport:Theory and Practice[M]. New York:McGraw Hill,1996:27-31.
    [49]Yuan TIAN, Xinxiao YU, Derong SU. RESPONSE OF SEDIMENT DISCHARGE TO ECOHYDROLOGICAL FACTORS IN LUERGOU CATCHMENT BASED ON WAVELET ANALYSIS[J], International Journal of Sediment Research,2007,22(1):70-77.
    [50]艾萍,倪伟新.我国水文数据挖掘技术研究的回顾与展望[J],计算机工程与应用,2003,39(28):13-16.
    [51]蔡煜东,许伟杰.运用自组织人工神经网络作汛期降水预报[J],贵州气象,1994,(4):22-24.
    [52]曹如轩.高含沙引水渠道输沙能力的数学模型[J].水利学报,1987,(9):39-46.
    [53]曹文洪,舒安平.潮流和波浪作用下悬移质挟沙能力研究述评[J].泥沙研究,1999,(5):74-80.
    [54]陈吉余,罗祖德,陈德昌,等.钱塘江河口沙坎的形成及其历史演变[J],地理学报,1964,30(2):109-123.
    [55]陈文彪,王琳,邓家泉,等.珠江口伶仃洋的治理研究[J],水利学报,1999,(3):75-80.
    [56]陈志昌,罗小峰.长江口深水航道治理工程物理模型试验研究成果综述[J],水运工程,2006,(B 12):134-140.
    [57]程江,何青,王元叶等.利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布[J].泥沙研究,2005a,(1):33-39.
    [58]程江,何青等.长江河口细颗粒泥沙絮凝体粒径的谱分析[J].长江流域资源与环境,2005b,(4):460-464.
    [59]程江.长江口悬浮细颗粒泥沙絮凝体特性研究[D].华东师范大学河口海岸国家重点实验室硕士论文,2004.
    [60]丁晶,邓育仁.水文水资源中不确定性分析与计算的藕合途径[J],水文,1996,(1):19-21.
    [61]丁文荣,周跃,周晓路.用小波神经网络藕合模型预测流域年均产沙量[J],人民长江,2010,(1):74-78.
    [62]丁钰,宋玉,魏彬.供水管网GIS中空间数据挖掘的研究与应用[J]郑州大学学报:理学版,2005,37(4):53-56.
    [63]窦国仁,董风舞,窦希萍,等.河口海岸泥沙数学模型研究[J],中国科学(A辑),1995b,25(9):995-1001.
    [64]窦国仁,董凤舞.波浪和潮流的挟沙能力[J].科学通报,1995a,40(5):443-446.
    [65]窦国仁.泥沙起动流速[J].水利学报,1960(4):44-60.
    [66]窦国仁.再论泥沙起动流速[J].泥沙研究,1999,(6):1-9.
    [67]郜昂,赵华云,杨世伦,等.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨-以杭州湾和长江口交汇处的南汇嘴为例[J],海洋科学进展,2008,26(1):44-50.
    [68]关许为等.长江口泥沙絮凝临界粒径试验研究[A].陈松等,海洋沉积物—海水界面过程研究[C].北京:海洋出版社,1997.
    [69]韩其为,何明民.泥沙起动规律及起动流速[M],北京:科学出版社,1999年.
    [70]韩其为.泥沙起动规律及起动流速[J].泥沙研究,1982(2):11-26.
    [71]韩曾萃,戴泽蘅,李光炳主编.钱塘江河口治理开发[M],中国水利水电出版社,2003.
    [72]侯志军,杨晓阳,李岩.黄河口水流挟沙力计算方法研究[J].人民黄河,2008,(11):49-51.
    [73]黄建维,孙献清.粘性泥沙在流动盐水中沉降特性的试验研究[A],第二次国际河流泥沙会议论文集,1983:286-294.
    [74]黄建维.海岸与河口黏性泥沙运动规律的研究和应用[M].北京:海洋出版社,2008.
    [75]黄建维.粘性泥沙在静水中沉降特性的试验研究[J].泥沙研究,1981,(2):30-39.
    [76]黄胜.嘉陵江流域北碚站年输沙量的变化规律及预测研究[J],泥沙研究,2008,(4):28-30.
    [77]季荣耀,陆永军.强潮河口水沙动力过程研究进展[J],水利水运工程学报,2008,(3):64-74.
    [78]蒋国俊,姚炎明,唐子文.长江口细颗粒泥沙絮凝沉降影响因素分析[J].海洋学报,2002,24(4):51-57.
    [79]蒋云钟,张小娟.数据挖掘技术在水资源领域的应用方法研究[J],人民黄河,2007,29(9):43-44.
    [80]金菊良,杨晓华,丁晶.基于神经网络的年径流预测模型[J],人民长江,1999,(30增刊):58-62.
    [81]金龙,秦伟良.多步预测的小波神经网络预报模型[J],大气科学,2000,24(1):71-86.
    [82]金鹰,王义刚,李宇.长江口粘性细颗粒泥沙絮凝试验研究[J].河海大学学报,2002,30(3):61-63.
    [83]蓝永超,康尔泗.BP神经网络在径流长期预测中的应用[J],中国沙漠,2001,21(1):97-100.
    [84]李伯根,谢饮春,夏小明,等.瓯江口南岸潮滩沉积动力过程的探讨[J].海洋学报,1994,16(2):86-94.
    [85]李彩林,许慧君,王金文.数据挖掘技术在径流预报中的应用[J],水电自动化与大坝监测,2007,31(2):75-78.
    [86]李纯良,李锐.基于一种新型人工神经网络的水流挟沙力模型研究[J],水利规划与设计,2009,(1):22-24.
    [87]李孟国.海岸河口泥沙数学模型研究进展[J],海洋工程,2006,24(1):139-154.
    [88]李远发,张俊华,马怀宝,等.黄河河口局部实体模型设计[J],人民黄河,2006,28(1):6-8.
    [89]林炳尧,余炯,黄世昌.涌潮三个基本问题研究[J].河口与海岸工程,1998a,(1):40-52.
    [90]林炳尧,黄世昌,潘存鸿.涌波的基本性质[J],长江科学院院报,2003,20(6):12-14。
    [91]林炳尧,周潮生,黄世昌.关于涌潮的研究[J],自然杂志,1998b,20(1):28-33.
    [92]林炳尧.浅水流动中涌潮的形成[J],水动力学研究与进展,1988,3(4):63-69.
    [93]刘家驹.在风浪和潮流作用下淤泥质浅滩含沙量的确定[J].水利水运科学研究,1988,(2):69-73.
    [94]刘俊萍,田峰巍,黄强.黄河上游河川径流变化多时间尺度分析[J],应用科学学报,2003,21(2):117-121.
    [95]刘林,陈立,王家生等.不同离子浓度下泥沙浓度对絮凝沉降的影响[J].武汉大学学报(工学版),2007,40(1):29-32.
    [96]刘勇健,李子生.人工神经网络在岩土工程中的应用综述[J],广东工业大学学报,2004,21(4):66-71.
    [97]卢金友.长江泥沙起动流速资料分析[J],人民长江,1990(4):39-45.
    [98]卢祥兴,杨火其,曾剑.钱塘江下游建桥对涌潮景观影响的研究[J],海洋学研究,2006,24(1):37-42.
    [99]路志强,李书全,赵良英,等.改进BP网络模型在年用水量预测中的应用[J],水科学与工程技术,2005,(1):18-20.
    [100]罗肇森.潮汐河口悬沙淤积和局部动床冲淤模型试验——射阳河闸下裁弯实例[A],泥沙模型报告汇编[C],1978.
    [101]潘存鸿,浅水间断流动数值模拟及其在钱塘江河口涌潮分析中的应用[D],上海大学博士论文,2007.
    [102]钱宁,万兆惠.泥沙运动力学[M],北京:科学出版社,1983年.
    [103]钱宁,谢汉祥,周志德,等.钱塘江河口沙坎的近代过程[J],地理学报,1964,30(2):124-141.
    [104]钱晓燕,袁鹏,邵骏,等.雅鲁藏布江河川径流变化的季节性规律研究[J],水资源与水工程学报,2010,21(1):29-33.
    [105]阮文杰.长江口天然水流中细颗粒泥沙的絮凝作用[J].海洋科学,1991a,(6):39-43.
    [106]阮文杰.细颗粒泥沙动水絮凝的机理分析[J].海洋科学,1991b,(5):46-49.
    [107]沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965年.
    [108]舒正渝.浅谈数据挖掘技术及其应用[J],中国西部科技,2010,9(5):38-39.
    [109]宋立松,余祈文.杭州湾悬沙净输移机制探讨[J],泥沙研究,2003,(3):48-52.
    [110]宋立松.模糊神经网络在杭州湾含沙量过程预报中的应用探讨[J],泥沙研究,2001,(4):29-33.
    [111]孙志林,黄赛花,祝丽丽,等.黏性非均匀沙的起动概率[J].浙江大学学报(工学版),2007,41(1):18-22.
    [112]孙志林,夏珊珊,朱晓,等.河口时变水流挟沙能力公式[J].清华大学学报:自然科学版,2010,(3):383-386.
    [113]孙志林.瓯江河口推移质的造床作用[J].杭州大学学报(自然科学版),1992,19(4):455-460.
    [114]唐建华.长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究[D],华东师范大学硕士论文,2007.
    [115]王光谦,河流泥沙研究进展[J].泥沙研究,2007,(2):61-81.
    [116]王明怡,王德林,黄金钟.基于概率神经网络的基因选择和组织分类方法[J],科技通报,2005,21(1):10-13.
    [117]王日莲,董曼玲.人工神经网络在水文预报中的应用[J],水利水电科技进展,2002,22(5):33-37.
    [118]王文圣,丁晶,李跃清.水文小波分析[M],化学工业出版社,2005.
    [119]王文圣,李跃清,解苗苗,等.长江上游主要河流年径流序列变化特性分析[J],四川大学学报:工程科学版,2008,40(3):70-75.
    [120]王文圣,向红莲,赵东.水文序列分形维数估计的小波方法[J],四川大学学报:工程科学版,2005,37(1):1-4.
    [121]王珍珍,徐群,陈国平.瓯江河口抉沙力公式研究[J].水运工程,2010,(5):1-5.
    [122]闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003:285-300.
    [123]吴荣荣,李九发,刘启贞等.钱塘江河口细颗粒泥沙絮凝沉降特性研究[J],海洋湖沼通报,2007,(3):29-34.
    [124]吴维庆.涌潮形成条件及计算[R],南京水利科学研究所研究报告汇编(河港研究第二分册), 1963.
    [125]向衍,吴中如,傅志敏.数据挖掘技术在大坝安全决策支持系统中的应用[J],水力发电,2003,29(1):20-23.
    [126]谢钦春,李伯根,夏小明,等.浙江瓯江口南岸潮滩相带的时空变化[J],地理学报,1994,49(6):509-516.
    [127]谢作涛,张小峰,谈广呜.长江螺山站水位预报研究[J],水电能源科学,2003,21(3):7-9.
    [128]熊绍隆,胡玉棠.潮汐河口悬移质动床实物模型的理论与实践[J],泥沙研究,1999(1):1-6.
    [129]熊绍隆,曾剑,韩海骞.潮汐河口泥沙物理模型若干问题探讨[J],水利水电科技进展,2010,30(1):19-23.
    [130]徐中民,蓝永超,程国栋.人工神经网络方法在径流预报中的应用[J],冰川冻土,2000,22(4):372-375.
    [131]薛鸿超.长江口江心沙北泓河段淤积模型试验报告[R],南京,华东水利学院,1979.
    [132]薛联青,崔广柏,陈凯麒.非平稳时间序列的动态水位神经网络预报模型[J],湖泊科学,2002,14(1):19-24.
    [133]杨道辉,马光文,杨梅.粒子群小波人工神经网络组合模型的径流预测[J],水力发电,2009,(1):4-6.
    [134]杨荣富,丁晶,刘日东.神经网络模拟降雨径流过程[J],水利学报,1998,(10):69-73.
    [135]杨铁笙,李富根,梁朝皇.粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟[J],泥沙研究,2005,(4):14-20.
    [136]于东生,田淳.基于BP算法的泥沙含量预测研究[J],三峡大学学报(自然科学版),2003,25(2):47-51.
    [137]于浩,张晓萍,李锐.延河流域径流和输沙周期变化特征的小波分析[J],中国水土保持科学,2008,6(4):18-22
    [138]余炯,曹颖.钱塘江河口的长周期泥沙冲淤和河床变形[J],东海海洋,2006b,24(2):28-38.
    [139]余炯,曹颖.治江缩窄后钱塘江河口泥沙淤积和成因探讨[J],泥沙研究,2006a,(1):17-24.
    [140]曾剑.钱塘江河口建桥对涌潮的影响分析[D],浙江大学硕士学位论文,2004.
    [141]张红武,张清.黄河水流挟沙力的计算公式[J].人民黄河,1993,(11):7-9.
    [142]张金良,刘媛媛,练继建.模糊神经网络对汛期三门峡水库泥沙冲淤量的计算[J],水力发电学报,2004,23(2):39-43.
    [143]张强,陈桂亚,许崇育,等.长江流域水沙周期特征及可能影响原因[J],水科学进展,2009,20(1):80-85.
    [144]张瑞瑾.河流动力学[M].北京:工业出版社,1960.
    [145]张瑞瑾.河流泥沙动力学[M].北京,中国水利水电出版社,1998.
    [146]张小峰,许全喜,裴莹第.流域产流产沙BP网络预报模型的初步研究[J],水科学进展,2001, 12(1):17-22.
    [147]张志忠,阮文杰,蒋国俊.长江口动水絮凝沉降与拦门沙淤积的关系[J].海洋与湖沼,1995,26(6):633-637.
    [148]张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨[A].第二次河流泥沙国际学术讨论会论文集[M].北京,水利水电出版社,1983:274-285.
    [149]张志忠,王允菊,徐志刚等.长江口细颗粒泥沙絮凝试验研究[R].杭州大学河口与港湾研究室,1981:4-5.
    [150]张志忠.长江口细颗粒泥沙基本特性研究[J],泥沙研究,1996,(1):67-73.
    [151]赵龙保,祝永康.椒江河口挟沙力经验关系初步分析[J].泥沙研究,1991,(4):69-75.
    [152]赵龙保.粘性泥沙在流动盐水中沉降试验研究[J],海洋通报,1995,14(3):27-33.
    [153]赵旭升,杨天行,王珊琳.数据挖掘技术在防洪决策支持系统中的应用[J],人民黄河,2003,25(5):8-9.
    [154]周胜,杨永楚.钱塘江水下防护工程研究与实践[J].水利学报,1992(1):20-30.
    [155]朱兵,罗建东,王文圣.水文序列小波变换模数的关联维数研究[J],2007,29(10):36-37.
    [156]诸勇,钱积新.基于鲁棒稳定高阶动态神经网络的非线性系统的辨识[J],浙江大学学报:工学版,2001,35(1):93-96.