超声珩齿振动系统的非谐振设计理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬齿面齿轮的广泛应用,满足了现代工业对齿轮传动提出的结构紧凑、噪音小、性能稳定的使用要求。珩齿是一种对淬硬齿轮进行精加工的工艺方法,可作为硬齿面齿轮的最终精加工工序。传统珩齿工艺存在加工效率低、珩轮易堵塞、修形能力差等缺点。可以考虑从提高珩削速度、减小珩削力、缩短磨粒切削长度、减少珩轮堵塞等方面改进珩齿工艺。现代超声波加工理论和技术为这一构想提供了理论基础和技术支撑。超声珩齿将超声振动切削技术应用于珩齿加工,其高频振动能有效减小珩磨力,切削液的超声空化作用可以对珩轮进行动态清洗,有效减小珩轮堵塞,提高加工效率,可充分发挥硬珩齿工艺特点。超声珩齿振动系统是超声珩齿工艺系统的核心,其性能直接影响着工件质量。目前,在超声加工振动系统设计中,普遍采用谐振单元的全谐振设计理论:而齿轮的振动频率由其结构决定,不能按照超声波发生器的工作频率进行谐振设计,是非谐振单元。因此,课题组提出了非谐振单元变幅器的设计理论,解决了薄环盘类圆柱齿轮的超声珩齿振动系统的设计问题。但工程应用中,大多数齿轮的厚径比在中厚板范围内,还带有轮毂、辐板、轮缘、减重孔等结构,超声珩齿振动系统的设计,不能直接应用中厚板的振动求解理论。这制约了超声珩齿技术的发展与应用,为此,超声珩齿振动系统的设计理论和实验研究,已成为超声珩齿加工中亟待解决的问题。
     本论文以建立中小模数(小于10mm),分度圆直径在300mm左右的不同结构、尺寸的齿轮与变幅杆两非谐振单元组成的超声珩齿振动系统的非谐振设计理论为目标,研究振动系统的全谐振设计与非谐振设计之间的联系与区别。从理论和实验角度证明:振动系统的全谐振设计是非谐振设计的特例,非谐振设计涵盖了全谐振设计,是超声振动系统设计理论的扩展和深化。提出了齿轮与变幅杆两非谐振单元超声珩齿振动系统的非谐振设计理论。其实质是根据齿轮结构特点,合理简化其振动模型,联合建立齿轮和变幅杆的振动系统模型,通过振动耦合的位移、力、弯矩等连续条件和边界条件建立系统的振动频率方程,进而确定满足谐振频率和振动模态的系统形状尺寸参数。
     按照振动系统利用变幅杆与齿轮的耦合振动形式,超声珩齿振动系统可分为:纵向、纵向—弯曲、纵向—径向三种耦合振动形式。圆柱齿轮横向弯曲振动的统一求解模型的建立与求解,是纵—弯齿轮变幅器非谐振设计的理论基础。将齿轮等效为与其分度圆等径的中厚环盘,利用Mindlin中厚板振动求解理论,通过齿轮轮毂、辐板、轮缘三个环盘单元的耦合振动连续条件和边界条件,并结合三个环盘单元的厚度尺寸关系,建立了圆柱齿轮的横向弯曲振动求解的统一模型,为超声珩齿振动系统的设计奠定了理论基础。
     阻抗特性和谐振特性是超声珩齿振动系统的两个重要性能指标。以阻抗分析仪和激光测振仪为基础,建立了振动系统的阻抗特性和谐振特性参数测量系统,可以精确测量齿轮端面不同位置的振幅,为非谐振单元齿轮超声加工振动系统的精确设计和谐振特性检测提供了一种新的测试方法。
     对不同振动方式齿轮变幅器所适应齿轮参数范围给出定量描述。加工分度圆直径小于100mm,厚径比大于0.3的中小模数齿轮,适宜利用纵向振动方式设计振动系统;加工分度圆直径大于100mm,且厚径比小于0.3的齿轮,适宜利用纵弯耦合振动方式设计振动系统。推导出各类型纵向、纵弯谐振变幅器的频率方程,通过多种变幅器的设计、有限元分析验证、谐振特性实验,表明:对于分度圆直径一定,不同的中小模数、齿数圆柱齿轮的变幅器设计,非谐振设计理论是有效的,它将非谐振单元变幅器的设计理论从薄环盘理论拓展到了中厚环盘理论。为工程中不同结构参数的圆柱齿轮超声珩齿振动系统的设计提供了设计理论和技术支撑。
     应用三维振动里兹数值求解方法,统一了圆锥、指数形和悬链线形变幅杆的扭转、纵向、弯曲振动的求解方法;结果表明:三维振动里兹数值法求解比一维振动理论求解准确,方便了大截面变幅杆的设计。统一了径向变厚度环盘横向弯曲和径向振动的求解方法,为变厚度齿轮动态分析建模、振动特性分析提供了一种新的求解分析方法。为超声珩齿振动系统的精确建模和三维振动求解分析提供了研究基础。
     综合应用上述设计理论和实验方法研制了高速超声珩齿装置,在Y4650珩齿机上构建了超声珩齿实验系统,实现了超声珩齿。与传统珩齿相比,超声珩齿的工艺优势在于:可以获得更理想的齿面质量、更高的珩削效率,且齿面加工纹理复杂,齿轮的齿形、齿向、径向跳动、周节累积偏差有不同程度的减小,尤其齿向偏差减小更明显。为利用超声振动增大珩齿的修形能力,提高齿轮加工精度,提供了实验依据。
     上述研究工作得到了国家自然科学基金项目“非谐振单元变幅器设计理论及其齿轮超声剃珩应用(50975191)”和山西省研究生优秀创新项目“齿轮超声加工振动系统设计理论与实验验证(20113027)”的资助。通过以上设计理论和实验研究,确立了超声珩齿振动系统的非谐振设计理论,拓展和完善了超声加工振动系统的设计理论体系。超声珩齿振动系统的非谐振设计方法同样适合于超声滚齿、剃齿、研齿等齿轮超声加工振动系统的设计,为超声加工在齿轮精密制造中的发展与应用奠定了理论和实验基础。
Modern gear transmissions must be compact, noiseless and stable in performance, so the most primary need is hardened gear with high precision. Gear honing process used in the finial process of quench-hardening gear is a surface finishing machining. However, traditional gear honing was inefficient and poor ability of modification, while honing wheel was jammed usually. Gear honing was restricted within these drawbacks. Ultrasonic vibration can reduce honing forces obviously and ultrasonic cavitations of machining liquid can implement dynamic washing during the machining process, which decreases the jam of honing wheel and increases the honing efficience. So the ultrasonic gear honing has a bright future to apply. Gear resonance system is the core of gear ultrasonic honing system, which has significant effect on gear ultrasonic machining quality. Most of the researchers designed ultrasonic resonance system in resonant way. Otherwise, gear is a inharmnoic unit. The inherent vibration frequency of gear is decided by its own stcture and paremeters according to engineering application. It is reasonable to design gear ultrasonic resonance system in inharmnoic design method rather than resonant design. Therefore, it brought forward a inharmonic design theory of gear amplitude transformer, which can design resonant system of thin plate helical gear in ultrasonic honing. However, the ratio of thickness to reference diameters of most gear in engineering application falls into that of moderate plate. At the same time, there are hub, web, rim, weight reducing holes structures in most gear. It can't adopt moderate plate theory straightway to design resonance system in ultrasonic gear honing, which restricts the development and application of ultrasonic gear honing. There are no consummate design theories of gear ultrasonic resonance system. It is important to set up design theory system of ultrasonic resonance system composed of inharmonic units. The inharmonic design theory is essential for small and moderate modulus gear with different structure feature in ultrasonic honing.
     It is compulsory to present design theory of resonant system composed of two inharmonic units such as gear and horn. In ultrasonic gear honing, the gear's modulus is less than10mm and the reference circle diameter is about300mm. It also laid more emphasis on the distinguish and affiliation of whole-resonance and inharmonic design theories. Through theoretical and experimental view, it proved that the whole-resonance design theory is a special case of the inharmonic design theory, the inharmonic design theory covers the whole-resonance design theory, which is the expansion and deepening of the ultrasonic vibration system design theory. It presented a inharmonic design approach to design transformer in ultrasonic gear honing. Firstly, it brought out a simplified vibration analytical model that was equivalent to the gear, according to gear structure characteristic. Secondly, it set up a united analytical model of vibration system composed of gear and horn. Therefore, frequency equation was achieved in this way based on kinetic equation, force and displacement coupling, and boundary condition. The unknown parameter and mode shape have been solved in the theory with the help of Matalab201IRa.
     There are three kinds of vibration style such as longitudinal mode, longitudinal-flexural mode, and longitudinal-radial mode in ultrasonic gear honing, according to the coupling vibration style of the two inharmonic units. An analyzed model of gear with wheel hub, web and rim was derived from the Mindlin moderate plate theory. The gear was divided into three annular segments along the locations of the step variations. The natural boundary conditions that traverse displacement, rotation angle, shear force and flexural moment were equal to ensure the continuity along the interface of the wheel hub, web and rim segments. The governing differential equations for harmonic vibration of annular segments were derived to solve the gear vibration problem. Comparisons were made with the frequencies arising from the presented method, finite elements method, and structure modal experiment. The result correlation among these three ways is quite consistent. The model has certain theoretical significance to guide designing a vibration system in ultrasonic gear honing.
     Mechanical impedance and resonance characteristic are two key guideline to design resonant system in ultrasonic gear honing. Impedance characteristic measure system was set up based on impedance analyzer. Polytec Laser Doppler Vibrometers OFV-505and lathe C6140were used to precisely measure mechanical vibrations amplitude of different location in gear of resonant system, which will be helpful for accurate design and experiment of resonant system.
     Furthermore it pointed out that these gear parameters range was suit to certain vibration style of resonance system. During the machining process of the gear with middle or small modulus, it could be appropriate for the gear with less than100millimeter diameter of reference circle and the ratio of thickness to radial dimension more than0.3to use the amplitude transformer with longitudinal vibration mode. It also could be appropriate for the gear with more than100millimeter diameter of reference circle and the ratio of thickness to radial dimension less than0.3to use the amplitude transformer with longitudinal and flexural vibration mode. A novel design method was derived from a uniform analyzed model of gear with wheel hub, web and rim based on the Mindlin moderate plate theory. The uniform analytical model of resonant system in longitudinal-lexural vibration was set up based on kinetic equation, force and displacement coupling, and boundary condition of horn and gear. The natural boundary conditions that traverse displacement, rotation angle, shear force and flexural moment were equal to ensure the continuity along the interface of the wheel hub, web and rim segments. Therefore, frequency equation was achieved in this way. Comparisons were made with the frequencies and displacement arised from the presented method, finite elements method, and resonant vibration experiment. The result derived from these three ways is very identical, which validates the design method of transformer in longitudinal-flexural vibration mode. The design method of resonant system composed of two units in gear flexural vibration was brought forward, which can extend the transformer design range from gear including thin annular plate to gear including moderate annular plate. The inharmonic design theory will provided theoretical and technical support for resonant system of helical gear with different structure and parameters.
     It presented the Ritz method in Energy-variational principle based on three dimensional elasticity kinetics equations. Three vibration modes such as longitudinal, bending and torsional vibration inherent frequencies and mode shapes for conical, exponential and catenary horns could be solved. Analytical solutions based on the three dimensional elastic vibration theories produce more accurate answers than ones that are based on the classical Euler-Bernoulli theory. Axisymmetric free vibration such as transverse flexural and radial vibration inherent frequencies and mode shapes for annular disk with non-uniform thickness cross section could be solved. The present work proposes a new approach to vibrational characteristics analysis of the annular disks with non uniform cross-section. The conclusion has certain theoretical guidance and engineering application significance to design the vibration system of ultrasonic gear machining.
     The high speed ultrasonic gear honing device was developed with the help of the above design theory, furthermore, the ultrasonic gear honing experimental system in gear honing machine Y4650was established. The contrast experiment of using the longitudinal, longitudinal and transversal amplitude transformer in ultrasonic gear honing to the traditional gear honing was also accomplished. At the same time, surface roughness, revolution mark, honing cutting efficiency and the gear machining precision have been contrastive analyzed. It can achieve better gear roughness and two times cutting efficiency through the ultrasonic honing method than it in the traditional method. At last, the tooth precision through the direction of ultrasonic vibration becomes better, which provides a experimental proof that it is possible to improve gear honing precision and enforce modification possibility by gear ultrasonic vibration.
     The dissertation was supported by the national natural science foundation project of China (Grant No.50975191) of China and the outstanding innovation project (Grant No.20113027) of Shanxi province foundation for graduate student. The above theory and experiment form the inharmonic design theory of resonant system in ultrasonic gear honing, which enriches and perfects the design theory of ultrasonic machining vibration system. The inharmonic design theory is suitable for resonant system in gear ultrasonic hobbing, shaving and lapping. The experiment about the comparison between the result of ultrasonic honing and that of traditional honing laids a solid theoretical and experimental foundation of the research and application of gear ultrasonic machining.
引文
[1]刘忠明,王长路,张元国.中国齿轮工业的现状、挑战与2030年愿景[J].机械传动,2011,35(12):1-6.
    [2]中国齿轮专业协会.中国齿轮行业“十二五”发展规划纲要(2011-2015)[EB/OL].http://www.cncgma.org/new-nr.asp?anclassid=35&nclassid=&id=2617nclassid15=15&id =2638.html,2010-06-30.
    [3]中国机械工程学会,中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.
    [4]Alfonso Fuentes, Hiroyuki Nagamoto, Faydor L. Litvin,et al. Computerized design of modified helical gears finished by plunge shaving[J]. Computer Methods in Applied Mechanics and Engineering,2010,199 (25-28):1677-1690.
    [5]王时英.超声珩齿变幅器的设计理论及实验研究[D].太原:太原理工大学,2009.
    [6]杜功焕,朱哲民,龚秀芬.声学基础(第三版)[M].南京:南京大学出版社,2012.
    [7]Rozenberg L. D, Kazantsev V. F.Ultrasonic cutting[M]. New York:Consultants Bureau, 1964.
    [8]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社,2007.
    [9]T. B.THOE, D. K. ASPINWALL, M. L. H. WISE. REVIEW ON ULTRASONIC MACHINING[J]. International Journal of Machine Tools & Manufacture,1998,38 (4):239-255.
    [10]D.E.Breh, T.A.Dow.Review of vibration-assisted machining [J]. Precision Engineering,2008,32 (3):153-172.
    [11]Z.J. Pei, P.M. Ferreira. Modeling of ductile-mode material removal in rotary ultrasonic machining [J]. International Journal of Machine Tools & Manufacture,1998,38 (10-11):1399-1418.
    [12]Z.C. Li, Y. Jiao, T.W. Deines,et al. Rotary ultrasonic machining of ceramic matrix compounds:feasibility study and designed experiments [J]. International Journal of Machine Tools & Manufacture,2005,45 (12-13):1402-1411.
    [13]A. Curodeau, J. Guay, D. Rodrigue, et al. Ultrasonic abrasive μ-machining with thermoplastic tooling [J]. International Journal of Machine Tools & Manufacture,2008, 48(14):1553-1561.
    [14]R.Truckenmuller, Y. Cheng, R. Ahrens,et al. Micro ultrasonic welding:joining of chemically inert polymer micro parts for single material fluidic components and systems [J]. Microsystem Technologies,2006,12 (10-11):1027-1029.
    [15]Rupinder Singh, J.S. Khamba.Ultrasonic machining of titanium and its alloys:A review [J]. Journal of Materials Processing Technology,2006,173 (2):125-135.
    [16]Jatinder Kumar, J. S. Khamba. Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis[J].International Journal of Machine Tools & Manufacture,2010,48 (1-4):103-119.
    [17]Jerald L. Overcash, James F. Cuttino. Design and experimental results of a tunable vibration turning device operating at ultrasonic frequencies[J]. Precision Engineering, 2009,33 (2):127-134.
    [18]Z.J. Pei, P.M. Ferreira. An experimental investigation of rotary ultrasonic face Milling[J].International Journal of Machine Tools & Manufacture,1999,39 (8):1327-1344.
    [19]G.F. Gao, B. Zhao, D.H Xiang, et al. Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics [J]. Journal of Materials Processing Technology,2009, 209(1):32-37.
    [20]E. Brinks Meier, Y. Mutlugunes, F. Klocke, et al. Ultra-precision grinding [J]. CIRP Annals Manufacturing Technology,2010,59 (2):652-671.
    [21]R. Singh, J.S. Khamba. Comparison of slurry effect on machining characteristics of titanium in ultrasonic drilling[J]. Journal of Materials Processing Technology,2008,197 (1-3):200-205.
    [22]G.-L. Chern, Jia-Ming Liang. Study on boring and drilling with vibration cutting[J]. International Journal of Machine Tools & Manufacture,2007,47(1):133-140.
    [23]吴雁.微-纳米复合陶瓷二维超声振动磨削机理试验研究[D].上海:上海交通大学,2007.
    [24]隈部淳一郎.精密加工——振动切削基础和应用(中译本)[M].北京:机械工业出版社,1985.
    [25]尹韶辉,张辉润.超声振动滚齿加工试验[J].新技术新工艺,1995(6):22.
    [26]罗凯华.超声振动滚齿加工的实验研究[J].新技术新工艺,2001(9):14-15.
    [27]S. I. Agapov. Hobbing of small-module gears in the presence of ultrasound [J]. Russian Engineering Research,2008,28(4):343-345.
    [28]S. I. Agapov, I.G.Tkachenko. Determining the Optimal Amplitudes and Directions of Ultrasound Vibrations in Cutting Small-Module Gears [J]. Russian Engineering Research,2010,30(2):141-143.
    [29]HOSOYA NORIO, YONEYAMA SHIGEYUKI.GEAR TOOTH FLANK FINISHING METHOD BY ULTRASONIC WAVE[P].JP:19880270838,1990-05-11.
    [30]魏冰阳,邓效忠,杨建军,等.一种研齿机[P].中国专利:200720089823.1,2008-02-13.
    [31]B.Y. Wei, X.Z. Deng, Z.D. Fang. Study on ultrasonic-assisted lapping of gears[J]. International Journal of Machine Tools & Manufacture,2007,47 (12-13):2051-2056.
    [32]杨建军,邓效忠,魏冰阳,等.弧齿锥齿轮激励研齿的动态研磨分析与试验[J].航空动力学报,2010,25(12):2839-2845.
    [33]魏冰阳.螺旋锥齿轮研磨加工的理论与实验研究[D].西安:西北工业大学,2008.
    [34]P S Pa. Design of gear-form electrode and ultrasonic-aid in electrochemical finishing of SNC236 surface [J]. Indian Journal of Engineering & Material Sciences,2007, 14(3):202-208.
    [35]贾连杰,刁国虎,马建新,等.微齿轮超声复合电解加工工艺设计与试验[J].扬州大学学报(自然科学版),2011,14(3):48-52.
    [36]秦慧斌,吕明,王时英.齿轮超声加工技术的研究综述与展望[J].机械传动,2012,36(3):102-106.
    [37]陈兴洲,邱超,薛东彬,等.硬切削技术在硬齿面齿轮加工中的应用[J].机械制造,2010,48(4):40-41.
    [38]钱利霞,李华,肖启明.硬齿面齿轮加工技术研究及应用fJ].热加工工艺2011,40(2):184-185,187.
    [39]吕明,梁国星.硬齿面齿轮加工技术进展及展望[J].太原理工大学学报,2012,43(3):237-242.
    [40]K.D. Bouzakis, E. Lili, N. Michailidis, et al. Manufacturing of cylindrical gears by generating cutting processes:A critical synthesis of analysis methods [J]. CIRP Annals-Manufacturing Technology,2008,57 (2):676-696.
    [41]E. Brinksmeier, A. Giwerzew. Hard gear finishing viewed as a process of abrasive wear [J]. Wear,2005,258 (1-4):62-69.
    [42]吕明,马红民,徐增伦.硬齿面齿轮珩齿刀制造新工艺的研究[J].金刚石与磨料磨具工程,2003(5):46-47.
    [43]吕明,李文斌,徐灵岩,等.全切削型剃珩齿轮刀具及使用方法[P].中国专利:200410064544.0,2008-06-04.
    [44]梁国星.镀膜CBN珩轮激光钎焊理论分析与实验研究[D].太原:太原理工大学, 2010.
    [45]李文斌.电镀CBN径向珩轮的设计理论及实验研究[D].太原:太原理工大学,2010.
    [46]张满栋.电镀CBN硬珩轮珩齿机理及动态仿真分析[D].太原:太原理工大学,2010.
    [47]闻邦椿,李以农,张义民,振动利用工程[M].北京:科学出版社,2005.
    [48]吕明,王时英,轧刚.超声珩齿弯曲振动变幅器的位移特性[J].机械工程学报,2008,44(7):106-111.
    [49]中国科学技术协会主编.机械工程学科发展报告(机械制造)[M],北京:中国科技出版社,2009.
    [50]马麟.超声振动辅助珩齿工艺的基础理论及材料去除机理研究[D].太原:太原理工大学,2009.
    [51]李向鹏.超声珩齿变幅器动力学特性研究[D].太原:太原理工大学,2012.
    [52]佘银柱.超声珩齿非谐振单元变幅器的设计理论与实验研究[D].太原:太原理工大学,2012.
    [53]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报,2009,49(11):1799-1804.
    [54]俞宏沛,楼成淦,仲林建.高功率超声振动系统探讨[J].声学与电子工程,2010(2):1-4.
    [55]魏冰阳,邓效忠,杨建军,等.超声研齿换能器的设计与研齿试验[J].声学技术,2007,26(4):767-770.
    [56]吴能赏,邓效忠,杨建军.准双曲面齿轮超声研齿系统中变幅杆的设计与研究[J].机械传动,2008,32(2):16-17,42.
    [57]宫晓琴,邢荣峰.基于四端网络法的超声珩齿振动系统设计[J].新技术新工艺,2009,2009(7):60-62.
    [58]J.A. Gallego-Juarez, G. Rodriguez, V. Acosta, et al. Power ultrasonic transducers with extensive radiators for industrial processing[J].Ultrasonics Sonochemistry,2010,17 (6): 953-964.
    [59]李英华.基于旋转行波的超声抛光振子理论及实验研究[D].锦州:辽宁工业大学,2011.
    [60]宁景锋,贺西平,李娜.纵振激励频率对圆盘弯曲振动特性的影响[J].振动与冲击,2011,30(4):100-102.
    [61]李伟,贺西平,张勇.纵向振子激励源面积对圆盘振动特性的影响[J].机械科学与技术,2010,29(3):404-406,411.
    [62]刘世清,王家涛,苏超.径向复合功率合成超声振动系统[J].浙江师范大学学报(自然科学版),2012,35(1):41-46.
    [63]许龙,林书玉.模式转换型超声塑焊振动系统的设计[J].声学学报,2010,35(6):688-693.
    [64]祝锡晶.超声光整加工及表面成型技术[M],北京:中国科学文化出版社,2005.
    [65]王时英,吕明,轧刚.非谐环盘及变幅杆组成的变幅器动力学特性研究[J].声学学报,2008,33(5):462-468.
    [66]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [67]秦慧斌,吕明,王时英,等.三维振动里兹法在变幅杆谐振特性分析中的应用研究[J].振动与冲击,2012,31(18):163-168.
    [68]凤飞龙,朱旭宁,林书玉.指数形变幅杆固有频率的瑞利修正[J].陕西师范大学学报(自然科学版),2002,30(4):47-49.
    [69]张鹏利,付志强,林书玉.悬链线形超声变幅杆共振频率的瑞利修正[J].陕西师范大学学报,2009,37(5):35-37,41.
    [70]Kei-Lin Kuo. Design of rotary ultrasonic milling tool using FEM simulation[J]. Journal of Materials Processing Technology,2008,201 (1-3):48-52.
    [71]Kei-Lin KUO.Ultrasonic vibrating system design and tool analysis[J]. Transactions of Nonferrous Metals Society of China,2009,19(S1):225-231.
    [72]K.H.W. Seah, Y.S. Wong, L.C. Lee. Design of tool holders for ultrasonic machining using FEM[J]. Journal of Materials Processing Technology,1993,37(1-4):801-816.
    [73]S.G Amin, M.H.M Ahmed, H.A Youssef. optimum design charts of acoustic horns for ultrasonic machining[J]. Proc. Int. Conf on AMPT's,1993,93 (1):139-147.
    [74]陈俊波.超声变幅杆节点优化设计[J].声学与电子工程,2009(3):23-24,45.
    [75]张可听,张向慧,高炬.带有加工工具的超声复合变幅杆的优化设计[J].机械设计与制造,2011(11):33-35.
    [76]杨志斌,吴凤林,轧刚.大振幅比超声变幅杆的优化设计[J].电加工与模具,2007(6):44-46,49.
    [77]Guangping Zhou, Ming xuan Li. A study on ultrasonic solid horns for flexural mode [J]. Journal of the Acoustical Society of America.2000,107 (3):1358-1362.
    [78]贺西平,高洁.超声变幅杆设计方法研究[J].声学技术,2006,25(1):82-86.
    [79]曹志远,张佑启.半解析数值方法[M].北京:国防工业出版社,1992.
    [80]王勖成.有限单元法[M].北京:清华大学出版社,2009.
    [81]Singiresu S.Rao著,李欣业,张明路,译.Mechanical Vibrations Fourth Edition机械振动(第四版)[M].北京:清华大学出版社,2009.
    [82]A. Bayon, F. Gasc6n, R. Medina, et al. Study of pure transverse motion in free cylinders and plates in flexural vibration by Ritz's method[J]. European Journal of Mechanics-A/Solids,2011,30 (3):423-431.
    [83]Jae-Hoon Kang, Arthur W. Leissa. Three-dimensional vibration analysis of thick, tapered rods and beams with circular cross-section[J]. International Journal of Mechanical Sciences,2004,46 (6):929-944.
    [84]Jae-Hoon Kang, Arthur W. Leissa. Three-dimensional vibrations of solid cones with and without an axial circular cylindrical hole[J]. International Journal of Solids and Structures,2004,41 (14):3735-3746.
    [85]Hyeongill Lee. MODAL ACOUSTIC RADIATION CHARACTERISTICS OF A THICK ANNULAR DISK[D]. Ohio:The Ohio State University,2003.
    [86]闻邦椿.机械设计手册(第五版)第二卷机械零部件设计(连接、紧固与传动)[M].北京:机械工业出版社,2010.
    [87]Mindlin R.D, Jiashi Yang. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates [M].Singapore:World Scientific Publishing Co. Pte. Ltd,2006.
    [88]Mindlin R.D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J], Journal of Applied Mechanics,1951,73(18):31-38.
    [89]MINDLIN R.D, DERESIEWICZ H. Thickness-Shear and Flexural Vibrations of a Circular Disk [J]. Journal of Applied Physics,1954,25(10):1329-1332.
    [90]MINDLIN R.D, SCHACKNOW A, DERESIEWICZ, et al. Flexural vibrations of rectangular plates[J], Journal of Applied Mechanics,1956,78(23):430-436.
    [91]Hosseini Hashemi S, Es'haghi M, Rokni Damavandi Taher H, et al. Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory[J]. Journal of Sound and Vibration,2010,329(16):3382-3396.
    [92]HOSSEINI-HASHEMIN S,FADAEE M, ES'HAGHI M. A novel approach for in-plane/out-of-plane frequency analysis of functionally graded circular/annular plates[J]. International Journal of Mechanical Sciences,2010,52 (8):1025-1035.
    [93]N.G.STEPHEN. MINDLIN PLATE THEORY:BEST SHEAR COEFFICIENT AND HIGER SPECTRA VALIDITY[J]. Journal of Sound and Vibration,1997,202(4):539-553.
    [94]潘晓娟,贺西平.厚圆盘弯曲振动研究[J].物理学报,2010,59(11):7911-7916.
    [95]李向鹏,张春辉,王时英.基于Mindlin理论的齿轮横向振动模型[J].振动与冲击,2011,30(12):230-234.
    [96]Sh. Hosseini-Hashemi, M. Omidi, H. Rokni Damavandi Taher. The validity range of CPT and Mindlin plate theory in comparison with 3-D vibrational analysis of circular plates on the elastic foundation [J]. European Journal of Mechanics-A/Solids,2009,28 (2):289-304.
    [97]Sh. Hosseini-Hashemi, M. Azimzadeh-Monfared, H. Rokni Damavandi Taher. A 3-D Ritz solution for free vibration of circular/annular functionally graded plates integrated with piezoelectric layers [J]. International Journal of Engineering Science,2010, 48(12):1971-1984.
    [98]Ding Zhou. Three-dimensional Vibration Analysis of Structural Elements Using Chebyshev-Ritz Method [M].Beijing:Science Press,2007.
    [99]周欣竹,郑建军,姜璐.Winkler地基上变厚度圆板的轴对称弯曲[J].力学季刊,2005,26(1):169-176.
    [100]Bin Liang. Shu-Fen Zhang, Dian-Yun Chen. Natural frequencies of circular annular plates with variable thickness by a new method [J]. International Journal of Pressure Vessels and Piping,2007,84 (5):293-297.
    [101]Z.H. Zhou, K.W.Wong, X.S.Xu, et al. Natural vibration of circular and annular thin plates by Hamiltonian approach [J]. Journal of Sound and Vibration,2011,330 (5): 1005-1017.
    [102]Kang Jae-Hoon. Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation [J]. Computers and Structures,2003,81(16): 1663-1675.
    [103]H. Rokni Damavandi Taher, M.Omidi, A.A.Zadpoor, et al. Free vibration of circular and annular plates with variable thickness and different combinations of boundary conditions [J]. Journal of sound and vibration,2006,296 (4-5):1084-1092.
    [104]Y.K.TSO, C.H.HANSEN. WAVE PROPAGATION THROUGH CYLINDER/PLATE JUNCTIONS. [J]. Journal of Sound and Vibration,1995,186(3):447-461.
    [105]A.ARPACI. ANNULAR PLATE DAMPERS ATTACHED TO CONTINUOUS SYSTEM [J]. Journal of Sound and Vibration,1996,191 (5):781-793.
    [106]祝锡晶.功率超声振动珩磨技术的基础与应用研究[D].南京:南京航空航天大学, 2007.
    [107]吴松平.难加工材料超声振动深孔珩磨技术研究[D].东营:西安石油大学,2008.
    [108]许龙.模式转换型功率超声振动系统的设计及优化[D].西安:陕西师范大学,2011.
    [109]范国良,应崇福,林仲茂,等.一种新型的超声加工深小孔的工具系统[J].应用声学,1982,1(1):2-7,32.
    [110]应崇福,范国良.超声复合振动系统中的“局部共振”现象-20年来的应用和机理分析情况[J].应用声学,2002,21(1):19-25.
    [111]刘世清,丁大成,董彦武.复合振动系统中“局部扭转共振现象”的研究[J].中南工学院学报,1995,9(1):1-6.
    [112]季远,张德远.超声复合振动系统中的“局部共振”现象实验研究[J].应用声学,2003,22(6):6-9.
    [113]王敏慧.阶梯形变幅杆的有限元仿真及其在局部共振研究中的应用[D].西安:陕西师范大学,2005.
    [114]郑建新,徐家文,刘传绍,等.超声加工中局部共振机理的模拟试验研究[J].南京航空航天大学学报,2006,38(5):644-648.
    [115]J.J. Yang, Z.D. Fang, B.Y. Wei, et al. Theoretical explanation of the'local resonance'in stepped acoustic horn based on Four-End Network method[J]. Journal of materials processing technology,2009,209 (6):3106-3110.
    [116]赵波,何定东.超声珩磨局部共振问题研究[J].机械工艺师,1998(6):4-6.
    [117]铁占续,赵波.超声珩磨传声系统局部共振设计方法研究[J].焦作工学院学报(自然科学版),2002,21(2):147-149.
    [118]G.F. Gao, B. Zhao, D.H. Xiang, et al. Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics [J]. Journal of materials processing technology,2009,209(1):32-37.
    [119]YANG JiaShi, YANG ZengTao. Analytical and numerical modeling of resonant piezoelectric devices in china-A review[J]. Science in China Series G:Physics, Mechanics & Astronomy,2008,51(12):1775-1807.
    [120]G.L. Chern, Jia Ming Liang. Study on boring and drilling with vibration cutting[J]. International Journal of Machine Tools & Manufacture,2007,47(1):133-140.
    [121]王时英,吕明,轧刚.非谐环盘及变幅杆组成的变幅器动力学特性研究[J].声学学报,2008,33(5):462-468.
    [122]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989.
    [123]曹志远,杨异田.厚板动力学及其应用[M].北京:科学出版社,1983.
    [124]MAURICE L. ADAMS, JR. ROTATING MACHINERY VIBRATION FROM ANALYSIS TO TROUBLESHOOTING[M]. New York:Marcel Dekker, Inc.2001.
    [125]晏砺堂,朱梓根,李其汉,等.高速旋转机械振动[M].北京:国防工业出版社,]994.
    [126]左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社,1987.
    [127]冯其波,谢芳.光学测量技术与应用[M].北京:清华大学出版社,2008.
    [128]中华人民共和国国家质量监督检验检疫总局.JJF 1219-2009激光测振仪校准规范[S].北京:中国标准出版社,2009.
    [129]老大中.变分法基础(第二版)[M].北京:国防工业出版社,2007.
    [130]K.M. LIEW, C.M. WANG, Y. XIANG, et al. Vibration of Mindlin Plates Programming the p-Version Ritz Method[M]. Oxford:ELSEVIER SCIENCE Ltd,1998.
    [131]Liang B, Shu F Z, Chen D Y. Natural frequencies of circular annular plates with variable thickness by a new method[J]. International Journal of Pressure Vessels and Piping,2007,84 (5):293-297.
    [132]Zhou D, Au F T K, Cheung Y K, et al. Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method[J]. International Journal of Solids and Structures,2003,40 (12):3089-3105.
    [133]Liew K M, Yang B. Elasticity solutions for free vibrations of annular plates from three-dimensional analysis[J]. International Journal of Solids and Structures,2000,37 (52):7689-7702.
    [134]Tajeddini V, Ohadin A, Sadighi M. Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation[J]. International Journal of Mechanical Sciences,2011,53 (4):300-308.
    [135]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T10095-2008圆柱齿轮精度制[S].北京:中国标准出版社,2008.