枯草芽孢杆菌生产γ-聚谷氨酸过程中副产物积累和粗原料利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-聚谷氨酸(Poly γ-glumatic acid,γ-PGA)是通过微生物合成的阴离子型均聚氨基酸。由于具有良好的生物相容性、生物降解性和高吸水性,γ-PGA及其衍生物可广泛用于食品、化妆品、医药和水处理等领域。目前通常采用微生物液体发酵实现γ-PGA的规模化生产,但在发酵后期发酵液黏度增加会导致产物积累的速率明显下降。
     本文首先采用气相色谱研究γ-PGA发酵过程中的主要代谢副产物,确定了2,3-丁二醇和3-羟基-2-丁酮为积累量最大的碳代谢副产物。然后在摇瓶发酵实验中考察了这两种副产物对细胞生长和γ-PGA合成的影响,结果显示,两种副产物对发酵不同阶段的细胞生长和产物合成都存在抑制作用。进一步研究了三种不同pH值下发酵过程中主要胞外代谢产物的积累情况,通过对γ-PGA相关碳代谢途径的代谢通量分析,发现最佳发酵过程pH值为6.5。在这一最适pH下,发酵代谢副产物积累总量最少,而细胞生物量、底物转化率和产物生成的速率均为最优。
     为了寻找经济价廉碳源,本文筛选获得了能够利用木糖和葡萄糖高效生产γ-PGA的枯草芽孢杆菌HB-1。该菌株能够以稀酸水解处理秸秆得到的六碳糖和五碳糖混合物为培养基碳源发酵生产γ-PGA,批次发酵结果表明该生产菌能够有效利用这一粗原料和前体谷氨酸,γ-PGA产量达到24.38g/L,并能通过流加秸秆水解糖将γ-PGA的产量提高到28.15g/L。最后,开展了发酵液微滤除菌、超滤浓缩、沉淀脱盐和喷雾干燥等工艺参数优化研究,确定了一条高效节能的中试工艺路线。
     本论文对微生物发酵生产γ-PGA的代谢过程、发酵工艺和分离纯化进行了深入研究,探索了副产物积累和粗原料利用等新的途径和工艺,具有应用于γ-PGA工业化生产的潜力。
Poly (y-glutamic acid)(y-PGA) is an extracellular anionic polymer produced by microbial fermentation. Possessing several beneficial characteristics such as water-soluble, biocompatible, biodegradable and non-toxic, y-PGA and its derivatives can be wildly used in food, cosmetic, medicine and water treatment industry fields. Although microbial fermentation is a common approach producing y-PGA, the broth at the end stage usually becomes very viscous and severely affects the biosynthesis of y-PGA.
     Firstly, the present work applied GC analysis to confirm that acetoin and2,3-butanediol were the main byproducts during the fed-batch fermentation and their effects on the cell growth and y-PGA biosynthesis were further investigated in shake flasks. The outcome indicated that both acetoin and2,3-butanediol showed clear impairment on y-PGA production of B. subtilis ZJU-7. Moreover, the extracellular metabolites profiles of fermentation under three different pH values were acquired and the metabolic flux redistribution of pathways related to y-PGA biosynthesis was calculated from the collected data. As a result, the metabolic flux favored to distribute toward glycolytic pathway at pH6.5, in which the contents of byproducts were lower, the ingestion rate of extracellular glutamic acid was higher, and the subsequent y-PGA biosynthesis was enhanced.
     The increasing applications of y-PGA have motivated us to exploit cheap and renewable carbonsources as the major fermentation feedstock. The strain Bacillus subtilis HB-1was screened out with the capacity of producing y-PGA efficiently using xylose and glucose. The corncob fibers were hydrolyzed with0.25mol/L HCl and turned into syrup containing both hexoses and pentoses. Then the corncob fibres hydrolysate (CFH) has been validated to support efficient production of y-PGA by HB-1. In batch fermentation, this strain could efficiently convert the raw substrate and glutamate into24.38g/L y-PGA. In the fed-batch experiments using CFH, the titer of y-PGA was increased up to28.15g/L. At last, the operating parameters were optimized to improve the performance of y-PGA isolation process including micro-filtration, ultrafiltration, desalination, and spray drying. An efficient and energy-economic process was proposed for recovery and purification of y-PGA at pilot scale.
     This thesis presented a series of research work about the metabolic profiling, fermentation process and purification procedure of microbial derived y-PGA, providing some new insights and new approaches into the biosynthesis and scale up production of this biopolymer.
引文
[1]Kramar E. Zentr Bakteriol Parastitenk, Abt 1,1921,87,401
    [2]Bajaj I and Singhal R. Poly(glutamic acid)-an emerging biopolymer of commercial interest. Bioresour Technol 2011,102,5551-5561
    [3]Fahnestock SR, Steinbuchel A. Biopolymers. Weinheim:Wiley,2002,123-174
    [4]Sawamura S. On Bacillus natto. J Coll Agric (Tokyo) 1913,5,189-191
    [5]Bovarnick M. The formation of extracellular D-glutamic acid polypeptide by Bacillus subtilis. JBiol Chem 1942,145,415-424
    [6]Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T and Taniguchi M. Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem 1993,57,1212-1213
    [7]Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T and Misono H. Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 2001,57,764-769
    [8]Kunioka M and Goto A. Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol 1994,40,867-872
    [9]Kunioka M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl Microbiol Biotechnol 1997,47,469-475
    [10]Thorne CB, Gomez CG, Noyes HE and Housewright RD. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 1954,68,307-315
    [11]Leonard CG, Housewright RD and Thorne CB. Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 1958,76,499-503
    [12]Ogawa Y, Yamaguchi F, Yuasa K and Tahara Y. Efficient production of γ-poly glutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 1997,61,1684-1687
    [13]Shih IL and Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technol 2001,79,207-225
    [14]Ito Y, Tanaka T, Ohmachi T and Asada Y. Glutamic acid independent production of poly (y-glutamic acid) by Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 1996,60,1239-1242
    [15]Zhang HL, Zhu JZ, Zhu XC, Cai J, Zhang AY, Hong YZ, et al. High-level exogenous glutamic acid-independent production of poly-(y-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresour Technol 2012, 116,241-246
    [16]Geng WT, Cao MF, Song CJ, Xie H, Liu L, Yang C, Feng J, Zhang W, Jin YH, Du Y and Wang SF. Complete Genome Sequence of Bacillus amyloliquefaciens LL3, Which Exhibits Glutamic Acid-Independent Production of Poly-gamma-Glutamic Acid. J Bacteriol 2011,193(13),3393-3394
    [17]Kambourova M, Tangney M and Priest FG. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol 2001,67,1004-1007
    [18]Cromwick AM and Gross RA. Investigation by NMR of metabolic routes to bacterial y-poly (glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Can J Microbiol 1995,41,902-909
    [19]Perez-Camero G, Congregado F, Bou JJ and Munoz-Guerra S. Biosynthesis and ultlasonic degradation of bacterial poly(y-glutamic acid). Biotechnol Bioeng 1999,63, 110-115
    [20]Thorne CB and Leonard CG. Isolation of D-and L-glutamyl polypeptides from culture filtrate of Bacillus subtilis. JBiol Chem 1958,233,1109-1112
    [21]Cromwick AM and Gross RA. Effect of manganese (II) on Bacillus licheniformis ATCC9945A:Physiology and y-poly(glutamic acid) formation. Int J Biol Macromol 1995,17,259-267
    [22]Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR and Otto M. Key role of poly-y-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 2005,115,688-694
    [23]Keppie J, Harris-Smith PW and Smith H. The chemical basis of the virulence of Bacillus anthracis. IX. Its aggressins and their mode of action. Br J Exp Pathol 1963, 44,446-453
    [24]Aono R. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Biochem J 1987,245,467-472
    [25]Niemetz R, Karcher U, Kandlera O, Tindall BJ and Konig H. The cell wall polymer of the extremely halophilic archaeon, Natronococcus occultus. Eur J Biochem 1997,249,905-911
    [26]Hezayen FF, Rehm BHA, Tindall BJ and Steinbuchel A. Transfer of Natrialba asiatica BIT to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 2001,51,1133-1142
    [27]Shimizu K, Nakamura H and Ashiuchi M. Salt-inducible bionylon polymer from Bacillus megaterium. Appl Environ Microbiol 2007,73,2378-2379
    [28]Weber J. Nematocysts (stinging capsules of Cnidaria) as Donnan-potential-dominated osmotic systems. Eur J Biochem 1989,184,465-476
    [29]Weber J. Poly(γ-glutamic acid)s are the major constituents of Nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 1990,265,9664-9669
    [30]Kleinkauf H and Von Dohren H. A nonribosomal system of peptide biosynthesis. Eur J Biochem 1996,236,335-351
    [31]Vater J, Mallow N, Gerhardt S, Gadow A and Kleinkauf H. Gramicidin S synthetase. Temperature dependence and thermodynamic parameters of substrate amino acid activation reactions. Biochemistry 1985,24,2022-2027
    [32]Stein T, Kluge B and Vater J. Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine. Biochemistry 1995,34,4633-4642
    [33]Yamanaka K, Maruyama C, Takagi H and Hamano Y. ε-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol 2008,4,766-772
    [34]Eveland SS, Pompliano DL and Anderson MS. Conditionally lethal Escherichia coli murein mutants contain point defects that map tp regions conserved among murein and folyl poly-y-glutamate ligases:identification of a ligase superfamily. Biochemistry 1997,36,6223-6229
    [35]Galperin MY and Koonin EV. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 1997,6,2639 2643
    [36]Aboulmagd E, Oppermann-Sanio FB and Steinbuchel A. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch Microbiol 2000,174,297-306
    [37]Aboulmagd E, Oppermann-Sanio FB and Steinbuchel A. Purification of Synechocystis sp. strain PCC6308 cyanophycin synthetase and its characterization with respect to substrate and primer specificity. Appl Environ Microbiol 2001,67, 2176-2182
    [38]Hai T, Oppermann-Sanio FB and Steinbuchel A. Molecular characterization of a thermostable cyanophycin synthetase from the thermophilic cyanobacteriumSumecjpcpccis sp. Strain MA 19 and in vitro synthesis of cyanophycin and related polyamides. Appl Environ Microbiol 2002,68,93-101
    [39]Gardner JM and Troy FA. Chemistry and biosynthesis of the poly(y-D-glutamyl) capsule in Bacillus licheniformis. JBiol Chem 1979,254,6262-6269
    [40]Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K and Misono H. Physiological and biochemical characteristics of poly-y-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 2001,268,5321-5328
    [41]Makino S, Uchida I, Terakado N, Sasakawa C and Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 1989,171,722-730
    [42]Ashiuchi M, Shimanouchi K, Horiuchi T, Kamei T and Misono H. Genetically engineered poly-y-glutamate producer from Bacillus subtilis ISW1214. Biosci Biotechnol Biochem 2006,70,1794-1797
    [43]Kimura K, Tran LSP, Do TH and Itoh Y. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 2009,73,1149-1155
    [44]Troy FA. Chemistry and biosynthesis of the poly(y-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer. JBiol Chem 1973,248,316-324
    [45]Troy FA. Chemistry and biosynthesis of the poly(y-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthesis reaction. J Biol Chem 1973,248,305-316
    [46]Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A and Gottschalk G. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 2004,7,204-211
    [47]Ashiuchi M, Kamei T and Misono H. Poly-y-glutamate synthetase of Bacillus subtilis. JMol Catal B Enzyme 2003,23,101-106
    [48]Ashiuchi M, Shimanouchi K, Nakamura H, Kamei T, Soda K, Park C, Sung MH and Misono H. Enzymatic synthesis of high-molecular-mass poly-y-glutamate and regulation of its stereochemistry. Appl Environ Microbiol2004,70,4249-4255
    [49]Urushibata Y, Tokuyama S and Tahara Y. Characterization of the Bacillus subtilisywsC gene, involved in y-polyglutamic acid production. J Bacteriol 2002,184, 337-343
    [50]Ashiuchi M, Soda K and Misono H. A poly-y-glutamate synthetic system of Bacillus subtilis IFO 3336:Gene cloning and biochemical analysis of poly-y-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 1999,263,6-12
    [51]Terui Y, Iida H, Ono E, Miki W, Hirasawa E, Fujita K, Tanaka T and Taniguchi M. Biosynthesis of poly-y-glutamic acid in plants:Transient expression of poly-y-glutamate synthetase complex in tobacco leaves. J Biosci Bioeng 2005,100, 443-448
    [52]Candela T and Fouet A. Poly-gamma-glutamate in bacteria. Mol Microbiol 2006, 60,1091-1098
    [53]Ashiuchi M. Microbial production and chemical transformation of poly-y-glutamate. Microb Biotechnol 2013,6(6),664-674
    [54]Candela T and Fouet A. Bacillus anthracis CapD, belonging to the y-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 2005,57,717-726
    [55]Green BD, Battisti L, Koehler TM, Thorne CB and Ivins BE. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 1985,49 (2),291-297
    [56]Uchida I, Sekizaki T, Hashimoto K and Terakado N. Association of the encapsulation of Bacillus anthracis with a 60-megadalton plasmid. J Gen Microbiol 1985,131(2),363-367
    [57]Candela T, Mock M, Fouet A.CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol 2005,187,7765 7772
    [58]Tomosho JW, Moran RG and Coward JK. Concentration-dependent processivity of multiple glutamate ligations catalyzed by folylpoly-y-glutamate synthetase. Biochemistry 2008,47,9040-9050
    [59]Vetting MW, De Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL and Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 2005,433,212-226
    [60]Min L, Jin Z, Caldovic L, Morizono H, Allewell NM, Tuchman M and Shi D. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine. J Biol Chem 2009,284,4873-4880
    [61]Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H and Kondo A. Display of a-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 2006,72,269-275
    [62]Lee JS, Poo H, Han DP, Hong SP, Kim K, Cho MW, Kim E, Sung MH and Kim CJ. Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 2006,80,4079-4087
    [63]Nordlund P and Eklund H. Di-iron-carboxylate proteins. Curr Opin Struct Biol 1995,5,758-766
    [64]Rusnak F and Mertz P. Calcineurin:Form and function. Physiol Rev 2000,80, 1483-1521
    [65]Ashiuchi M and Yamashiro D. Moonlighting function of the pgsE-gene product, a novel member of the membranous enzyme complex responsible for the synthesis of D-glutamatecontaining poly-y-glutamate. In:The first international conference of D-amino acid research,1-4 July 2009, Awaji, Japan, Abstract no:0-35, pp 35
    [66]Tran LS, Nagai T and Itoh Y. Divergent structure of the ComQXPA quorumsensing components:molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 2000,37(5),1159-1171
    [67]Stanley NR and Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation. Mol Microbiol 2005,57(4),1143-1158
    [68]Ogura M and Tsukahara K. SwrA regulates assembly of Bacillus subtilis DegU via its interaction with N-terminal domain of DegU. J Biochem 2012,151(6),643-655
    [69]Lopez D, Vlamakis H and Kolter R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 2009,33(1),152-163
    [70]Ogura M, Yamaguchi H, Yoshida K, Fujita Y and Tanaka T. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons:an approach to comprehensive analysis of B. subtilis twocomponent regulatory systems. Nucleic Acids Res 2001,29(18),3804-3813
    [71]Verhamme DT, Kiley TB and Stanley-Wall NR. DegU co-ordinates multicellular behavior exhibited by Bacillus subtilis. Mol Microbiol 2007,65(2),554-568
    [72]Xu H, Jiang M, Li H, Lu D and Ouyang P. Efficient production of poly(y-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem 2005,40,519-523
    [73]Kunioka M. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol Biosci 2004,4(3),324-9
    [74]Potter M, Oppermann-Sanio FB, and Steinbuchel A. Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Appl Environ Microbiol 2001,67(2),617-22
    [75]Abe K, Ito Y, Ohmachi T and Asada Y. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 1997,61(10),1621-5
    [76]Kunioka M. Biosythesis of poly (gamma glutamic acid) from L-glutamin, ditric acid and ammonium sulfate in Bacillus Subtilis IFO3335. Appl Microbiol Biotechnol 1995,44(3),501-506
    [77]Richard A and Margaritis A. Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett 2003,25(6),465-468
    [78]Yoon SH, Do JH, Lee SY and Chang HN. Production of poly-y-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol Lett 2000,22,585-588
    [79]Tanaka T, Fujita KI, Takenishi S and Taniguchi M. Existence of an optically heterogeneous peptide unit in poly (gamma-glutamica acid) produced by Bacillus subtilis. JFermen Bioeng 1997,84,361-364
    [80]Huang J, Du YM, Xu GH, Zhang HL, Zhu F, Huang L, et al. High yield and cost-effective production of poly(γ-glutamic acid) with Bacillus subtilis. Eng Life Sci 2011,11,291-297
    [81]Jiang H, Shang L, Yoon SH, Lee SY and Yu Z. Optimal production of poly-γ-glutamic acid by metabolically engineered Escherichia coli. Biotechnol Lett 2006,28,1241-1246.
    [82]曹旭.γ-PGA的异源表达及发酵工艺研究[硕士学位论文].浙江,浙江大学,2007
    [83]Park YC, Jun SY and Seo JH. Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently. J Biotechnol 2012,161, 402-406
    [84]Cao MF, Geng WT, Liu L, Song CJ, Xie H, Guo WB, Jin YH and Wang SF. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 2011,102, 4251-4257
    [85]Cao MF, Song CJ, Jin YH, Liu L, Liu J, Xie H, Guo WB and Wang SF. Synthesis of poly (gamma-glutamic acid) and heterologous expression of pgsBCA genes. J Mol Catal B-Enzym 2010,67(1-2),111-116
    [86]DO J H, CHANG H N and LEE S Y. Efficient recovery of y-poly (Glutamic acid) from highly viscous culture broth. Biotechnol Bioeng 2001,76,219-223
    [87]鞠蕾,马霞,徐弇豪.γ-聚谷氨酸提取条件的优化.食品工业科技2012,33(4),299-303
    [88]吴晓明,何彦萍,李松.水溶性三尖杉磷碱聚氨基酸酯或其盐,含它们的药物组合及其医药用途.中国国家知识产权局,Editor,2001
    [89]吴晓明.聚谷氨酸或聚谷氨酸钠紫杉云宁A酯化合物及其用途.中国专利,Editor,2000
    [90]Myers A and D Bichon. Advanced anticancer therapy and cytotoxic medicaments for its implementation. Eu. patent,1999
    [91]Meshnick SK and G Smith. Capacity of a cis-diammineplatinum(II)-poly-glutamic acid complex to cure trypanosome congolense infection in mice. Antimicrob Agents Ch 1984,25(2),286-288
    [92]Avichezer D and R Amon. Functional polymers in drug delivery:carier-support CDDP(cis-platin) complexs of polycarboxylates-efect on human ovarian carcinoma. React Funct Polym 1998,36(1),59-69
    [93]Akamatsu K and Y Yamasaki. Disposition characteristics of glycosylated poly (amino acid) as liver eel-specific drug carrier. J Drug Target 1998,6(3),229-239
    [94]Sekine T, et al. A new type of surgical adhesive made from porcine collagen and polyglutamic acid. J Biomed Mater Res 2001,54(2),305-310
    [95]Choi HJ and Kunioka M. Preparation conditions and swelling equilibria of hydrogel prepared by y-irradiation from microbial poly(γ-glutamatic acid). Radiat Phys Chem 1995,46,175-179
    [96]王传海,何都良,郑有飞,姚克敏,徐红.保水剂新材料γ-PGA的吸水性能和生物学效应的初步研究.中国农业气象2004,25(2),19-21
    [97]王建平.聚γ-谷氨酸对三种作物种子萌发和促生长作用的初步研究.武汉:华中农业大学,2007
    [98]程远芳,宋代军.生物活性肽在饲料工业中的应用.中国饲料2003,10,19-21
    [99]Nakano MM, Hoffman T, Zhu Y and Jahn D.1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. JBacteriol 1998,180,5344-5350
    [100]Ramos HC, Hoffinann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P and Jahn D. Fermentative metabolism of Bacillus subtilis:physiology and regulation of gene expression. JBacteriol 2000,182,3072-3080
    [101]Birrer GA, Cromwick AM and Gross RA. y-Poly(glutamic acid) formation by Bacillus licheniformis 9945:physiological and biochemical studies. Int J Biol Macromol 1994,16,265-275
    [102]Dauner M, Bailey JE and Sauer U.2001. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 2001,76, 144-156
    [103]Wu Q, Xu H, Shi NN, Yao J, Li S and Ouyang PK. Improvement of poly(y-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol 2008,79,527-535
    [104]张星元,潘中明.代谢网络刚性与代谢工程.生物工程进展1999,19,38-42
    [105]张蓓.代谢工程,天津:天津大学出版社,2003,71-72
    [106]Sauer U, Cameron DC and Bailey JE. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides riboflavin and folic acid. Biotechnol Bioeng 1998,59(2),227-238
    [107]黄明志,蔡显鹏,陈双喜,储炬,庄英萍,张嗣良.鸟苷发酵过程的定量和优化:抑制NH4+离子积累提高了苷产量70%.生物工程学报2003,19(2),200-204
    [108]Reed JL, Famili I, Thiele I, et al. Towards multidimensional genome annotation. Nat Rev Genet 2006,7(2),130-141
    [109]邹伟.系统生物学水平解析维生素C生产菌株生理特性与相互作用关系[博士学位论文].江苏,江南大学,2013,38
    [110]Orth JD, Thiele I, Palsson BO, et al. What is flux balance analysis? Nat Biotechnol 2010,28(3),245-248
    [111]Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wuthrich K, Hohmann HP, Sauer U and Bailey JE. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 2002,68,1760-1771
    [112]Chen J, Shi F, Zhang B, Zhu F, Cao WF, Xu ZN, Xu GH and Cen PL. Effects of cultivation conditions on the production of y-PGA with Bacillus subtilis ZJU-7. Appl Biochem Biotechnol 2010,160,370-377
    [113]Buescher JM and Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 2001,27,1-19
    [114]Sung MH, Park C, Kim CJ, POO H, Soda K and Ashiuchi M. Natural and edible biopolymer poly-y-glutamic acid:synthesis, production, and applications. Chem Rec 2005,5,352-366
    [115]Cromwick AM, Birrer GA and Gross RA. Effects of pH and aeration on y-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 1996,50,222-227
    [116]Du G, Yang G, Qu Y, Chen J and Lun S. Effects of glycerol on the production of poly (y-glutamic acid) by Bacillus licheniformis. Process Biochem 2005,40,2143-2147
    [117]Zhu F, Cai J, Wu XT, Huang J, Huang L, Zhu JZ, et al. The main byproducts and metabolic flux profiling of y-PGA-producing strain B. subtilis ZJU-7 under different pH values. J Biotechnol 2013,164,67-74
    [118]Shi F, Xu ZN and Cen PL. Microbial production of natural poly amino acid. Sci China Chem 2007,50(3),291-303
    [119]Zhu Y, Wu ZT and Yang ST. Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 2002,38,657-666
    [120]洪义国,孙谧,张云波,李勃生.16S rRNA在海洋微生物系统分子分类鉴定及分子检测中的应用.海洋水产研究2002,23,58-63
    [121]Zhang D, Feng X, Zhou Z, Zhang Y and Xu H. Economical production of poly(y-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresour Technol 2012,114,583-588
    [122]Yamashiro D, Yoshioka M and Ashiuchi M. Bacillus subtilis pgsE (formerly ywtC) stimulates poly-gamma-glutamate production in the presence of zinc. Biotechnol Bioeng 2011,108,226-230
    [123]Bajaj IB and Singhal RS. Effect of aeration and agitation on synthesis of poly (y-glutamic acid) in batch cultures of Bacillus licheniformis NCIM 2324. Biotechnol Bioprocess Eng 2010,15,635-640
    [124]李德衡,赵兰坤,李树标.γ-聚谷氨酸的生物合成及应用研究进展.发酵科技通讯2012,41(3),12-16
    [125]刘岑,徐志南,石峰等.味精粗料作为聚谷氨酸合成前体的培养条件优化.食品与发酵工业2006,32(5),9-13
    [126]宋霄,朱凡,于怡等.葡萄糖脱氢酶缓释系统PL-y-PGA纳米颗粒的制备及研究.药物生物技术2012,31(5),35-39
    [127]吕忠良.γ-多聚谷氨酸(γ-PGA)的分离纯化研究[硕士学位论文].浙江,浙江大学,2008,69-70
    [128]Zalczer G. Coil-helix transition in poly(L-glutamic acid):Evidence for a 3-state non-cooperative process. Eur Phys JE 2012,35,100-104
    [129]Van Krevelen and Te Nijenhuis. Properties of polymers:Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions,4th Edition. Elsevier 2009,599-646
    [130]Manocha B, Margaritis A. A novel method for the selective recovery and purification of y-polyglutamic acid from Bacillus licheniformis fermentation broth. Biotechnol Prog 2010,26(3),734-742
    [131]Shih IL and Wu JY. Biosynthesis and Application of Poly(gamma-glutamic acid). In:Bernd HA Rehm(Eds.), Microbial Production of Biopolymers and Polymer Precursors:Applications and Perspectives. Norfolk UK, Caister Academic Press,2009, 115
    [132]Yoshida H, Klinkhammer K, Matsusaki M, Moller M, Klee D and Akashi M. Disulfide-crosslinked electrospun poly(γ-glutamic acid) nonwovens as reduction-responsive scaffolds. Macromol Biosci 2009,9(6),568-574
    [133]Feng J, Gu YY, Wang JQ, Song CJ, Yang C, Xie H, Zhang W and Wang SF. Curing the Plasmid pMC1 from the Poly (gamma-glutamic Acid) Producing Bacillus amyloliquefaciens LL3 Strain Using Plasmid Incompatibility. Appl Biochem Biotechnol 2013,171(2),532-542
    [134]Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X and Ling P. Improved poly-y-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 2010,101,4733-4736
    [135]梁金丰,徐虹,姚俊.γ-聚谷氨酸提取的发酵液预处理及分离纯化工艺.食品与发酵工业2009,35(3),6-11
    [136]Zhang W, Xie H, He YL, Feng J, Gao WX, Gu YY, Wang SF and Song CJ. Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances y-PGA production in Bacillus amyloliquefaciens. FEMS Microbiol Lett 2013,343(2),127-134
    [137]庄华红,王淑芳,高靖辰,洪彦航,高伟霞,宋存江.γ-聚谷氨酸水凝胶的制备、性能及其应用.应用化学2014,31(3),245-255