暗黑鳃金龟不同发育阶段肠道微生物及糖苷水解酶多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暗黑鳃金龟(Holotrichia parallela)幼虫是我国重要的地下害虫,主要以植物根、茎等高纤维素含量的食物为食,其后肠发酵腔中富含丰富多样的微生物,其可能在宿主纤维性食物的消化、降解过程中发挥着重要的作用。本文研究了暗黑鳃金龟不同发育阶段肠道中微生物的群落组成及多样性,同时,利用简并引物同源克隆的方法对其肠道微生物源纤维素酶、半纤维素酶基因家族的多样性进行了研究,分离、筛选了可培养的、高活性的纤维素和半纤维素分解菌株并克隆了其纤维素酶、半纤维素酶基因,以期为纤维素和半纤维素的生物降解提供菌株及基因资源。
     1.利用16S rRNA基因宏基因组测序分析技术研究了暗黑鳃金龟成虫肠道(AL)、卵巢(LC)、卵(OL)、一龄(FL)、二龄(SL)、三龄幼虫(TL)肠道以及室内饲养土壤(TR)中微生物的群落组成及多样性。比较不同样本中细菌群落组成及多样性,结果表明:(1)幼虫不同发育阶段,二龄、三龄幼虫肠道微生物多样性显著高于一龄幼虫肠道微生物;(2)成虫肠道、卵巢、卵、一龄、二龄和三龄幼虫肠道细菌群落组成中,拟杆菌门细菌(Bacteroidetes)为主要的类群,厚壁菌门(Firmicutes)和变形菌门细菌(Protebacteria)所占比例次之。而土壤(TR)样本细菌群落组成中,变形菌门(Protebacteria)、拟杆菌门(Bacteroidetes)以及Candidate division TM7细菌占有绝对的优势;(3)暗黑鳃金龟幼虫肠道部分微生物来自垂直传递,其中梭菌纲OTU220、OTU461;p-变形菌纲OTU105、OTU856、OTU1130;拟杆菌纲,Dysgonomonas属OTU114、OTU774、OTU1157、OTU931所代表的细菌遗传型为卵巢与幼虫肠道或卵与幼虫肠道所共有,为蛴螬肠道的共生微生物。
     2.通过扫描电镜观察了暗黑鳃金龟幼虫野生种群和所有不同处理实验种群后肠发酵腔超微结构并比较了实验种群间三龄幼虫的体重,从实验结果可以看出不同处理组实验种群与野生种群幼虫后肠均附着着大量的圆形瘤突,野生种群幼虫后肠瘤表面形成菌-膜复合结构,而所有的实验种群处理组幼虫后肠瘤表面无明显的菌膜结构形成。对实验种群三龄幼虫体重进行多重比较分析,结果表明,幼虫生活的土壤不灭菌以及卵表面不消毒处理组,其三龄幼虫体重最高,土壤灭菌以及卵表面不消毒处理组和土壤不灭菌以及卵表面消毒处理组幼虫体重次之,而土壤灭菌,卵表面酒精消毒处理组,幼虫体重最低,且四个处理组幼虫体重之间存在显著的差异(P<0.05)。上述实验结果说明卵表面以及外界环境微生物显著影响暗黑鳃金龟幼虫的生长发育。
     3.采用简并引物同源克隆的方法研究了暗黑鳃金龟幼虫肠道微生物源纤维素酶、半纤维素酶基因的组成及多样性,成功克隆了5个糖苷水解酶家族酶基因序列,共包含101个OTUs,其中GH2(p-半乳糖苷酶)、GH36(a-半乳糖苷酶)、GH8(p-1,4-内切葡聚糖苷酶)、GH10以及GH11(内切木聚糖酶)家族分别包含24、27、19、14和17个OTUs。序列比对分析表明,GH2、GH8、GH10、GH11及GH36家族中分别有93.94%、10%、52.48%、28.95%以及19.32%的基因片段与已知序列相似性小于80%。其中,GH2家族中10.61%、GH8家族中3.33%以及GH11家族中18.42%的基因序列与已知序列的相似性小于60%,这些结果说明在暗黑鳃金龟幼虫后肠中富含丰富多样的纤维素酶,半纤维素酶基因,且部分基因序列有着很高的新颖性。进一步系统发育分析表明纤维素酶家族中GH8家族酶基因序列大多来源于变形菌门(Protebacteria)细菌,半纤维素酶家族中GH2、GH10、GH11以及GH36家族酶基因序列大多来源于拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)的细菌。
     4.从暗黑鳃金龟幼虫肠道分离、筛选出93株纤维素分解菌,经过复筛获得—株高产纤维素酶(HP207)的菌株,鉴定该菌株属于假单胞菌属Pseudomonas sp.。通过研究发现,该菌株发酵产酶最适培养基组成(1L)为CMC-Na15g,麸皮40g,酵母粉15g, NaC110g, KH2PO40.94g, K2HPO41.9g。最适培养条件为pH7.0,温度为30℃,100mL装液量,3%的接种量,培养时间24h。在最佳培养基以及培养条件下,菌株HP207β-1,4-内切葡聚糖苷酶(CMC酶)酶活可达到1.432U/mL。相关酶学性质分析表明,该酶有着较强的温度耐受性,其在70℃处理1h后,剩余酶活力仍保持在55%以上。
     5.从暗黑鳃金龟幼虫肠道分离、筛选得到103株木聚糖分解菌,通过复筛得到一株高产木聚糖酶(HP455)的菌株,鉴定该菌株属于鞘脂杆菌属Sphingobacteriumsp.。通过简并引物同源克隆并结合染色体步移的方法,从该菌株中成功克隆了1个内切木聚糖酶和1个p-木糖苷酶编码基因,分别命名为xyn455和xyl455。其中xyn455编码的内切木聚糖酶属于糖苷水解酶第10家族,xyl455编码的β-木糖苷酶属于第43家族。对xyn455和xyl455酶基因进行原核表达,并进行相关酶学性质分析发现,Xyn455酶不仅可以降解木聚糖类底物,对阿拉伯聚糖类底物也有着一定的降解作用,且Xy1455酶对阿拉伯聚糖也存在着较高的降解活性,表明Xyn455和Xy1455酶均具有阿拉伯糖苷酶活性,属于多功能酶。两者共同作用于木聚糖底物时,其降解效率显著增高,可完全降解木聚糖生成62.8%的木糖终产物,表明两者之间存在着强的协同降解作用。此外,研究还发现Xy1455酶对于终产物木糖有着较强的耐受力,抑制常数ki为247mM,其在pH3.0-9.0范围内酶活力也非常稳定。Xyn455以及Xy1455酶的性质特点使其在饲料添加剂、造纸等行业具有一定的应用潜力。
Holotrichia parallela larvae are the severe agricultural pests, they feed on plant roots and organic matter of high cellulose content. Its hindgut typically contains a wide diversity of microorganisms, which may play an important role in food digestion of the host. Here, the microbial abundance and diversity of different developmental stages of the H. parallela were investigated, and we used a culture-independent method to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the larval hindgut. Furthermore, we isolated a large number of cellulolyitc and xylanolytic bacteria from the hindgut of H. parallela larvae, which were expected to be applied to the biodegradation of cellulose and hemicellulose.
     1. In our study, the microbial abundance and diversity of different life stages of the scarab larvae, H. parallela, were investigated using bacteria culture-independent method based on the sequence of bacteria16S rRNA V1-V3region gene. After comparing microbial community richness and composition among these different samples, the results were as follows:(1) Among the different life stages of the H. parallela larvae, the hindgut microbial diversities of the second instar, third instar larvae were significantly higher than the microbial diversity of the first instar larval hindgut.(2) Adult, ovary, egg, first-instar, second-instar and third-instar larvae libraries included the similar phyla composition, where Bacteroidetes were the most important groups, followed by Firmicutes and Proteobacteria. However, the soil library was dominated by Proteobacteria, Bacteroidetes and Candidate division TM7.(3) Many bacteria residented in hindgut of H. parallela larvae were from parent-to-offspring transmission, OTU220, OTU461from Clostridia, OTU105, OTU856, OTU1130from Betaproteobacteria,OTU114, OTU774, OTU1157, OTU931from Bacteroidetes were common in LC, OL, FL, SL, and TL samples, respectively, they are strong candidates for being members of H. parallela larvae core microbiome.
     2. The morphology and ultrastructure of the hindgut fermentation chamber of H. parallela, were examined using scanning electron microscopy, and the weight of third instar larvae was determined. The results showed that a special lobe-like structure was formed in the wild-caught and lab-reared third-instar larvae. The lobe-like structure of wild-caught population constituted by bacteria and the bacteria-covered cuticular intima, however, we could not observed the obviously cuticular intima structure in the lab-reared population. Furthermore, we found that there is a significant difference between the lab-reared populations (p<0.05). The weight of the third instar larvae was the highest under the unsterile soil and eggs treatment group, followed by sterile soil and unsterile eggs, unsterile soil and sterile eggs treatment groups. If the soil and the surface of eggs were sterilized, the larval weight became the lowest. Our results showed that the eggshell surface and environmental microbial populations significantly affect the growth and development of H. parallela larvae.
     3. We used the homologous cloning strategy with degenerate primers to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of H. parallela larvae. PCR with degenerate primers using metagenomic DNA from H. parallela larvae hindgut content yielded amplicons for beta-galactosidase (GH2), beta-1,4-endoglucanase (GH8), endo-xylanase (GH10,11), alpha-galactosidase (GH36) enzymes. All of these genes were grouped into101OTUs. Among them,24,27,19,14and17OTUs were identified in the GH2,8,10,11, and36families, respectively. Of these reads,93.94%,10%,52.48%,28.95%, and19.32%of GH2, GH8, GH10, GH11, and GH36sequences were<80%identical with those of known GH enzymes, respectively. Moreover,10.61%,3.33%, and18.42%of GH2, GH8, and GH11sequences had<60%identities with the available sequences in the NCBI database. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela, and many of them originate from unknown micro-organisms. Based on phylogenetic analysis, fragments from cellulase family (GH8) were most associated with the phylum of Proteo bacteria, and sequences from hemicellulase families (GH2, GH10, GH11and GH36) were related to enzymes from Bacteroidetes and Firmicutes.
     4. From the hindgut contents of H. parallela,93cellulolytic bacterial strains were isolated after enrichment in CMC medium. Among these isolates, a novel bacterium, designated HP207, with high endoglucanase productivity was selected for further study. This bacterium was identified as Pseudomonas sp. based on the results of the16S rRNA gene analysis, morphological characteristics and biochemical properties. The composition of the optimal fermentation medium was as follows (in g/L):CMC-Na (15), wheat bran (40), yeast extract (15), NaCl (10), KH2PO4(0.94) and K2HPO4(1.9). The optimal initial medium pH, temperature, medium volume, inoculum size and incubation period were7.0,30℃,100mL/250mL (v/v),3%(v/v) and24h, respectively. The maximum endoglucanase yield of1.432U/mL (expressed as enzyme activity) was obtained at the shake flask level. Moreover, this enzyme was also highly thermostable; approximately55%of the original activity was maintained after pretreatment at70℃for1h.
     5. From the hindgut contents of H. parallela,103xylanolytic bacterial strains were isolated. Among these isolates, a highly xylanolytic bacterium, designated HP455, was selected for further study. This bacterium was identified as Sphingobacterium sp. based on the results of the16S rRNA gene analysis. The endo-xylanase (xyn455) gene of the glycoside hydro lase (GH) family10and β-xylosidase (xyl455) gene of the GH43family were cloned and expressed in vitro from this highly xylanolytic bacterium. Both the Xyn455and Xy1455enzymes could degrade the arabinan, they are bifunctional enzymes with both endo-xylanase/β-xylosidase and a-L-arabinofuranosidase activities. And we also found that the in vitro degradation of xylan by Xyn455and Xy1455showed a strong synergistic hydrolysis action between these two enzymes. Furthermore, Xy1455enzyme also exhibits high xylose tolerance and a broad pH stability. These results suggest that the recombinant Xyn455and Xy1455enzymes are potential candidates to be used in feed additives, paper and other industries.
引文
1. 彩万志.昆虫体内共生物的功能及进化.昆虫知识,1990,27:55-58.
    2. 陈伟.天山1号冰川退缩地土壤微生物多样性研究.[硕士学位论文].兰州:兰州交通大学图书馆,2012.
    3. 陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养.[博士学位论文].长沙:湖南大学图书馆,2007.
    4. 董鹏,王进军.沃尔巴克氏体Wolbachia对宿主的生殖调控作用及其研究进展.昆虫知识,2006,43:288-294.
    5. 董杰丽.成年母猪后肠木聚糖降解菌分离鉴定及相关基因克隆.[硕士学位论文].北京,中国农业科学院,2011.
    6. 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    7. 傅强,张志涛,胡萃,赖凤香.高温对酵母类共生菌和褐飞虱氨基酸需求的影响.昆虫学报,2001,44:534-540.
    8. 高超.白蚁消化道的形态比较及其系统学意义.[硕士学位论文].咸阳:西北农林科技大学图书馆,2011.
    9. 高凤祥,郭文,潘雷,胡发文,菅玉霞,张少春,王雪.几种益生菌对大菱鲆幼鱼生长及消化酶活性的影响.海洋科学,2011,35:10-15.
    10.高振华,邸明伟.生物质材料及应用.北京:化学工业出版社,2008.
    11.葛宏华,武赞,肖亚中.漆酶空间结构、反应机理及应用.生物工程学报,2011,27:156-163.
    12.胡毅,谭北平,麦康森,艾庆辉,郑石轩,程开敏.饲料中益生菌对凡纳滨对虾生长、肠道菌及部分免疫指标的影响.中国水产科学,2008,15:244-251.
    13.黄胜威.暗黑鳃金龟肠道共生菌分子多态性研究.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    14.黄胜威.暗黑鳃金龟幼虫肠道微生物分子多态性及纤维素降解菌多样性研究.[博士学位论文].武汉:华中农业大学图书馆,2012.
    15.黄云,詹先进,蓝家样,陈全求.昆虫肠道微生物的研究进展.湖北农业科学,2009,48:2888-2890.
    16.金敏.基因芯片技术在环境微生物群落研究中的应用.微生物学通报,2008,35:1466-1471.
    17.李宁.链霉菌来源的木聚糖降解酶相关基因的克隆及酶学性质研究.[博士学位论文].北京:中国农业科学院研究生院,2009.
    18.李献辉,李保平.蚜虫与体内布赫纳氏菌及其次生共生菌的相互关系.昆虫知识,2006,43:443-447.
    19.李香香.稻飞虱肠道细菌多样性分析.[硕士学位论文].南京:南京农业大学图书馆,2010.
    20.廖珊,康琳,陈小爱,叶鑫,李昌本.Wolbachia在灰飞虱体内的分布.复旦学报(自然科学版),2001,40:5392-5431.
    21.林金秀.纤维素降解菌的筛选及其发酵条件研究.[硕士学位论文].福州:福建农林大学,2010.
    22.刘海进,李吕木.木质素过氧化物酶的研究进展.中国饲料,2010,2:20-26.
    23.刘巍巍,杨璞,陈晓鸣,徐冬丽,李燕飞.白蜡虫体内杀雄菌属共生菌的分子检测.微生物学报,2012,52:1002-1010.
    24.刘秀梅,聂俊华,王庆仁.多种微生物复合的微生态制剂研究进展.中国生态农业学报,2002,10:80-83.
    25.刘玉升,叶保华,吕飞,郑继法.豆天蛾幼虫肠道细菌分离及初步鉴定研究.山东农业大学学报(自然科学版),2006,37:345-348.
    26.刘智苗.蟑螂肠道微生物的初步研究.合肥:安徽大学图书馆,2012.
    27.陆晨.高产纤维素酶菌株的筛选及其产酶条件的优化.[硕士学位论文].长沙:中南林业科技大学图书馆,2012.
    28.欧阳平凯,陈育如.植物纤维素水解的理论与应用.北京:中国科学技术出版社,1995:12-86.
    29.邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源.食品与生物技术,2002,21:88-93.
    30.孙建中,陈春润.昆虫与生物质能源利用:一个新的交叉学科前沿.昆虫知识,2010,47:1033-1042.
    31.谭权,张克英.木聚糖酶的作用机理及其在家禽养殖中的应用.饲料博览,2009,2:5-8.
    32.谭周进,肖启明,谢丙炎,杨宇红,冯兰香.昆虫内共生菌研究概况.微生物学通报,2005,4:140-143.
    33.王国增.不同环境中木聚糖酶基因多样性分析及宏基因组来源的新基因克隆与表达.[博士学位论文].北京:中国农业科学院图书馆,2011.
    34.王荫长.昆虫生理生化学.北京:中国农业出版社,1994.
    35.相辉和黄勇平.肠道微生物与昆虫的共生关系.昆虫知识,2008,5:687-693.
    36.谢凝子.产纤维素酶解淀粉芽抱杆菌Tx26的筛选及基因在大肠杆菌中的表达.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    37.邢孟欣.养殖大菱鲆肠道微生物多样性及功能分析.[博士学位论文].北京:中国科学院大学图书馆,2013.
    38.徐新慧.瘤胃兼性厌氧纤维素降解菌的筛选与纤维素降解复合菌系的构建.[硕士学位论文].郑州:河南农业大学,2012.
    39.薛业敏,卢晨,毛忠贵,邵蔚蓝.阿拉伯糖苷酶基因的克隆、表达及表达产物的酶稳定性.中国农业大学学报,2003,8:9-13.
    40.严健,邓可京,曹清玉,邵红光,沈大棱.灰飞虱类酵母型共生菌18S rDNA序列变异及系统发生.遗传学报,2000,27:2192-2261.
    41.杨红,彭建新,刘凯于,洪华珠.低等白蚁肠道共生微生物的多样性及其功能.微生物学报,2006,46:496-499.
    42.杨亚珍,马立安,张建民,高展祥,董社琴.纤维素降解菌系的筛选及降解稻草条件研究.湖北农业科学,2011,50:490-492.
    43.赵永顺.暗黑鳃金龟幼虫发酵腔可培养细菌多态性与超微结构研究.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    44.张丽.黄粉虫肠道细菌及饲料成分选择的研究.[硕士学位论文].泰安:山东农业大学图书馆,2007.
    45.周俊沛.云斑天牛胃肠道内共生细菌来源的纤维素酶和半纤维素酶的初步研究.[博士学位论文].北京:中国农业科学研究院图书馆,2010.
    46.朱学芝,郑石轩,潘庆军,陆秉招.微生态制剂对凡纳滨对虾生长及水质的影响.中山大学学报(自然科学版),2008,47:58-62.
    47.邹永龙,王国强.木聚糖降解酶系统.植物生理学通讯,1999,35:404.-410.
    48. Acharya PB, Acharya DK, Modi HA. Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol,2008,7:4147-4152.
    49. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev, 1995,59:143-169.
    50. Amritkar N, Kamat M, Lali A. Expanded bed affinity purification of bacterial a-amylase and cellulase on composite substrate analogue-cellulose matrices. Process Biochem,2003,39:565-570.
    51. Andert J, Marten A, Brandl R, Brune A. Inter-and intraspecific comparison of the bacterial assemblages in the hindgut of humivorous scarab beetle larvae(Pachnoda spp.). FEMS Microbiol Ecol,2010,74:439-449.
    52. Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. JBiosci Bioeng,2008,106:231-236.
    53. Babendreier D, Joller D, Romeis J, Bigler F. Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol,2007,59:600-610.
    54. Barros HP, Valenti WC. Food intake of Macrobrachium rosenbergii during larval development. Aquaculture,2003,216:165-176.
    55. Bayon C. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera:Scarabaeidae). J Insect Physiol,1980,26:819-828.
    56. Beard CB, O'Neill SL, Tesh RB, Richards FF, Aksoy S. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today,1993,9:179-183.
    57. Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly(Ceratitis capitata) and their impact on host longevity. J Insect Physiol,2008,54: 1377-1383.
    58. Belda E, Pedrola L, Pereto J, Martinez-Blanch JF, Montagud A, Navarro E, Urchueguia J, Ramon D, Moya A, Porcar M. Microbial diversity in the midguts of field and lab-reared populations of the European Corn Borer Ostrinia nubilalis. PloS Qne,2011,6:e21751.
    59. Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B. Give us the tools and we will do the job:symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc R Soc B,2010,277:1545-1552.
    60. Biely, P, Kluepfel, D, Morosoli, R, Shareck, F. Mode of action of three endo-beta-1,4-endo-xylanases of Streptomyces lividans. Biochim Biophys Acta,1993, 1162:246-254.
    61. Biely P, Vrsanska M, Tenkanen M, Kluepfel D. Endo-beta-1,4-endo-xylanase families:differences in catalytic properties. JBiotechnol,1997,57:151-166.
    62. Bisarla VS, Ghose TK. Biodegadation of cellulosic materials microogansms, enzymes, substrates and products. Enzyme Microb Technol,1981,3:90-104.
    63. Bourtzis K, Miller TA. Insect symbiosis. Boca Raton, FL:CRC Press,2003.
    64. Briones AM, Shililu J, Githure J, Novak R, Raskin L. Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME J,2008,2:74-82.
    65. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
    66. Breznak JA. Phylogenetic diversity and physiology of termite gut spirochetes. Integr Comp Biol,2002,42:313-318.
    67. Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol,1994,39:453-487.
    68. Brodey CL, Rainey PB, Tester M, Johnstone K. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol Plant Microbe Interact,1991,4:407-411.
    69. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA, 2009,106:1948-1953.
    70. Buchner. Endosymbiosis of animals with plant micoorganisms. NewYork: John Wiley,1965.
    71. Cannio R, Di Prizito N, Rossi M, Morana A. A xylan-degrading strain of Sulfolobus solfataricus:isolation and characterization of the xylanase activity. Extremophiles, 2004,8:117-124.
    72. Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosen J, Vander Drift C. Bacteria in the intestinal tract of different species of arthropods. Microbial Ecol,1997a,33: 189-197.
    73. Cazemier AE, Op den Camp HJM, Hackstein JHP, Vogels GD. Fibre digestion in arthropods. Comp Biochem Phys,1997b,118A:101-109.
    74. Cazemier AE, Verdoes JC, Reubsaet FAG, Hackstein JHP, van der Drift C, Op den Camp HJ. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Anton Leeuw,2003,83:135-148.
    75. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev,2005,29:3-23.
    76. Crowson RA. The natural classification of the families of Coleoptera. England: Glassey,1954.
    77. Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell,2006,126:453-465.
    78. Dasch GA,Weiss E, Chang KP. Endosymbionts of insects. In Bergey's manual of systematic bacteriology, vol.1 (eds Krieg NR, Holt JG), pp.811-833. Baltimore, MD: The Williams & Wilkins Co,1984.
    79. Dees C, Ringleberg D, Scott TC, Phelps T. Characterization of the cellulose-degrading bacterium NCIB 10462. Appl Biochem Biotechnol,1995,51: 263-274.
    80. Delalibera I, Jr JH, Raffa KF. Contrasts in cellulolytic activities of gut microorganisms between the Wood Borer, Saperda vestita (Coleoptera: Cerambycidae), and the Bark Beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol,2005,34:541-547.
    81. DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol,2007,53: 371-383.
    82. DeVries EJ, Breeuwer JAJ, Jacobs G, Mollema C. The association of western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria:transient or permanent? J Invertebr Pathol,2001,77:120-128.
    83. Dillon RJ, Charnley AK. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol,2002,153:503-509.
    84. Dillon RJ, Dillon VM. The gut bacteria of insects:nonpathogenic interactions. Annu Rev Entomol,2004,49:71-92.
    85. Dillon RJ, Vennard CT, Charnley AK. A note:Gut bacteria produce components of a locust cohesion pheromone. JAppl Microbiol,2002,92:759-763.
    86. Douglas AE. Sulfate utilization in an aphid symbiosis. Insect Biochem,1988,18: 599-605.
    87. Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol,2009, 23,38-47.
    88. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol,2009,107:245-256.
    89. Dunbar J, White S, Forney LJ. Genetic diversity through the looking glass:effect of enrichment bias. APPl Environ Microbiol,1997,63:1326-1333.
    90. Duron O, Wilkes TE, Hurst GDD. Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett,2010,13:1139-1148.
    91. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics,2011,27:2194-2200.
    92. Edgar RC. UPARSE:Highly accurate OTU sequences from microbial amplicon reads. Nat Methods,2013,10:996-998.
    93. Egert M, Stingl U, Bruun DL, Wagner B, Brune A, Friedrich MW. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol,2005,71: 4556-4566.
    94. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol,2003,69:6659-6668.
    95. Elifantz H, Waidner LA, Michelou VK, Cottrell MT, Kirchman DL. Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol Ecol,2008,63:316-327.
    96. Febvay G, Rahbe Y, Rynkiewicz M, Guillard J, Bonnot G Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets. JExp Biol,1999,19:2639-2652.
    97. Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol,2004,29:60-65.
    98. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Martins Dos Santos VAP, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol,2005,7:1996-2010.
    99. Ferree PM, Avery A, Azpurua J, Wilkes T, Werren JH. A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Curr Biol,2008,18:1409-1414.
    100. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A. The Pfam protein families database. Nucleic Acids Res,2008,36:281-288.
    101. Fu Q. The differentiation of amino acid requirements in three host-relaied populations of the brown planthopper, Nilaparvata Lugens (STAL). Entomol sin, 2001,8:361-369.
    102.Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific Endo-A-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem,2005,280:37415-37422.
    103. Gardner, Blackwell J. The structure of native cellulose. BioPolymers,1974,13: 1975-2001.
    104.Geissinger O, Herlemann DPR, Morschel E, Maier UG, Brune A. The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microb,2009, 75:2831-2840.
    105. Gill SS, Cowles EA, Pietrantonio PV. The mode of action of Bacillus Thuringiensis endotoxins. Annu Rev Entomol,1992,37:615-636.
    106. Guedon E, Desvaux M, Petitdemange H. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microb,2002,68: 53-58.
    107.Hadfield SJ, Axton JM. Reproduction: Germ cells colonized by endosymbiotic bacteria. Nature,1999,402:482.
    108.Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem Biol,1998,5:245-249.
    109.Hayashi A, Aoyagi H, Yoshimura T, Tanaka H. Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinalmicroorganisms.J Biosci Bioeng,2007,103: 358-367.
    110.Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on the lingocellulose. Appl Microbiol Biot,1995,43:667-674.
    111. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science,2011,331:463-467.
    112.Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R. Identification of aerobic gut bacteria from the Kala Azar Vector, Phlebotomns argentipes: A platform for potential paratransgenic manipulation of sand flies. AM J Trop Med Hyg,2008,79:881-886.
    113. Holt JG, Krieg NR, Sheath PIIA. Bergey's Manual of Deteminative Bacteriology. (Nith Edition). Maryland: Williams & Witkins, Baltimore,1994.
    114.Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T. Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol,2005,71:6590-6599.
    115.Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol,2006, 15:505-516.
    116.Hoyt CP, Osborne GO, Mulcock AP. Production of an insect sex attractant by symbiotic bacteria. Nature,1971,230:472-473.
    117. Huang HQ, Shi PJ, Wang YR, Luo HY, Shao N, Wang GZ, Yang PL, Yao B. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol,2009,75:1508-1516.
    118. Huang SW, Sheng P, Zhang HY. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera:Scarabaeidae). Int J Mol Sci,2012,13:2563-2577.
    119. Huang SW, Zhang HY, Marshall S, Jackson TA. The scarab gut:A potential bioreactor for bio-fuel production. Insect Sci,2010,17:175-183.
    120. Huger AM, Skinner SW, Werren JH. Bacterial infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera:Pteromalidae). J Invertebr Pathol,1985,46:272-280.
    121. Hurst GDD, Bandi C, Sacchi L. Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited Flavobacteria that kill males only. Parasitology,1999,118: 125-134.
    122. Hyodo F, Tayasu I, Inoue T, Azuma T, Kudo T, Abe T. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol,2003,17:186-193.
    123. Inoue T, Moriya S, Ohkuma M, Kudo T. Molecular cloning and characterization of a cellulose gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene,2005,349:67-75.
    124. Inoue J, Saita K, Kudo T, Ui S, Ohkuma M. Hydrogen production by termite gut protists:Characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell,2007,6:1925-1932.
    125.Ishikawa H. Biochemical and molecular aspects of endosymbiosis in insects. Int Rev Cytol,1989,116:1-45.
    126.Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J,2013,7:1069-1079.
    127. Johnson K, Rabosky D. Phylogenetic distribution of cysteine proteinases in beetles: evidence for an evolutionary shift to an alkaline digestive strategy in Cerambycidae. Comp Biochem Phys B,2000,126:609-619.
    128. Jones. Chemical mediation of co-evolution. San Diego:Academic press,1988: 477-512.
    129. Kaufman MG, Klug MJ. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comp Biochem Physiol,1991,98: 117-123.
    130. Kellner RLL. What is the basis of pederin polymorphism in Paederus riparins love beetles? The endosymbiotic hypothesis. Eatomol Exp Appl,1999,93:41-49.
    131. Kellner RLL. Suppression of pederin biosynthesis through antibiotic elimination of endosymbionts in Paederus sabaens. J Insect Physiol,2001,47:475-483.
    132. Kellner RLL. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paedems sabaeus. Insect Biochem Mol Biol,2002,32: 389-395.
    133.Khampang P, Chungjatupornchai W, Luxananil P, Panyim S. Efficient expression of mosquito-larvicidal proteins in a gram-negative bacterium capable of recolonization in the guts of Anopheles dirus larva. Appl Microbiol Biotechnol,1999,51:79-84.
    134.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol,2007,73:4308-4316.
    135. Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD, Jin BR. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Phys B,2008,150:368-376.
    136. Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeter Biodegr,2010,64:13-19.
    137.Kocher GS, Kalra KL, Banta G. Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Int J Microbiol, 2008,5.
    138.Kodama K, Kimura K, Komagata K. Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int JSyst Evol Micr,1985,35,467-474.
    139.Kotchoni SO, Shonukan 00. Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World JMicrob Biot,2002,18,487-491.
    140. Kuzina LV, Miller ED, Ge BX, Miller TA. Transformation of Enterobacter gergoviae isolated from Pink Bollworm (Lepidoptera:Gelechiidae) gut with Bacillus thuringiensis toxin. Curr Microbiol,2002,44:1-4.
    141. Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev,1999,23:411-456.
    142. Lee S, Kim SR, Yoon HJ, Kim I, Lee KS, Je YH, Lee SM, Seo SJ, Sohn HD, Jin BR. cDNA cloning, expression, and enzymatic activity of a cellulase from themulberry longicorn beetle, Apriona germari. Comp Biochem Phys B,2004,139:107-116.
    143. Lehman RM, Lundgren JG, Petzke LM. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microb Ecol,2009,57: 349-358.
    144. Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol,2003,69: 6650-6658.
    145. Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Moller K. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl Environ Microbiol,2000,66: 3290-3296.
    146. Lopez-Sanchez MJ, Neef A, Pereto J, Patino-Navarrete R, Pignatelli M, Latorre A, Moya A. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet, 2009,5:e1000721.
    147.Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev,2002,66:506-577.
    148. Martin MM. Cellulose digestion in insects. Comp Biochem Phys,1983,75A: 313-324.
    149. Martinson VG, Moy J, Moran NA. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol,2012,78:2830-2840.
    150. Miller GL, Blum R, Glennon WE, Burton AL. Measurement of carboxymethyl-cellulase activity. Anal Biochem,1960,1:127-132.
    151. McQuillan PB, Webb WR. Selective soil organic matter consumption by larvae of Adoryphorus couloni (Burmeister) (Coleoptera: Scarabaeidae). Aust J Entomol,1994, 33:49-50.
    152.Minkley N, Fujita A, Brune A, Kirchner WH. Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc,2006,53: 339-344.
    153. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet,2008,42:165-190.
    154. Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol,2005,71:8802-8810.
    155.Narasimha G, Sridevi A, Buddolla V, Subhosh CM, Rajasekhar RB. Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol,2006,5: 472-476.
    156.Noda H, Kodama K. Phylogenetic position of yeast like endosymbionts of anobiid beetles. Appl Environ Microb,1996,62:1622-1671.
    157.Noda H, Nakashima N, Koizummi M. Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem MolBiol, 1995,25:6392-6461.
    158.Noda H, Wada K, Saito T. Sterols in Laodelphax striatellus with special reference to the intracellular yeastlike symbiotes as a sterol source. Insect physiol,1979,25: 443-447.
    159. Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA,2005,102: 12795-12800.
    160. Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids conferresistance to parasitic wasps. Proc Natl Acad Sci USA,2003,100: 1803-1807.
    161.Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Phys B,2010,155: 145-154.
    162. Palleroni NJ. The Pseudomonas story. Environ Microbiol,2010,12:1377-1383.
    163.Panikkar P. Food intake, growth and conversion efficiency in Macrobrachium rosenbergii (de Man) and M. lanchesteri (de Man). Indian J Fish,2002,49:29-34.
    164.Pittman GW, Brumbley SM, Allsopp PG, O'Neill SL. "Endomicrobia" and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl Environ Microbiol,2008,74:762-767.
    165. Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M. Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci USA,2010,107:14793-14798.
    166. Pradeep GC, Hee Y, Seok Y, Nam C, Sik S, Jeong H, Cheol J. A novel thermostable cellulase free xylanase stable in broad range of pH from Streptomyces sp. CS428. Process Biochem,2013,48:1188-1196.
    167. Prosser WA, Douglas AE. The aposymbiotic aphidran analysis of chlortetracycline-treated pea aphid Acvnthosiphon pisum. J Inset Physiol,1991,37: 713-719.
    168. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464:59-65.
    169. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools. Nucl Acids Res,2013,41:590-596.
    170.Rasmussen RA, Khalil MAK. Global production of methane by termites. Nature, 1983,301:700-702.
    171. Ray AK, Bairagi A, Ghosh KS, Sen K. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol Piscat,2007,37:47-53.
    172. Rees HC, Grant S,Jones B, Grant WD, Heaphy S. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles,2003,7:415-421.
    173.Rouland-Lefevre C. Symbiosis with fungi. Termites:evolution, sociality, symbioses, ecology,2000:289-306.
    174. Saha BC. Purification and characterization of an extracellular β-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol,2001,27: 241-245.
    175. Saha BC. Purification and properties of an extracellular P-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol,2003:33-38.
    176. Salyers AA, Vercellotti JR, West SEH, Wilkins TD. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from human colon. Appl Environ Microbiol, 1977,33:319-332.
    177. Sasaki T, Kawamura M, Ishikawa H. Nitrogen recycling in the brown planthopper, Nilaparvata lugens:Involvement of yeast-like endosymbionts in uric acid metabolism. Insect physiol,1996,42:125-129.
    178. Schloss PD, Delalibera I, Handelsman J, Raffa KF. Bacteria associated with the guts of two wood-boring Beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol,2006,35:625-629.
    179. Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One,2011,6:e27310.
    180. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol,2009,75:7537-7541.
    181. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PloS One,2013,8:e73827.
    182. Shankar T, Isaiarasu L. Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East Journal of Scienti,2011,8:40-45.
    183. Shi PJ, Meng K, Zhou ZG, Wang YR, Diao QY, Yao B. The host species affects the microbial community in the goat rumen. Lett Appl Microbiol,2008,46:132-135.
    184. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature,2000,407: 81-86.
    185. Skinner SW. Son-killer:a third extrachromosomal factor affecting the sex ratio in the parasitoid wasp, Nasonia (= Mormoniella) vitripennis. Genetics,1985,109:745-759.
    186. Soto LP, Frizzo LS, Bertozzi E,Avataneo E, Sequeira GJ, Rosmini MR. Molecular microbial analysis of Lactobacillus strains isolated from the gut of calves for potential probiotic use. Vet Med Int,2010,doi:10.4061/2010/274987.
    187. Sun Y. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol,2002,83:1-11.
    188. Takatsuka J, Kunimi Y. Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). JInvertebr Pathol,2000,76:222-226.
    189. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599.
    190. Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol,1982,43:777-780.
    191.Teng C, Jia HY, Yan QJ, Zhou P, Jiang ZQ. High-level expression of extracellular secretion of a P-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresour Technol,2011,102:1822-1830.
    192. Terra WR, Ferreira C. Insect digestive enzymes:properties, compartmentalization and function. Comp Biochem Phys B,1994,109:1-62.
    193.Thibout E, Guillot JF, Ferary S, Limouzin P, Auger J. Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Experientia,1995,51:1073-1075.
    194. Tien M, Kirk TK. Lignin peroxidase of Phanerochoete chrysosporium. Method Enzymol,1988,161:238-249.
    195.Todaka N, Moriya S, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticuliterm.es speratus. FEMS Microbiol Ecol,2007,59:592-599.
    196. Tomme P, Warren RAJ, Gilkes NR. Cellulose hydrolysis by bacteria and fungi. Ad-v Micro Physio,1995,37:1-81.
    197.T6th EM, HellE, Kovacs G, Borsodi AK, Marialigeti K. Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera:Sarcophagidae). Microb Ecol,2006,51:13-21.
    198. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM,Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature,2004, 428:37-43.
    199. Viikari L, Kantelinen A, Sundquist J, Linko M. Xylanases in bleaching:from an idea to the industry. FEMS Microbiol Rev,1994,13:335-350.
    200. Vilanova C, Marco G, Dominguez-Escriba L, Genoves S, Sentandreu V, Bataller E, Ramon D, Porcar M. Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass Bioenerg,2012,45: 288-294.
    201. Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR. Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol,2003,69: 6235-6242.
    202. Walter J, Mangold M, Tannock GW. Construction, analysis, and P-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol,2005,71:2347-2354.
    203. Wang CX, Meek DJ, Panchal P, Boruvka N, Archibald FS, Driscoll BT, Charles TC. Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol,2006,72:384-391.
    204. Wang GZ, Luo HY, Wang YR, Huang HQ, Shi PJ, Yang PL, Meng K, Bai YG, Yao B.A novel cold-active xylanase gene from the environmental DNA of goat rumen contents:Direct cloning, expression and enzyme characterization. Bioresour Technol, 2011,102:3330-3336.
    205. Wang GZ, Wang YR, Yang PL, Luo HY, Huang HQ, Shi PJ, Meng K, Yao B. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biot,2010,87:1383-1393.
    206. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature,2007,450:560-565.
    207. Watanabe H, Takase A, Tokuda G, Yamada A, Lo N. Symbiotic, archaezoa of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Eukaryot Cell,2006,5:1571-1576.
    208. Watanabe H, Tokuda G, Cellulolytic Systems in Insects. Annu Rev Entomol,2010,55: 609-632.
    209. Wei, Y.D., Lee,K.S., Gui, Z.Z., Yoon, H.J., Kim, I., Zhang GZ, Guo XJ, Sohn HD, Jin BR. Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulose from the mulberry longicorn beetle, Apriona germari. Comp Biochem Phys B,2006,145:220-229.
    210.Wenderoth DF, Ferslev B, Macarri G, Molinari G, Lunsdorf H, Timmis KN. Leitbakteria of microbial biofilm communites causing occlusion of biliary stents. Environ Microbiol,2003,5:859-866.
    211. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol,2009,5: e1000352.
    212. Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L. Spirochete and protist symbionts of a termite(Mastotermes electrodominicus) in Miocene amber. Proc Natl Acad Sci USA,2002,99:1410-1413.
    213. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT. A xylose-tolerant β-xylosidase from Paecilomyces thermophila:Characterization and its co-action with the endogenous xylanase. Bioresour Technol,2008,99:5402-5410.
    214. Young JM. Drippy gill:A bacterial disease of cultivated mushrooms caused by Pseudomonas agaricin. sp. New Zeal J Agr Res,1970,13,977-990.
    215.Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA,2004,101:15042-15045.
    216. Zhang HY, Jackson TA. Characterising the bacterial community in the alimentary tract of grass grub (Costelytra zealandica) larvae. Proceedings of the XVth International Plant Protection Congress,2004, Beijing.
    217. Zhang HY, Jackson TA. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera:Scarabaeidae). JAppl Microbiol,2008,105:1277-1285.
    218. Zheng WW, Zhao YS, Zhang HY. Morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle Holotrichia parallela (Coleoptera: Scarabaeidae) during larval development. Micron,2012,43:638-642.
    219. Zhou JP, Huang HQ, Meng K, Shi PJ, Wang YR, Luo HY, Yang PL, Bai YG, Zhou ZG, Yao B. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl Microbiol Biotechnol,2009,85: 323-333.
    220. Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA,2011,108:17714-17719.