以B-ZSM-5为母体气固相法合成Ti-ZSM-5的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固相同晶取代法是合成具有MFI型孔道结构钛硅分子筛的一条简单易行、重复性好的合成路线;然而,传统气固相法合成钛硅分子筛的催化性能却相对于水热法较低。以先老化后晶化方法合成B-ZSM-5为母体制得的钛硅分子筛在一定程度上弥补这一不足,其催化性能接近于水热法合成的钛硅分子筛TS-1 (Titanium silicalite-1)。但其表现出较好催化性能的根本原因以及钛原子载入分子筛骨架过程和存在形式却并未进行详细探究。
     本论文以先老化后晶化方法合成的B-ZSM-5为母体,采用气固相同晶取代法合成Ti-ZSM-5。分别从母体合成和取代反应制备Ti-ZSM-5方面入手,对其催化性能提高的原因以及钛原子如何进入分子筛骨架及分布情况进行深入研究。论文内容如下:
     1.发现先老化后晶化可合成出由更小尺寸长方体颗粒团聚成的球状聚集体B-ZSM-5。长方体颗粒的尺寸大小直接决定以其B-ZSM-5为母体制得Ti-ZSM-5的催化活性和重复使用性的好坏。
     2.合成母体B-ZSM-5过程中,老化温度控制在333K-353K之间为最佳,此时母体B-ZSM-5中长方体颗粒尺寸最小并具有较大孔容及比表面积;以之为母体制得的Ti-ZSM-5在苯酚羟基化反应中的催化性能最为优异。
     3.制备母体过程中,有机醇的添加可明显改善母体聚集体的团聚状态;但对硼原子进入分子筛骨架却有较强抑制作用,导致骨架钛含量下降,Ti-ZSM-5催化性能降低;此外,添加丙三醇可制得表面光滑的十字形单晶且可有效缩短晶化时间至仅需4 h。
     4.采用TiCl4取代制备Ti-ZSM-5过程中,改变取代温度、热处理温度及取代时间等制备条件,考察其对Ti-ZSM-5催化性能的影响。发现该取代过程中有非锐钛矿的非骨架钛物种及骨架钛活性物种生成。低取代温度有利于不完全形式的骨架钛物种生成。经高温热处理后,这类钛物种可部分转变为四配位骨架钛物种,其他则转变为Ti-O-Ti形式的多聚态Ti物种;高取代温度下,以独立四配位形式存在的骨架钛物种则更易直接生成。基于上述结果,提出该合成方法中Ti原子进入分子筛骨架过程的推测。此外,还发现改变取代温度可有效控制钛物种在Ti-ZSM-5中的分布。低取代温度下,活性中心Ti4+分布在分子筛外表面居多;高取代温度下,活性中心Ti4+则多分布在分子筛孔道内。
The gas-solid isomorphous substitution provides one operated easily and well repeated method to synthesize this titanium silicalite zeolite with the MFI structure. However, the catalytic activities of Ti-ZSM-5 synthesized from the gas-solid synthesis method are usually much lower than those of TS-1 obtained from hydrothermal synthesis. In these years, the improvement on the synthesis of the precursor B-ZSM-5 by adjusting the aging temperature can make up this deficiency. The catalytic activity of Ti-ZSM-5 using B-ZSM-5 as precursor, which is synthesized by aging treatment, and then crystallization, is similar to that of TS-1 obtained from the hydrothermal synthesis. But the reasons for showing such a good catalytic performance of Ti-ZSM-5, the incorporation process into the zeolite framework and existing forms of Ti species are still not clear.
     In this paper, Ti-ZSM-5 is synthesized by the gas-solid isomorphous substitution using B-ZSM-5 as precursor, which is prepared by aging treatment, and then crystallization. Proceeding with the precursor synthesis and the synthesis of Ti-ZSM-5 by the substitution reaction with TiCl4, the reasons for showing the high catalytic activity, the incorporation of Ti atoms into the zeolite framework and the main location of active sites are studied in detail.
     1. It is found that the precursors B-ZSM-5 synthesized by aging treatment, and then crystallization, consist of cuboid-like crystals with different sizes, which are agglomerated into different sizes of sphere-like particles. The good catalytic performance and recyclability of Ti-ZSM-5, using B-ZSM-5 as the precursor synthesized by aging treatment, and then crystallization, are mainly decided by the size of cuboid-like crystals.
     2. Adjusting the aging temperature, the optimized aging temperature should be controlled in the range of 333 K to 353 K. The obtained B-ZSM-5 has the smaller cuboid-like particles, the larger pore volume and surface area. Ti-ZSM-5 sample using this B-ZSM-5 as the precursor has a better catalytic performance for phenol hydroxylation.
     3. In the synthesis process of the precursors B-ZSM-5, adding the organic alcohol can modify the existing states of B-ZSM-5 that the sphere-like particles agglomerated by cuboid-like crystals with different sizes. But B atoms are strongly hindered to be incorporated into the zeolite framework; both the framework titanium content and catalytic performance of Ti-ZSM-5 become lower. In addition, adding glycerin, the crystal shape of B-ZSM-5 is also changed into the cross-like single crystals. The needed shortest aging crystallization time at 438 K is only 4 h.
     4. In the synthesis of Ti-ZSM-5 substituted with TiCl4, the effect of different substitution temperatures, times and heat treatment temperatures on the catalytic performance of Ti-ZSM-5 has been well investigated. It is found that there mainly exist isolated framework Ti4+ species and non-perfect framework titanium species. A low substitution temperature favors the formation of non-perfect framework titanium species, which can be converted into tetrahedrally coordinated Ti species and polymerized Ti species (Ti-O-Ti), after heat treatment. In contrast, at high substitution temperature, isolated tetrahedrally coordinated titanium species are easy to be obtained. Based on these results, a conjecture of the incorporation of Ti atoms into the lattice is proposed. In addition, it is also found that adjusting the substitution temperature can effectively control the location of Ti species in Ti-ZSM-5. At low substitution temperature, the active Ti (Ⅳ) species are mainly located on the external surface of Ti-ZSM-5; at high substitution temperature, the location of the active Ti (Ⅳ) species in Ti-ZSM-5 is inside the pore structures.
引文
[1]Argauer R J, Landolt G R. Synthesis of Zeolite ZSM-5. U. S. Pat,3702866,1972.
    [2]Kokotailo G T, Lawton S L, Olson D H, et al. Structure of Synthetic Zeolite ZSM-5. Nature,1978,272:437-438.
    [3]Taramasso M, Perego G, Notari B, et al. Moleeular Sieve Borosilicates. Proc. of 5th Int. Zeolite Con. London,1980,40.
    [4]Bellussi G, Petergo C. Handbook of Heterogenous Catalysis, in:Gertl, H Knozinger, J Weitkamp(Eds.), Pointers(France):Wiley, Vol.5,1997:p2329.
    [5]Holderich W F. Zeolites:Catalysts for synthesis of organic compounds. Stud. Surf. Sci. Catal.,1989,49:69-93.
    [6]闵恩泽,李成岳,王祥生等.绿色石化技术的科学与工程基础.北京:中国石化出版社,2002.
    [7]Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide. USP 4 410 501,1983.
    [8]Thangaraj A, Sivasanker S. An improved method for TS-1 synthesis:29Si NMR studies. J. Chem. Soc., Chem. Commun.,1992, (2):123-124.
    [9]Thangaraj A, Eapan M J, Sivasanker S, et al. Studies on the synthesis of silicalite titanium. Zeolites,1992,12(9):943-950.
    [10]Millini R, Previde Massara E, Perego G, et al. Framework composition of titanium silicalite-1. J. Catal.,1992,137(2):497-503.
    [11]Muller U, Steck W. Ammonium-Based Alkaline-free synthesis of MFI-type boron and Titanium zeolites. Stud. Surf. Sci. Catal.,1994,84:203-210.
    [12]Tuel A, Ben Taarit Y, Naccache C. Characterization of TS-1 synthesized using Mixtures of tetrabutyl and tetraethyl Ammonium Hydroxides. Zeolites,1993,13(6):454-460.
    [13]Tuel A, Ben Taarit Y. Synthesis of titanium silicalite-1 using hexapropyl-1,6-hexane diammonium ions as templating agent. Zeolites,1994,14(7): 594-599.
    [14]Tuel A. Crystallization of titanium silicalite-1 (TS-1) from gels containing hexanediamine and tetrapropylammonium bromide. Zeolites,1996,16(2-3):108-117.
    [15]马淑杰,李连生,刘国宗等.钛硅酸盐分子筛TS-1的合成及表征.催化学报,1996,17(2):173-176.
    [16]刘云凌,杜红宾,周凤岐等.钛硅分子筛的合成及表征.石油学报(石油加工),1996,12(4):26-29.
    [17]Shibata M, Gabelica Z. Rapid. Synthesis of MFI titanosilicates using in situ seeding method. Zeolites,1997,19:246-252.
    [18]Xia Q H, Gao Z. Crystallization kinetics of pure TS-1 zeolite using quaternary ammonium halides as templates. Mater. Chem. Phys.,1997,47(2-3):225-230.
    [19]万颖,卢冠忠.混合模板剂合成钛硅分子筛.华东理工大学学报,1997,23(2):249-253.
    [20]李钢,郭新闻,王祥生等.TPABr-TEAOH体系中TS-1的合成、表征及催化性能.催化学报,1998,19(4):371-374.
    [21]郭新闻,李钢,王祥生等.TS-1沸石合成过程中模板剂用量对钛进入骨架的影响.大连理工大学学报,1998,38(3):354-358.
    [22]李钢,郭新闻,王祥生等.TPABr-正丁胺体系中TS-1的合成与表征.大连理工大学学报,1998,38(3):363-367.
    [23]柯于勇,卢冠忠,万颖等.以混合模板剂合成TS-1分子筛及其性能研究.催化学报,1998,19(2):149-153.
    [24]Li G, Guo X W, Wang X S, et al. Synthesis of Titanium Silicalites in Different Template Systems and Their Catalytic Performance. Appl. Catal. A-Gen.,1999,185(1):11-18.
    [25]Carati A, Flego C, Berti D, et al. Influence of synthesis media on the TS-1 characteristics. Stud. Surf. Sci. Catal.,1999,125:45-52.
    [26]Thangaraj A, Kumar R, Mirajkar S P. Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. J. Catal.,1991,130(1):1-8.
    [27]Thangaraj A, Sivasanker S. An improved method for TS-1 synthesis:29Si NMR studies. J. Chem. Soc., Chem. Commun.,1992, (2):123-124.
    [28]庞文琴,裘式纶.杂原子分子筛Ⅷ.Ti-Si Pentasil型分子筛的结构研究.化学学报,1985,43(8):739-744.
    [29]Padovan M, Leofanti G, Roffia P. Method for Preparation of Titanium Silicalites. Eur. Pat.311 983,1989.
    [30]Uguina M A, Ovejero G, Van Grieken R, et al. Preparation of TS-1 by wetness impregnation amorphous SiO2-TiO2 solids:influence of the synthesis variables. J. Chem. Soc., Chem. Commun.,1994:27-28.
    [31]Serrano D P, Uguina M A, Ovejer Go, et al. Synthesis of TS-1 by wetness impregnation of amorphous SiO2-TiO2 solids prepared by the sol-gel method. Micropor. Mater.,1995,4(4): 273-282.
    [32]Gao H, Suo J, Li S. A Easy Way to Prepare Titanium Silicalite-1(TS-1). J Chem Soc, Chem. Commun.,1995, (8):835-836.
    [33]高焕新,索继栓,吕公煊等.钛硅分子筛(TS-1)的合成、结构表征及催化性能研究.分子催化,1996,10(1):25-32.
    [34]Gontier S, Tuel A. Synthesis of titanium silicalite-1 using amorphous SiO2 as silicon source. Zeolites,1996,16(2-3):184-195.
    [35]高铁男,魏荣宝,梁娅等.用硅胶制备钛硅分子筛TS-1的研究.南开大学学报(自然科学 版),1998,31(1):105-108.
    [36]Kumar R, Raj A, Kumar S B, Ratnasamy P. Process for the preparation of titanium silicalites. USP 5885546.1999-3-23.
    [37]周继承,王祥生.无机钛硅原料体系合成TS-1催化丙烯环氧化反应.分子催化,2000,14(5):363-368.
    [38]吴巍,程时标,闵恩泽.用无机硅钛原料合成钛硅-1分子筛的研究.石油炼制与化工,2000,31(2):33-37.
    [39]张义华,王祥生,郭新闻等.以TiCl4醇溶液作钛源在水热体系中合成钛硅分子筛TS-1.燃料化学学报,2000,28(6):550-554.
    [40]张义华,王祥生,郭新闻等.钛硅分子筛TS-1的合成、表征及催化性能.催化学报,2001,22(1):92-94.
    [41]Wang L, Wang X, Guo X, et al. Quick Synthesis of Titanium Silicalite-1. Chin. J. Catal.,2001,22(6):513-514.
    [42]Hasenzahl S, Heyne K, Kneitel D. Method for the production of a titanium-containing zeolite. USP 6841144.2005-1-11.
    [43]Mario F B, Teresa D S, Romilda F F, et al. Synthesis of TS-1 molecular sieves using a new Ti source. J. Phys. Chem. B,2006,110:15080-15084.
    [44]Masahiko T, Watcharop C, Toshiyuki Y, et al. Incorporation process of Ti species into the framework of MFI type zeolite. Micro. Meso. Mater,2008,112:202-210.
    [45]Van der Pol A J H P, van Hooff J H C. Parameters affecting the synthesis of titanium silicalite 1. Appl. Catal.,1992,92(2):93-111.
    [46]Neumann R, Levin-Elad M. Metal oxide(TiO2, MoO3, WO3) substitutedsilicate xerogels as catalysts for the oxidation of hydrocarbons with hydrogen peroxide. J. Catal.,1997, 166(2):206-217.
    [47]Tay C S, ChiangA S T. The synthesis of colloidal zeolite TPA-silicalite-1. Micro. Meso. Mater.,1998,26(1-3):89-99.
    [48]林民,舒兴田,汪燮卿等.TS-1分子筛的合成Ⅰ.29Si和1H NMR研究正硅酸乙酯的水解.催化学报,1999,20(1):29-34.
    [49]Tuel A, Ben Taarit Y. Synthesis of TS-1 from titanosilicate gels containing TPAOH/TEAOH and TPAOH/NH4OH mixtures. Micro. Mater,1993,1(3):179-189.
    [50]Zhou J C, Wang X S. A Novel Method for Synthesis of Titanium Silicalite-1(TS-1). Chin. J. Catal.,1999,20(1):5-6.
    [51]王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,1997.
    [52]Shiralkar P P, Joshi P N, Eapen M J, et al. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties. Zeolites,1991,11: 511-516.
    [53]张雄福,王桂茹,王祥生Ti-SiZSM-5沸石合成的影响因素.石油学报(石油加工),1994,10(4):37-42.
    [54]李钢,郭新闻,王祥生等.钛硅沸石合成中各组分作用研究.燃料化学学报,1999,27(6):565-567.
    [55]李钢,郭新闻,王祥生.以TPABr为模板剂合成TS-1分子筛.石油学报(石油加工),1999,15(1):90-93.
    [56]Khomane R B, Kulkarnib D, Paraskar A, et al. Synthesis, characterization and catalytic performance of Titanium Silicalite-1 Prepared in micellar media. Mater. Chem. Phys.,2002,76(1):99-103.
    [57]Wang L Q, Wang X S, Guo X W, et al. Synthesis of Titanium silicalite-1 in the presence of Tween 40. Chin. J. Catal.,2003,24(3):161-162.
    [58]陈晓晖,蔡丽蓉,魏可镁.表面活性剂Tween对TS-1合成及催化性能影响的研究.燃料化学学报,2005,33(1):565-567.
    [59]Liu H, Lu G Z, Hu H J. Synthesis, characterization and catalytic performance of Titanium Silicalite-1 Prepared in the presence of nonionic surfactants. Mater. Chem. Phys., 2006,100:162-167.
    [60]张宝吉.钛硅沸石(TS-1)的合成、有机碱处理、挤条成型及其催化氧化环己烷的研究:(硕士学位论文).北京:北京石油科学研究院,1998.
    [61]张莉.钛硅分子筛的结构与催化性能的研究:(硕士学位论文).北京:北京石油科学研究院,2000.
    [62]夏丽贞.钛硅分子筛TS-1的合成、改性及其甲乙酮氨氧化反应改性的研究:(硕士学位论文).大连:大连理工大学,2005.
    [63]李鹏.有机碱改性TS-1的表征及其甲乙酮氨氧化性能的研究:(硕士学位论文).大连:大连理工大学,2006.
    [64]Wang Y R, Lin M, Tuel A. Hollow TS-1 crystals formed via a dissolution-recrystallization process. Micro. Meso. Mater.,2007,102(1-3):80-85.
    [65]Ogura M, Shinomiya S, Tateno J K, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A:General,2001,219(2001):33-43.
    [66]Suzuki T, Okuhara T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution. Micro. Meso. Mater.,2001,43(2006):83-89.
    [67]毛璟博.微米TS-1的改性、表征及催化性能:(硕士学位论文).大连:大连理工大学,2007.
    [68]Chao P Y, Tsai S T, Tsai S C, et al. Phenol hydroxylation over alkaline treated TS-1 catalysts. Top Catal.,2009,52:185-192.
    [69]Kraushaar B, van Hooff J H C. A new method for the preparation of titanium-silicalite (TS-1). Catal. Lett.,1988,1:81-84.
    [70]Kraushar-Czarnetzki B, van Hooff J H C. A test reaction for titanium silicalite catalysts. Catal. Lett.,1989,2:43-48.
    [71]庞文琴,左丽华,裘式伦.气固相置换法合成杂原子硅铝酸盐分子筛及其性能研究,高等学校化学学报,1988,9(1):4-8.
    [72]郭新闻,王桂茹,王祥生.Ti-Si pentasil型分子筛的气固相同晶取代法制备及其羟基化性能Ⅰ、母体Na+含量的影响.催化学报,1994,15(4):309-313.
    [73]郭新闻,王桂茹,王祥生.Ti-Si Pentasil型杂原子分子筛的气团相同晶取代法制备及其羟基化性能——Ⅱ、制备条件及母体对钛进入骨架的影响.催化学报,1995,16(5):420-424.
    [74]张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5沸石的表征及催化性能.大连理工大学学报,1998,38(3):368-371.
    [75]张法智,郭新闻,王祥生等.气固相同晶取代法制备Ti-ZSM-5及其催化性能的研究.分子催化,1999,13(2):121-126.
    [76]Zhang F Z, Guo X W, Wang X S, et al. Preparation of titanium-containing mordenits by gas-solid reaction. J. Mol. Catal. (China),1999,13(6):461-463.
    [77]陈国辉,夏清华,高滋.气固相类质同晶取代合成含钛沸石.催化学报,1995,16(6):502-505.
    [78]郭新闻,王祥生,于桂燕.不同结构母体对制备钛沸石的影响.催化学报,1997,18(1):24-27.
    [79]Zhang F Z, Guo X W, Wang X S, et al. Preparation and characterization of titanium-containing MFI from highly siliceous ZSM-5:effect of precursors synthesized with different templates. Mater. Chem. Phys.,1999,60:215-220.
    [80]Ferrini C, Kovenhoven H W. Modified zeolites for oxidation reactions. Stud. Surf. Sci. Catal.,1990,55:53-62.
    [81]徐成华,骆豫蜀,吕绍洁等.后处理温度对Ti-ZSM-5载钛量和催化苯乙烯氧化反应的影响.合成化学,2001,9(5):424-428.
    [82]徐成华,吕绍洁,邱发礼.气固相法合成Ti-ZSM-5催化苯酚羟基化的研究.石油与天然气化工,2000,29(6):280-283.
    [83]Yoo J W, Lee C W, Chang J S, et al. Characterization and catalytic properties of Ti-ZSM-5 prepared by chemical vapor deposition. Catal. Lett.,2000,66:169-173.
    [84]Li M F, Guo X W, Wang X S. The Synthesis of Ti-ZSM-5 Starting with de-[B]ZSM-5. Chin. J. Catal.,1997,18(4):269-270.
    [85]李明丰,郭新闻,于桂燕等.以de-[B]ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成.石油化工,1998,27(5):319-323.
    [86]张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5沸石的表征及催化性能.大连理工大学学报,1998,38(3):368-371.
    [87]王祥生,郭新闻,刘靖.钛硅沸石的制备及其选择氧化性能.大连理工大学学报,1998,38(3):348-353.
    [88]Liu M, Guo X W, Wang X S, et al. Effect of (n)SiO2/(n)B2O3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method, Catal. Today, 2004,93-95:659-664.
    [89]刘民,郭新闻,高健等.低温晶化对B-ZSM-5和Ti-ZSM-5物化性能的影响.催化学报,2005,26(8):660-664.
    [90]刘民,高健,郭新闻等.气固相法制备的高效Ti-ZSM-5沸石的表征和催化性能.化工学报,2006,57(4):791-798.
    [91]Yamagishi K, Namba S, Yashima T. Preparation and acidic properties of aluminated ZSM-5 zeolites. J. Catal.,1990,121(1):47-55.
    [92]Yamagishi K, Namba S, Yashima T. Defect sites in highly siliceous HZSM-5 zeolites: a study performed by alumination and IR spectroscopy. J. Phys. Chem.,1991,95(2):872-877.
    [93]Wu P, Komatsu T, Yashima T. IR and MAS NMR Studies on the Incorporation of Aluminum Atoms into Defect Sites of Dealuminated Mordenites. J. Phys. Chem.,1995,99(27): 10923-10931.
    [94]刘民.Ti-ZSM-5沸石的气固相法合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,2005.
    [95]Roseler J, Heitmann G, Holderich W F. Vapour-phase Beckmann rearrangement using B-MFI zeolites. Appl. Catal. A:General,1996,144(1-2):319-333.
    [96]Gabelica Z, Nagy J B, Bodart P, et al. High Resolution Solid State MAS 11B-NMR Evidence of Boron Incorporation in Tetrahedral Sites of Zeolites. Chem. Lett.,1984,13(7): 1059-1062.
    [97]Kessler H, Chezeau J M, Guth J L, et al. N.m. r. and i. r. study of B and B-Al substitution in zeolites of the MFI-structure type obtained in non-alkaline fluoride medium. Zeolites,1987,7(4):360-366.
    [98]Brunner E, Freude D, Hunger M, et al. MAS NMR and IR studies on ZSM-5-type boroaluminozeolites. Chem. Phys. Lett.,1988,148(2-3):226-230.
    [99]Unger B, Wendlandt K P, Toufar H, et al. Treatment of boron-containing pentasil-type zeolites under'boron-extracting'conditions. J. Chem. Soc. FaradayTrans.,1991,87: 3099-3101.
    [100]Sayed M B. Origin of boron mobility over boron-impregnated ZSM-5. A combined high-resolution-solid-state 11B nuclear magnetic resonance/infrared spectral investigation. J. Chem. Soc, Faraday Trans.1,1987,83:1751-1759.
    [101]董晋湘,周兴国,周锋等.蒸汽相法硼硅MFI沸石的合成.无机化学学报.1995,11(1):73-77.
    [102]De Ruiter R, Jansen J C, VanBekkum H. On the incorporation mechanism of B and Al in MFI-type zeolite framework. Zeolites,1992,12(1):56-62.
    [103]Simon M W, Nam S S, Xu W Q, et al. Effects of B3+ content of B-ZSM-11 and B-ZSM-5 on acidity and chemical and thermal stability. J. Phys. Chem.,1992,96(15):6381-6388.
    [104]Chu C T W, Chang C D. Isomorphous substitution in zeolite frameworks.1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. J. Phys. Chem.,1985,89(9): 1569-1571.
    [105]Howden M G. Zeolite ZSM-5 containing boron instead of aluminium atoms in the framework. Zeolites,1985,5(5):334-338.
    [106]Holderich W, Merger F, Mross W D. Process for the preparation of ketones by isomerization of aldehydes. Eur. Pat.,0162387,1985.
    [107]Holderich W, Merger F, Mross W D, et al. Process for the preparation of dienes by dehydration of aldehydes. Eur. Pat.,0162385,1985.
    [108]Brabec L, Jeschke M, Klik R, et al. Fe in MFI metallosilicates, characterization and catalytic activity. Appl. Catal.,1998,170(1):105-116.
    [109]Klaas J, Kulawik K, Schulz-Ekloff G, et al. Comparative spectroscopic study of TS-1 and zeolite-hosted extraframework titanium oxide dispersions. Stud. Surf. Sci. Catal.,1994, 84:2261-2268.
    [110]Huybreehts D R C, Buskens P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites. J. Mol. Catal.,1992,71(1):129-147.
    [111]Bonino F, Damin A, Ricchiardi G, et al. Ti-Peroxo Species in the TS-1/H2O2/H2O System. J. Phys. Chem.,2004,108:3573-3583.
    [112]Notari B. Titanium silicalites. Catal. Today,1993,18(2):163-172.
    [113]Notari B. Synthesis and catalytic properties of titanium containing zeolites. Stud. Surf. Sci. Catal.,1987,37:413-425.
    [114]Huybrechts D R C, Vaesen I, Li H X, et al. Factors influencing the catalytic activity of titanium silicalites in selective oxidations. Catal. Lett.,1991,8(2-4):237-244.
    [115]Boccuti M R, Rao K M, Zecchina A, et al. Spectroscopic Characterization of Silicalite and Titanium-Silicalite. Stud. Surf. Sci. Catal.,1989,48:133-144.
    [116]Zecchina A, Spoto G, Bordiga S, et al. IR Spectra of CO Adsorbed at Low Temperature (77 K) On Titaniumsilicalite, H-ZSM5 and Silicalite. Stud. Surf. Sci. Catal.,1991,65: 671-680.
    [117]夏清华,王公慰,应慕良等.钛-硅沸石的结构表征及其催化性能.催化学报,1994,15(2):109-114.
    [118]Vayssilov G N. Struetural and Physicochemical Features of Titanium Silicalites. Catal. Rev-Sci. Eng.,1997,39(3):209-251.
    [119]Jorda E, Tuel A, Teissier R, et al. TiF4:An Original and Very Interesting Precursor to the Synthesis of Titanium Containing Silicalite-1. Zeolites,1997,19(4):238-245.
    [120]Zecchina A, Spoto G, Bordiga S, et al.. Framework and Extraframework Ti in Titanium-Silicalite:Investigation by Means of Physical Methods. Stud. Surf. Sci. Catal., 1991,69:251-258.
    [121]Quincy R B, Houalla M, Hercules D M. Quantitative Raman characterization of Mo/Ti02 catalysts. J. Catal.,1987,106(1):85-92.
    [122]Qhsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase TiO2. J. Raman Spectrosc. 1978,7(6):321-324.
    [123]Li C, Xiong G, Liu J K, et al. UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angew. Chem. Int. Ed.,1999,38(15): 2220-2222.
    [124]Li C, Xiong G, Liu J K, et al. Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. J. Phys. Chem. B.2001,105(15):2993-2997.
    [125]Parker L M, Bibby D M, Patterson J E. Thermal decomposition of ZSM-5 and silicalite precursors. Zeolites,1984,4(2):168-174.
    [126]Debras G, Gourgue A, Nagy J B, et al. Physico-chemical characterization of pentasil type materials:II. Thermal analysis of the precursors. Zeolites,1985,5(6):377-383.
    [127]于晓东,卢冠忠,曹钢.TS-1分子筛的表面酸性.石油学报(石油加工),2003,19(1):28-33.
    [128]赵琦,韩秀文,刘秀梅等.TS-1分子筛骨架钛原子引入过程的研究.催化学报,1999,20(1):55-59.
    [129]Li G, Wang X S, Guo X W, et al. Titanium species in titanium silicalite TS-1 prepared by hydrothermal method. Mater. Chem. Phys.,2001,71:195-201.
    [130]Tuel A, Diab J, Gel in P, et al. EPR Evidence for the Isomoprhous Substitution of Titanium in silicalite structure. J. Mol. Catal.,1990,63(1):95-102.
    [131]陈国辉,夏清华,高滋.不同来源的钛硅沸石的孔结构、酸性和催化性能。高等学校化学学报,1996,17(9):1454-1457.
    [132]安德森J R,普拉特K C著.庞礼,李琬,李国英等译.催化剂表征与测试.北京:烃加工出版社,1989.
    [133]孙琢琏,董振温著.有机光波谱分析的原理和应用.大连:大连理工大学出版社,1993.
    [134]Sheldon R A, Downing R S. Heterogeneous Catalytic Transformations for Environmentally Friendly Production. Appl. Catal. A-Gen.,1999,189:163-183.
    [135]Romano U, Esposito A, Maspero F, et al. Selective oxidation with titanium silicalite. Chim. Ind.,1990,72:610-616.
    [136]郭新闻,王祥生,李钢等.廉价原料合成的钛硅分子筛的热稳定性能的研究,石油学报(石油加工),2002,18(2):34-40.
    [137]Tuel A, Ben Taarit Y. Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide. Appl. Catal. A-Gen.,1993,102(1):69-77.
    [138]Wilkenhoner U, Langhendries G, van Laar F, et al. Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents. J. Catal., 2001,203(1):201-212.
    [139]李钢,王祥生,王丽琴等.两种钛硅分子筛合成体系的比较.石油学报(石油加工),2003,19(4):76-81.
    [140]Patil N S, Uphade B S, Jana P S K. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. J. Catal., 2004,223(1):236-239.
    [141]Laura Espinal, Steven L Suib, James F Rusling. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2. J. Am. Chem. Soc.,2004,126(24): 7676-7682.
    [142]Kirm Ilham, Medina Francesc, Rodriguez Xavier, et al. Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts. Appl. Catal. A-Gen.,2004, 272(1-2):175-185.
    [143]胡健平,储伟,许中强等.SO42-/ZrO2-TiO2-SiO2固体酸催化苯乙烯选择氧化反应的研究.合成化学,2000,8(4):326-330.
    [144]徐成华,吕绍杰,邱发礼.气固相合成Ti-ZSM-5催化苯乙烯环氧化对映选择性的研究.化学学报,2000,58(11):1322-1326.
    [145]吕绍洁,徐成华,陈义均等.溴醇法合成环氧苯乙烷的研究.合成化学,2000,8,(1):71-74.
    [146]Tatsumi T, Nakamura M, Yuasa K, et al. Shape selective epoxidation of alkenes catalyzed by titanosilicate. Chem. Lett.,1990,19(2):297-298.
    [147]Reddy J S, Khire U R, Ratnasamy P, et al. Cleavage of the carbon carbon double-bond over zeolites using hydrogen-peroxide. J.Chem. Soc. Chem. Commun.,1992,1234-1235.
    [148]Clerici M G, Ingallina P. Epoxidation of Lower Olefins with Hydrogen Peroxide and Titanium Silicallte. J. Catal.,1993,140(1):71-83.
    [149]Kumar S B, Mirajkar S P, Pais G C G., et al. Epoxidation of Styrene over a Titanium Silicate MoleCular Sieve TS-1 Using Dilute H2O2 as Oxidizing Agent. J. Catal.,1995, 156(1):163-166.
    [150]Neri C, Buonom F. Process for isomerising styrene oxide or homologues to beta-phenylaldehydes. EuropeanPatent,0200117A1,1984.
    [151]夏清华,王公慰,曹国英.Ti-Si沸石的催化氧化性能1.烯烃的氧化及骨架钛的作用.分子催化,1994,8(4):313-319.
    [152]Laha S C, Kumar R. Selective Epoxidation of Styrene to Styrene oxide over TS-1 Using Urea-Hydrogen Peroxide as Oxidizing Agent. J. Catal.,2001,204(1):64-70.
    [153]王桂茹,王波,张雄福等.廉价原料合成Ti-SiZSM-5分子筛的表征及催化性能.大连理工大学学报,2000,40(2):160-164.
    [154]Srinivas D, Manikandan P, Laha S C, et al. Reactive oxo-titanium species in titanosilicate molecular sieves:EPR investigations and structure-activity correlations. J. Catal.,2003,217(1):160-171.
    [155]Rode C V, Nehete U N, Dongare M K. Alkali promoted selective epoxidation of styrene to styrene oxide using TS-1 catalyst. Catal. Commun.,2003,4(8):365-369.
    [156]Choudhary V R, Patil N S, Bhargava S K. Epoxidation of Styrene by Anhydrous H202 over TS-1 and γ-Al2O3 Catalysts:Effect of Reaction Water, Poisoning of Acid Sites and Presence of Base in the Reaction Mixture. Catal. Lett.,2003,89(1-2):55-62.
    [157]徐成华,谢卫国,尚丽霞等.气固相法合成的Ti-ZSM-5催化剂上苯乙烯氧化反应的宏观动力学.催化学报,2001,22(1):11-14.
    [158]Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Production of titanium containing molecular sieves and their application in catalysis. Appl. Catal. A-Gen.,2001, 221(1-2):63-72.
    [159]Wang X S, Guo X W. Synthesis, Characterization and Catalytic Properties of Low Cost Titaniumsilicalite. Catal. Today,1999,51(1):177-186.
    [160]Cichocki A, Parasiewicz-Kaczmarska J, Michalik M, et al. Synthesis and Characterization of Boralites with the MFI Structure. Zeolites,1990,10(6):577-582.
    [161]Astorino E, Peri J B, Willy R J, et al. Spectroscopic Characterization of Silicalite-1 and Titanium Silicalite-1. J. Catal.,1995,157(2):482-500.
    [162]Busca G, Ramis G, GallaradoAmores J M, et al. FT Raman and FTIR Studies of Titanias and Metatitanate Powders. J. Chem. Soc., FaradayTrans.,1994,90,3181-3190.
    [163]Wu P D, Debebe A, Ma Y H. Adsorption and Diffusion of C6 and C8 Hydrocarbons in Silicalite. Zeolites,1983,3(2):118-122.
    [164]Wilkenhoner U, Langhendries G, Laar F V, et al. Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents. J. Catal., 2001,203(1):201-212.
    [165]Roger H P, Kramer M, Moller K P, et al. T. Effects of In-situ Chemical Vapour Deposition Using Tetraethoxysilane on the Catalytic and Sorption Properties of ZSM-5. Micropor. Mesopor. Mater.,1998,21(1-3):607-614.
    [166]王祥生.钛硅沸石的研究现状及工业化前景.精细化工,1996,13(1):30
    [167]Coudurier G, Auroux A, Vedrine J C. Properties of boron-substituted ZSM-5 and ZSM-11 zeolites. J. Catal.,1987,108(1):1-14.
    [168]Yu J Q, Feng Z C, Xu L, et al. Ti-MCM-41 Synthesized from Colloidal Silica and Titanium Trichloride:Synthesis, Characterization, and Catalysis. Chem. Mater.,2001,13(3): 994-998.
    [169]宋天佑,刘玺玉,李锡凯等.ZSM-5分子筛生成中的模板效应——Ⅲ.季铵盐模板效应的研究.催化学报,1990,11(4):333-336.
    [170]姚兰芳,杜梅芳,吴兆丰等.表面活性剂浓度对纳米介孔SiO2薄膜结构的影响.功能材料,2004,增刊(35):2969-2672.
    [171]Notari B. Stud. Surf. Sci. Catal., Titanium Silicalite:A New Selective Oxidation Catalyst.1991,60:343-352.
    [172]Zecchina A, Bordiga S, Spoto G, et al. In Situ Characterization of Catalysts Active in Partial Oxidations:TS-1 and Fe-MFI Case Studies. Top. Catal.,2002,21(1-3):67-78.
    [173]Tamura M, Chaikittisilp W, Yokoi T, et al. Incorporation process of Ti species into the framework of MFI type zeolite. Micropor. Mesopor. Mater.,2008,112(1-3):202-210.
    [174]Arends I W C E, Sheldon R A, Wallau M, et al. Oxidative transformations of organic compounds mediated by redox molecular sieves. Angew. Chem. Int. Ed.,1997,36(11): 1144-1163.
    [175]Tantanak D, Vincent M A, Hillier I H. Elucidation of the mechanism of alkene epoxidation by hydrogen peroxide catalysed by titanosilicates:a computational study. Chem. Commun.,1998, s,1031-1032.
    [176]Lamberti C, Bordiga S, Zecchina A, et al. Ti Location in the MFI Framework of Ti-Silicalite-1:A Neutron Powder Diffraction Study. J. Am. Chem. Soc.,2001,123(10): 2204-2212.
    [177]Munakata H, Oumi Y, Miyamoto A. A DFT Study on Peroxo-Complex in Titanosilicate Catalyst:Hydrogen Peroxide Activation on Titanosilicalite-1 Catalyst and Reaction Mechanisms for Catalytic Olefin Epoxidation and for Hydroxylamine Formation from Ammonia. J. Phys. Chem. B,2001,105(17):3493-3501.
    [178]Damin A, Bordiga S, Zecchina A, et al. Ti-chabazite as a model system of Ti(IV) in Ti-zeolites:A periodic approach. J. Chem. Phys.,2002,117(1) 226-237.
    [179]Sasidharan M, Wu P, Takashi T. Direct Formation of Pinacols from Olefins over Various Titano-Silicates. J. Catal.,2002,209(1):260-265.
    [180]Srinivas D, Manikandan P, Laha S C, et al. Reactive oxo-titanium species in titanosilicate molecular sieves:EPR investigations and structure-activity correlations. J. Catal.,2003,217(1):160-171.
    [181]Zhuang J Q, Ma D, Yan Z M, et al. Solid-state MAS NMR detection of the oxidation center in TS-1 zeolite by in situ probe reaction. J. Catal.,2004,221(2):670-673.
    [182]Zhuang J Q, Yang G, Ma D, et al. In Situ Magnetic Resonance Investigation of Styrene Oxidation over TS-1 Zeolites. Angew. Chem. Int. Ed.,2004,43(46):6377-6381.
    [183]Krijnen S, Mojet B L, Abbenhuis H C L, et al. MCM-41 heterogenised titanium silsesquioxane epoxidation catalysts:a spectroscopic investigation of the adsorption characteristics. Phys. Chem. Chem. Phys.,1999,1:361-365.
    [184]Bordiga S, Damin A, Bonino F, et al. Resonance Raman effects in TS-1:the structure of Ti(Ⅳ) species and reactivity towards H2O, NH3 and H2O2:an in situ study. Phys. Chem. Chem. Phys.,2003,5:4390-4393.
    [185]Schultz E, Ferrini C, Prins R. X-ray absorption investigations on Ti-containing zeolites. Catal. Lett.,1992,14 (2):221-231.
    [186]Reddy J S, Sivasanker S. Selective oxidation of cyclohexane over TS-2, a titanium silicate molecular sieve. Catal. Lett.,1991,11(2):241-244.
    [187]Petrini G, Cesana A, De Alberti G, et al. Deactivation Phenomena on Ti-Silicalite. Stud. Surf. Sci. Catal.,1991,68:761-766.
    [188]Gianotti E, Frache A, Coluccia S, et al. The identity of titanium centres in microporous aluminophosphates compared with Ti-MCM-41 mesoporous catalyst and titanosilsesquioxane dimer molecular complex:a spectroscopy study. J. Mol. Catal. A: Chemical,2003,204-205:483-489.
    [189]Blasco T, Camblor M, Corma A, et al. The state of Ti in titanoaluminosilicates isomorphous with zeolite beta. J. Am. Chem. Soc.,1993,115 (25):11806-11813.
    [190]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-Ray Photoelectron Spectra (Perkin-Elmer, Eden Prairie, MN,1979).
    [191]Trong On D, Bonneviot L, Bittar A, et al. Titanium sites in titanium silicalites: An XPS, XANES and EXAFS study. J. Mol. Catal.,1992,74:233-246.
    [192]Ratnasamy P, Srinivas D, Knozinger H. Active sites and reactive intermediates in titanium silicate molecular sieves. Adv. Catal.,2004,48:1-169.
    [193]Geobaldo C F, Bordiga S, Zecchina A, et al. DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalit. Catal. Lett.,1992,16 (1-2): 109-115.
    [194]Kinney J B, Staley R H. Reactions of titanium tetrachloride and trimethylaluminum at silica surfaces studied by using infrared photoacoustic spectroscopy. J. Phys. Chem., 1983,87(19):3735-3740.
    [195]Haukka S, Lakomaa E L, Jylha O, et al. Dispersion and distribution of titanium species bound to silica from titanium tetrachloride. Langmuir,1993,9 (12):3497-3506.
    [196]Haukka S, Lakomaa E L, Root A. An IR and NMR study of the chemisorption of titanium tetrachloride on silica, J. Phys. Chem.,1993,97 (19):5085-5094.
    [197]Yang Q H, Wang S L, Lu J Q, et al. Epoxidation of styrene on Si/Ti/SiO2 catalysts prepared by chemical grafting. Appl. Catal. A-Gen.,2000,194-195:507-514.
    [198]Yang G, Lan X J, Zhuang J Q, et al. Acidity and defect sites in titanium silicalite catalyst. Appl. Catal. A-Gen.,2008,337 (1):58-65.
    [199]Huybrechts D R C, Buskensand P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites. J. Mol. Catal.,1992,71(1):129-147.
    [1]Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide. USP 4 410 501,1983.
    [2]Kraushar B, van Hooff J H C. A new method for the preparation of titanium-silicalite (TS-1). Catal. Lett.,1988,1:81-84.
    [3]庞文琴,左丽华,裘式伦.气固相置换法合成杂原子硅铝酸盐分子筛及其性能研究,高等学校化学学报,1988,9(1):4-8.
    [4]郭新闻,王桂茹,王祥生.Ti-Si Pentasil型杂原子分子筛的气团相同晶取代法制备及其羟基化性能——Ⅱ、制备条件及母体对钛进入骨架的影响.催化学报,1995,16(5):420-424.
    [5]李明丰,郭新闻,于桂燕等.以de-[B]ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成.石油化工,1998,27(5):319-323.
    [6]张法智,郭新闻,王祥生等.气固相同晶取代法制备Ti-ZSM-5及其催化性能的研究.分子催化,1999,13(2):121-126.
    [7]夏清华,王公慰,郑禄彬.Ti-ZSM-5沸石的合成及表征.石油化工,1993,22(12):781-785.
    [8]陈国辉,夏清华,高滋.气固相类质同晶取代合成含钛沸石.催化学报,1995,16(6):502-505.
    [9]徐成华,吕绍洁,邱发礼.气固相法合成Ti-ZSM-5催化苯酚羟基化的研究.石油与天然气化工,2000,29(6):280-283.
    [10]刘民,郭新闻,高健等.低温晶化对B-ZSM-5和Ti-ZSM-5物化性能的影响.催化学报,2005,26(8):660-664.
    [11]刘民,高健,郭新闻等.气固相法制备的高效Ti-ZSM-5沸石的表征和催化性能.化工学报,2006,57(4):791-798.
    [12]Cichocki A, Parasiewicz-Kaczmarska J, Michalik M, et al. Synthesis and Characterization of Boralites with the MFI Structure. Zeolites,1990,10(6):577-582.
    [13]Liu M, Guo X W, Wang X S. Highly effective phenol hydroxylation over Ti-ZSM-5 catalyst prepared using B-ZSM-5 as precursor. Chin. J. Catal.,2004,25(3):169-170.
    [14]Bellussi G, Carati A, Clerici M G, et al. Reactions of titanium silicalite with protic molecules and hydrogen peroxide. Journal of Catalysis,1992,133(1):220-230.