Ti-ZSM-5沸石的气固相法合成、表征和催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛硅沸石(TS-1)是八十年代出现的一类骨架中硅原子被钛原子部分取代的具有MFI结构的杂原子沸石分子筛。作为一种新的催化氧化材料,TS-1受到人们的广泛关注。在TS-1的合成方法的研究中,经典的以及改进的水热法特别是廉价体系的水热法得到了较快的发展,而二次合成法进展缓慢。二次法合成的ZSM-5型钛硅沸石一般记作Ti-ZSM-5沸石。本文对Ti-ZSM-5沸石的气固相法合成进行了较深入的研究,考察了不同母体合成的Ti-ZSM-5沸石的物化性能,筛选出较合适的母体;通过对母体合成条件的调节,对母体缺陷位的控制,以及对气固相反应条件的优化,制备了高效的Ti-ZSM-5催化剂,加深了对气固相法合成Ti-ZSM-5沸石机理的认识;考察了Ti-ZSM-5催化剂的丙烯环氧化以及苯酚羟基化反应性能。论文的主要内容如下:
     一、以B-ZSM-5和Al-ZSM-5沸石为母体合成Ti-ZSM-5沸石的研究
     分别以水热合成体系中配料(n)SiO_2/(n)B_2O_3=5的B-ZSM-5、硅铝比为30的Al-ZSM-5和硅铝比分别为239、600的高硅ZSM-5沸石为母体,经过预处理造成骨架缺陷位后,在高温下与TiCl_4进行气固相反应合成了Ti-ZSM-5沸石,考察了母体对钛进入骨架及其存在形式的影响。研究表明:母体本身的物化性质影响所合成的Ti-ZSM-5沸石中钛的含量及其存在形式。以脱硼ZSM-5沸石(de-[B]-ZSM-5)为母体,所合成的Ti-ZSM-5沸石中骨架钛含量高,非骨架钛含量低,催化性能最好,但其中残留的硼引入的酸中心使其环氧丙烷选择性降低;虽然含硼沸石在预处理过程中晶粒破碎,但是晶体结构没有被破坏,仍保持了较高的结晶度。Al-ZSM-5沸石中大量的Al不能脱除,使得后续合成的Ti-ZSM-5沸石中生成了较多的锐钛矿型非骨架钛,而且含有较多较强的酸中心,降低了其催化性能,导致环氧丙烷选择性降低。1,6-己二胺为模板剂制备的、硅铝比239的高硅沸石为母体合成的Ti-ZSM-5沸石,较四丙基溴化铵为模板剂制备的、硅铝比600的高硅沸石为母体合成的Ti-ZSM-5沸石具有更高的骨架钛含量和催化活性;后者中除锐钛矿型TiO_2以外,还生成了较多的金红石型TiO_2,而前者和Al-ZSM-5沸石为母体的Ti-ZSM-5沸石中只有锐钛矿型TiO_2生成,de-[B]-Ti-ZSM-5沸石
    
    Ti一SM一沸石的气固相法合成、表征和催化性能研究
    中只发现相对极少量的锐钦矿型TioZ。丙烯环氧化和苯酚轻基化反应中,过氧化氢的
    无效分解都不能归因于锐钦矿型和/或金红石型非骨架钦的存在。催化剂在丙烯环氧化
    反应中的活性主要由骨架钦含量决定。苯酚轻基化反应中,骨架钦含量与催化剂晶粒大
    小同时起着重要的作用,强酸中心导致的苯酚质子化降低苯酚转化率。
     对以B一SM一5和Al一SM一5沸石为母体气固相法制备Ti-zSM-5的过程进行分析,
    发现Ti’+既可以通过占据沸石骨架空位形成骨架钦物种,也可以通过同晶置换硼或者铝
    等杂原子进入骨架,这两种过程可以单独存在,也可以同时发生,特别是母体沸石中同
    时存在较多的骨架缺陷位和骨架杂原子的时候。
    二、以不同(n) 510了(n)B203的B一SM一5沸石为母体合成Ti-ZSM一5沸石的研究
     以不同(n) 5 102/(I心BZo3的B一SM一5沸石为母体,经过相同的酸洗脱硼预处理过
    程后,在高温下与TIC玩进行气固相反应合成了Ti-ZSM一5沸石,考察了水热合成B-
    zSM一5时的配料(n) 5102/(I习BZo:对钦进入沸石骨架的影响。研究发现,通过调变配料
    (n) 510了(n)B 203即母体B一SM-5的B含量,可以有效的控制气固相法制备的Ti-ZSM一5
    沸石的骨架钦含量。随着配料(n) 5102/(n)B203的增加,即母体B一sM一5中B含量的
    减少,所制得的Ti-ZsM一5的(n)Sioy(n)Tio:增大,即总钦含量降低;同时骨架钦含量
    也降低,其丙烯环氧化活性降低。而由于其中残留的B含量的降低,引入的酸中心的
    数量减少,其环氧丙烷的选择性升高。各样品中均生成一定量锐钦矿型蜘和金红石型
    TIOZ。该系列催化剂的苯酚轻基化反应性能同时受到骨架钦含量和晶粒大小的影响。无
    论是在丙烯环氧化反应还是苯酚轻基化反应中,过氧化氢的无效分解都不能归因于锐钦
    矿型和金红石型TioZ。水热合成配料(n) 510扩(n)B203二5的B一SM-5沸石为母体制备
    的Ti-zSM一5沸石具有最好的催化性能。
    三、提高Ti-zSM-5沸石催化剂催化性能的研究
     在前人的研究中,气固相法合成的Ti-ZSM-5沸石分子筛用于丙烯环氧化反应时虽
    然具有较好的反应性能,但是,用于苯酚经基化反应均难以得到理想的催化效果。本文
    从调变母体的性质入手,通过在合成母体的过程中进行低温晶化等手段,降低沸石晶粒
Titanium silicalite-1 (TS-1) is a titanium-containing zeolite with the MFI structure that was first synthesized in 1983. Because of the unique catalytic properties in organic reactions with aqueous hydrogen peroxide (30%) as the oxidant under mild conditions, TS-1 has received much attention of the researchers. There are two methods for the synthesis of TS-1, hydrothermal synthesis and secondary synthesis or post synthesis. In the past decades, the hydrothermal synthesis, especially the low cost system, developed fast. At the same time, the secondary synthesis developed slowly. In this paper, different ZSM-5 precursors were used to prepare Ti-ZSM-5 through gas-solid method. The effect of precursors on the chemical-physics properties of Ti-ZSM-5 was investigated to find a kind of precursor more suitable for the gas-solid synthesis of Ti-ZSM-5. Through modifying the synthesis conditions of the B-ZSM-5 precursor to control the amount of hydroxyl nests and the crystal size, and optimizing the gas-solid synthesis conditions, Ti-ZSM-5 with better catalytic properties was successfully prepared. The mechanism of the gas-solid synthesis of Ti-ZSM-5 is highlighted through the work mentioned above.The main contents of this thesis are as follows:1. Ti-ZSM-5 samples were successfully synthesized by using B-ZSM-5 with a molar ratio of SiO_2 to B_2O_3 5 in the gel and Al-ZSM-5 zeolites with a molar ratio of SiO_2 to Al_2O_3 30, 239, 600, respectively, as the precursors. The gas-solid synthesis included two steps which were pretreatment in HCl solution or HNO_3 solution and titanation with gaseous TiCl_4. The results show that: The chemical-physics properties of the precursors play a very important role in the
    
    incorporation of titanium into the zeolite framework. With B-ZSM-5 as the precursor, the synthesized Ti-containing samples have much more framework titanium species and less extra-framework titanium species which result in a higher activity in the oxidation reactions. At the same time, the acid sites from the residual boron in the Ti-containing samples lead to a low slectivity to PO. As to the Al-ZSM-5 with a molar ratio of SiO_2 to Al_2O_3 30, much Al atoms remain in the framework after the acid treatment. Ti-ZSM-5 with it as precursor has much acid sites which changed the catalytic properties. Ti-ZSM-5 starting with the silicon-rich ZSM-5 with a molar ratio of SiO_2 to Al_2O_3 239 has more framework titanium and better catalytic activity than that starting with the silicon-rich ZSM-5 with a molar ratio of SiO2 to Al_2O_3 600 does. The later has much anatase TiO_2 and rutile TiO_2, while the former and Ti-ZSM-5 starting with Al-ZSM-5 with a molar ratio of SiO_2 to Al_2O_3 30 contain only anatase TiO_2. The de-[B]-Ti-ZSM-5 contains trace of anatase TiO_2. Either for the reaction of propylene epoxidation or for the reaction of phenol hydroxylation, anatase TiO_2 or rutile TiO_2 does not accelerate the decomposing of H_2O_2. For the reaction of propylene epoxidation, the amount of framework titanium dominates the conversion of hydrogen peroxide. For the hydroxylation of phenol, the crystal size, as well as the amount of framework titanium, plays a very important role in the conversion of phenol. Phenol protonation caused by strong acid sites hindered the electrophilic reaction of phenol hydroxylation.Titanium can be incorporated into the zeolite framework through both the reaction of "hydroxyl nests" with TiCl_4 and the replacement of framework Al or B by Ti during the gas-solid reaction.2. Ti-ZSM-5 samples were successfully synthesized by using B-ZSM-5 with different molar ratio of SiO_2 to B_2O_3 as the precursors. The effect of (n)SiO_2/(n)B_2O_3 on the incorporation of titanium into the framework was investigated. Propylene epoxidation and phenol hydroxylation properties were also investigated. The results show that (n)SiO_2/(n)TiO_2 in the samples increased with an increase in the (n)SiO_2/(n)B_2O_3 in the precursors. The conversion of H_2O_2 increased with the decreasing of (n)SiO_2/(n)B_2O_3 or (n)SiO_2/(n)TiO_2, and
引文
[1] Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide. USP 4 410 501, 1983.
    [2] 吴棣华.几种值得注意的有机原料清洁工艺技术.化学进展,1998,10(2):131-136.
    [3] Holderich W F. Zeolites: Catalysts for synthesis of organic compounds. Stud Surf Sci Catal, 1989, 49: 69-93.
    [4] Bellussi G, Petergo C. Handbook of Heterogenous Catalysis, in: G ertl, H Knozinger, J Weitkamp(Eds.), Pointers(France): Wiley, Vol. 5, 1997: p2329.
    [5] Kraushar B, van Hooff J H C. A new method for the preparation of titanium-silicalite (TS-1). Catal Lett, 1988, 1:81-84.
    [6] 庞文琴,左丽华,裘式伦.气固相置换法合成杂原子硅铝酸盐分子筛及其性能研究,高等学校化学学报,1988,9(1):4-8.
    [7] 许章林,张盈珍,郑禄彬.杂原子沸石的二次合成及其表征——Ⅱ.含Ti、Fe杂原子沸石.分子催化,1992,6(5):365-370.
    [8] Thangaraj A, Sivasanker S. An improved method for TS-1 synthesis: (9)~Si NMR studies. J Chem Soc, Chem Commun, 1992, (2): 123-124.
    [9] Millini R, Previde Massara E, Perego G, et al. Framework composition of titanium silicalite-1. J Catal, 1992, 137(2): 497-503.
    [10] Muller U, Steck W. Ammonium-Based Alkaline-free synthesis of MFI-type boron and Titanium zeolites. Stud Surf Sci Catal, 1994, 84: 203-210.
    [11] Petrini G, Leofanti G, Mantegazza M A, et al. in: P. T. Anastas, T. C. Williamson (Eds.), Green Chemistry: Designing Chemistry for the Environment, ACS Symposium Series No. 626, Am. Chem. Soc., 1996: p. 33.
    [12] 李钢.钛硅分子筛的合成、表征及催化丙烯环氧化性能的研究:(博士学位论文)大连:大连理工大学,2000.
    [13] Van der Pol A J H P, van Hooff J H C. Parameters affecting the synthesis of titanium silicalite 1. Appl Catal, 1992, 92(2): 93-111.
    [14] 夏清华,王公慰,郑禄彬等.Ti-ZSM-5沸石的合成及表征.石油化工,1993,22(12):781-785.
    
    [15] 张义华.钛基催化材料的合成、表征和选择氧化性能研究:(博士学位论文).大连:大连理工大学,2001.
    [16] 王丽琴.钛硅分子筛合成过程及其催化氧化性能研究:(博士学位论文).大连:大连理工大学,2003.
    [17] Clerici M G, Bellussi G, Romano U. Synthesis of pmpylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal, 1991, 129(1): 159-167.
    [18] Bellussi G, Carati A, Clerici M G, et al. Reactions of titanium silicalite with protic molecules and hydrogen peroxide. J Catal, 1992, 133(1): 220-230.
    [19] Thangaraj A, Kumar R, Mirajkar S P. Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. J Catal, 1991, 130(1): 1-8.
    [20] Tuel A, Ben Taarit Y. Synthesis and characterization of titanium silicalite TS-1 prepared using phosphonium ions. Zeolites, 1994, 14(4): 272-281.
    [21] Tuel A, Ben Taarit Y. Synthesis of titanium silicalite-1 using hexapropyl-1, 6-hexane diammonium ions as templating agent. Zeolites, 1994, 14(7): 594-599.
    [22] Tuel A. Crystallization of titanium silicalite-1 (TS-1) from gels containing hexanediamine and tetrapropylammonium bromide. Zeolites, 1996, 16(2-3): 108-117.
    [23] Gao H, Suo J, Li S. A Easy Way to Prepare Titanium Silicalite-1(TS-1). J Chem Soc, Chem Commun, 1995, (8): 835-836.
    [24] Gontier S, Tuel A. Synthesis of titanium silicalite-1 using amorphous SiO_2 as silicon source. Zeolites 1996, 16(2-3): 184-195.
    [25] Shibata M, Gerard J, Gabelica Z. Rapid. synthesis of MFI titanosilicates using in situ seeding method. Micropor Mater, 1997, 12(1-3): 141-148.
    [26] Sulikowski B, Klinowski J. Preparation and characterization of titanosilicates with ZSM-5 structure. Appl Catal A-Gen, 1992, 84(2): 141-153.
    [27] Padovan M, Leofanti G, Roffia P, in: G. Poncelet, P. A. Jacobs, P. Grange, B. Delmon (Eds.), Preparation of Catalysts V, Elsevier, Amsterdam, 1991, p. 431.
    [28] Serrano D P, Uguina M A, Ovejer Go, et al. Synthesis of TS-1 by wetness impregnation of amorphous SiO_2-TiO_2 solids prepared by the sol-gel method. Micropor Mater, 1995, 4(4): 273-282.
    [29] Carati A, Flego C, Berti D, et al. Perego C, Influence of synthesis media on the TS-1 characteristics. Stud Surf Sci Catal, 1999, 125: 45-52.
    
    [30] 马淑杰,李连生,刘国宗等.钛硅酸盐分子筛TS-1的合成及表征.催化学报,1996,17(2):173-176.
    [31] 万颖,卢冠忠.混合模板剂合成钛硅分子筛.华东理工大学学报,1997,23(2):249-253.
    [32] 柯于勇,卢冠忠,万颖等.以混合模板剂合成TS-1分子筛及其性能研究.催化学报,1998,19(2):149-153.
    [33] 高铁男,魏荣宝,梁娅等.用硅胶制备钛硅分子筛TS-1的研究.南开大学学报(自然科学版),1998,31(1):105-108.
    [34] 李钢,郭新闻,王祥生等.TPABr-TEAOH体系中TS-1的合成、表征及催化性能.催化学报,1998,19(4):371-374.
    [35] 李钢,郭新闻,王祥生等.TPABr-正丁胺体系中TS-1的合成与表征.大连理工大学学报,1998,38(3):364-367.
    [36] 李钢,郭新闻,王祥生.以TPABr为模板剂合成TS-1分子筛.石油学报(石油加工),1999,15(1):90-93.
    [37] 吴巍,程时标,闵恩泽.用无机硅钛原料合成钛硅-1 分子筛的研究.石油炼制与化工,2000,31(2):33-37.
    [38] 张义华,王祥生,郭新闻等.以TiCl_4醇溶液作钛源在水热体系中合成钛硅分子筛TS-1.燃料化学学报,2000,28(6):550-554.
    [39] 张义华,王祥生,郭新闻等.钛硅分子筛TS-1的合成、表征及催化性能.催化学报,2001,22(1):92-94.
    [40] Wang L, Wang X, Guo X, et al. Quick Synthesis of Titanium Silicalite-1. Chin J Catal, 2001, 22(6): 513-514.
    [41] Kraushar-Czarnetzki B. van Hooff J H C. A test reaction for titanium silicalite catalysts. Catal Lett, 1989, 2:43-48.
    [42] 郭新闻,王桂茹,王祥生.Ti-Sipentasil型分子筛的气固相同晶取代法制备及其羟基化性能 Ⅰ、母体Na+含量的影响.催化学报,1994,15(4):309-313.
    [43] 郭新闻,王桂茹,王祥生.Ti—Si Pentasil型杂原子分子筛的气团相同晶取代法制备及其羟基化性能——Ⅱ、制备条件及母体对钛进入骨架的影响.催化学报,1995,16(5):420-424.
    [44] Zhang F, Guo X, Wang X, et al. Preparation of titanium- containing mordenits by gassolid reaction. J Mol Catal (China), 1999, 13(6): 461-463.
    
    [45] 陈国辉,夏清华,高滋.气固相类质同晶取代合成含钛沸石.催化学报,1995,16(6):502-505.
    [46] 郭新闻,王祥生,于桂燕.不同结构母体对制备钛沸石的影响.催化学报,1997,18(1):24-27.
    [47] 张法智,郭新闻,王祥生等.气固相同晶取代法制备Ti-ZSM-5及其催化性能的研究.分子催化,1999,13(2):121-126.
    [48] Ferrini C, Kovenhoven H W. Modified zeolites for oxidation reactions. Stud Surf Sci Catal, 1990, 55: 53-62.
    [49] Li M, Guo X, Wang X. The Synthesis of Ti-ZSM-5 Starting with de-[B]ZSM-5. Chin J Catal, 1997, 18(4): 269-270.
    [50] 李明丰,郭新闻,于桂燕等.以de-[B]ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成,石油化工,1998,27(5):319-323.
    [51] 张法智.钛硅分子筛的气固相法制备、表征及其丙烯环氧化性能的研究:(博士学位论文).大连:大连理工大学,1999.
    [52] 王祥生,郭新闻,刘靖.钛硅沸石的制备及其选择氧化性能.大连理工大学学报,1998,38(3):348-353.
    [53] 徐成华,吕绍洁,邱发礼.气固相法合成Ti-ZSM-5催化苯酚羟基化的研究.石油与天然气化工,2000,29(6):280-284.
    [54] 张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5沸石的表征及催化性能.大连理工大学学报,1998,38(3):368-371.
    [55] 陈国辉,夏清华,高滋.不同来源的钛硅沸石的孔结构、酸性和催化性能.高等学校化学学报,1996,17(9):1454-1457.
    [56] 林民,舒兴田,汪燮卿.环境友好催化剂TS-1分子筛的合成及应用研究.石油炼制与化工,1999,30(8):1-4.
    [57] Xia Q, Gao Z. Crystallization kinetics of pure TS-1 zeolite using quaternary ammonium halides as templates. Mater Chem Phys, 1997, 47(2-3): 255-230.
    [58] 柯于勇,卢冠忠,王正荣.TS分子筛的催化氧化性能研究 Ⅲ.苯酚氧化制苯二酚.华东理工大学学报,1998,24(1):116-121.
    [59] Yamagishi K, Namba S, Yashima T. Preparation and acidic properties of aluminated ZSM-5 zeolites. J Catal, 1990, 121(1): 47-55.
    
    [60] Yamagishi K, Namba S, Yashima T. Defect sites in highly siliceous FIZSM-5 zeolites: a study performed by alumination and IR spectroscopy: J Phys Chem, 1991, 95(2): 872-877.
    [61] Wu P, Komatsu T, Yashima T. IR and MAS NMR Studies on the Incorporation of Aluminum Atoms into Defect Sites of Dealuminated Mordenites. J Phys Chem, 1995, 99(27): 10923-10931.
    [62] Camblor M A, Corma A, Matinez A, et al. Selective Oxidation of Organic Compounds over the Large Beta-Ti Zeolite. Stud Surf Sci Catal, 1993, 78: 393-397.
    [63] Wu P, Komatsu T, Yashima T. Ammoximation of ketones over titanium mordenite. J Catal, 1997, 168(2): 400-411.
    [64] Natori B. Titanium silicalites. Catal Today, 1993, 18(2): 163-172.
    [65] Notari B. Synthesis and catalytic properties of titanium containing zeolites. Stud Surf Sci Catal, 1987, 37: 413-425.
    [66] Uguina M A, Serrano D P, Ovejero G, et al. Preparation of TS-1 by wetness impregnation amorphous SiO_2-TiO_2 solids: influence of the synthesis variables. Appl Catal A-Gen, 1995, 124(2): 391-408.
    [67] Scaranno D, Zecchina A, Bordiga S, et al. Fourier-transform Infrared and Raman Spectra of Pure and Al-, B-, Ti-, and Fe-substituted Silicalites: Stretching-mode Region. J Chem Soc Faraday Trans, 1993, 89(22): 4123-4130.
    [68] 徐成华,骆豫蜀,吕绍洁等.后处理温度对Ti-ZSM-5载钛量和催化苯乙烯氧化反应的影响.合成化学,2001,9(5):424-428.
    [69] Klass J, Kulawik K, Schulz-Ekloff G. Comparative spectroscopic study of TS-1 and zeolite-hosted extra-framework titanium oxide dispersions. Stud Surf Sci Catal, 1994, 84: 2261-2268.
    [70] Jorda E, Tuel A, Teissier R, et al. TiF_4: An Original and Very Interesting Precursor to the Synthesis of Titanium Containing Silicalite-1. Zeolites, 1997, 19(4): 238-245.
    [71] 夏清华,王公慰,应慕良等.钛-硅沸石的结构表征及其催化性能,催化学报,1994,15(2):109-114.
    [72] Quincy R B, Houalla M, Hercules D M. Quantitative Raman characterization of Mo/TiO_2 catalysts. J Catal, 1987, 106(1): 85-92.
    [73] Qhsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase TiO_2. J Raman Spectrosc, 1978, 7(6): 321-324.
    
    [74] Deo G, Turek A M, Wachs I E. Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B). Appl Catal A-Gen, 1992, 91(1): 27-42.
    [75] Alemany L J, Banares M A, Larrubia M A, et al. Vanadia-titania systems: morphological and structural properties. Mater Res Bull, 1996, 31(5): 513-520.
    [76] Li C, Xiong G, Liu J, et al. Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. J Phys Chem B, 2001, 105(15), 2993-2997.
    [77] Romano U, Esposito A, Maspero F, et al. Chim Ind, 1990, 72: 610.
    [78] Tuel A, Ben Taarit Y. Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide. Appl Catal A-Gen, 1993, 102(1): 69-77.
    [79] Wilkenhoner U, Langhendries G, van Laar F, et al. Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents. J Catal, 2001, 203(1): 201-212.
    [80] van der Pol A J P H, Verduyn A J, van Hooff J H C. Why are some titanium silicalite-1 samples active and others not? Appl Catal A-Gen, 1992, 92(2): 113-130.
    [81] 郭新闻,王祥生,李钢等.廉价原料合成的钛硅分子筛的热稳定性能的研究.石油学报(石油加工),2002,18(2):34-40.
    [82] 王祥生.钛硅沸石的研究现状及其工业化前景.精细化工,1996,13:30-34.
    [83] 李钢,王祥生,王丽琴等.两种钛硅分子筛合成体系的比较.石油学报(石油加工),2003,19(4):76-81.
    [84] 高焕新,舒祖斌,曹静等.钛硅分子筛TS-1催化环己酮氨氧化制环己酮肟.催化学报,1998,19(4):329-333.
    [85] 李平,卢冠忠,罗勇等.TS分子筛的催化氧化性能研究 Ⅴ.环己酮氨肟化反应.化学学报,2000,58(2):204-208.
    [86] 孙斌,朱丽.钛硅-1 分子筛催化环己酮氨肟化制环己酮肟工艺的研究.石油炼制与化工,2001,32(9):22-24.
    [87] Zecchina A, Bordiga S, Lamberti C, et al. Structural characterization of Ti centres in Tisilicalite and reaction mechanisms in cyclohexanone ammoximation. Catal Today, 1996, 32(1-4): 97-106.
    [88] Mantegazza M A, Cesana A, Pastori M. Ammoximation of ketones on titanium silicalite: A study of the reaction byproducts. Top Catal, 1996, 3(3-4): 327-335.
    
    [89] Wu C, Wang Y, Mi Z, et al. Effects of organic solvents on the structure stability of TS-1 for the ammoximation of cyclohexanone. React Kinet Catal L, 2002, 77(1): 73-81.
    [90] Armor J N, Zambri P M, Leming R. Ammoximation: Ⅲ. The selective oxidation of ammonia with a number of ketones to yield the corresponding oxime. J Catal, 1981, 72(1): 66-74.
    [91] Mantegazza M A, Petrini G, Fomasari G, et al. Ammoximation reaction in the gas and liquid phases with silica based catalysts: role of titanium. Catal Today, 1996, 32(1-4): 297-304.
    [92] Petrini G, Cesana A, Alberti De G, et al. in: G. H. Bartholomew, J. B. Butt (Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 1991: p. 761.
    [93] 《实用精细化学品手册》编写组.实用精细化学品手册有机卷(下)[M].北京:化学工业出版社,1996.
    [94] 郭新闻,刘民,王祥生等.不同晶粒大小的TS-1 沸石的表征及其丙烯环氧化性能.石油学报(石油加工),2001,17(6):16-23.
    [95] 赵琦,韩秀文,刘秀梅等.以四丙基溴化铵为模板剂合成TS-1 分子筛的研究.物理化学学报,1998,14(10):906-912.
    [96] 张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5分子筛催化丙烯和双氧水的环氧化反应.石油学报(石油加工),1999,15(4):76-79.
    [97] 王祥生,郭新闻.廉价原料合成钛硅沸石.大连理工大学学报,2000,40(2):155-159
    [98] Liu M, Guo X, Wang X, Liang C, Li C, Effect of (n)SiO_2/(n)B_2O_3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method. Catal Today, 2004, 93-95: 659-664.
    [99] Sheldon R A, Downing R S. Heterogeneous Catalytic Transformations for Environmentally Friendly Production. Appl Catal A-Gen, 1999, 189: 163-183.
    [100] 王学勤,王祥生,郭新闻.中国专利CN1 240 193[P].2000.
    [101] Notari B. Titanium silicalite-A new selective oxidation catalyst. Stud Surf Sci Catal, 1991, 60: 343-351.
    [102] Wang X, Guo X, Li G. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene. Catal Today, 2002, 74(1): 65-75.
    
    [103] 张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5分子筛催化丙烯和双氧水的环氧化反应.石油学报(石油加工),1999,15(4):76-80.
    [104] Bordiga S, Coluccia S, Lamberti C, et al. XAFS Study of Ti-Silicalite: Structure of Framework Ti(Ⅳ) in the Presence and Absence of Reactive Molecules (H_2O, NH_3) and Comparison with Ultraviolet-Visible and IR Results. J Phys Chem, 1994, 98(15): 4125-4132
    [105] 郭新闻,王祥生,李钢等.钛硅沸石中非骨架钛的紫外谱图研究,石油学报(石油加工),2001,17(2):61-67.
    [106] 闫海生,刘靖,王祥生.钛硅催化剂的酸碱改性处理.大连理工大学学报,2002,42(1):42-46.
    [107] 张义华,郭新闻,王祥生.TS-1 分子筛中非骨架钛物种(TiO_2)_x对丙烯环氧化反应的影响.石油学报(石油加工),2000,16(5):41-46.
    [108] 王丽琴,王祥生,郭新闻等.合成TS-1分子筛的结晶动力学及催化性能研究.催化学报,2003,24(2):132-136.
    [109] Post M F M. Stud Surf Sci Catal, 1991, 58, 391-443.
    [110] 王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,1997.