土壤中砷、镉对作物的毒害效应及其临界值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过水培苗期毒性试验,研究了23种常见作物幼苗对砷、镉毒害敏感性的差异,筛选了砷、镉高敏感作物。以高敏感植物为毒性生态受体,通过土培方式研究了砷、镉的植物毒害临界值及其土壤学的影响因素,建立了土壤砷、镉毒害临界值与关键土壤因素间的标准化关系,提出了土壤砷、镉的植物毒害临界值,为区域性土壤重金属植物毒害临界值研究提供科学依据。主要结果如下:
     1、培养液中低浓度的砷、镉能促进作物的生长,尤以砷更为明显。高浓度的砷、镉会对作物产生毒害,毒害效应随砷、镉浓度的升高和处理时间的延长而加剧。水稻对砷的毒性响应比蔬菜类敏感,主要表现为新叶黄白化,沿叶脉有条纹状锈斑。镉对植物的主要毒害症状是生长受抑,新叶黄化,侧根须根增生,严重时根发褐发黑甚至腐烂。
     2、综合23种作物砷、镉毒害敏感性的分类结果与作物地上部鲜重减少20%的效应浓度(EC20),确定水稻、黄瓜、红豇豆、苋菜、辣椒、茄子为砷毒害敏感作物,大白菜、油白菜、油麦菜、芥菜、小白菜为镉毒害敏感植物,这些作物可以作为进一步确定土壤和植物中砷、镉的毒害临界值的毒性生态受体以及土壤砷、镉污染的监测植物。而黄瓜则确定为镉抗性较强植物。
     3、通过水稻的土培毒性测试试验,分别以稻谷产量降低10%和20%作为依据,推算出福建酸性潴育型水稻土有效砷(0.5 mol·L-1 NaH2PO4)基的植物毒害临界值EC10、EC20分别为1.42 mg·kg~(-1)和(?)3.00 mg·kg~(-1)。根据前期野外采集的水稻土全砷与0.5mol·L-1 NaH2PO4提取砷含量的回归方程,进一步推导出福建省水稻土相应的全砷植物毒害临界值EC10、EC20分别为14.07 mg·kg~(-1)和30.51 mg·kg~(-1)。以芥菜地上部减产10%和20%为依据,推算出土壤有效镉(0.1mol·L-1 CaCl2)的植物毒害临界值EC10、EC20分别为0.15 mg·kg~(-1)和0.32 mg·kg~(-1)。依据前期野外采集的福建省菜地土壤全镉与0.1 mol·L-1 CaCl2提取镉含量的回归方程推算出相应的土壤全镉的植物毒害临界值EC10、EC20分别为0.40 mg·kg~(-1)和0.70 mg·kg~(-1)。
     4、通过盆栽水稻幼苗的砷毒性测试,研究了9种土壤有效砷(0.5 mol·L-1 NaH2PO4)的植物毒害效应的差异。水稻地上部鲜重和株高的EC10的变化区间为3.22~27.96 mg·kg~(-1)和3.72~29.11 mg·kg~(-1),分别代表了不同土壤间8.68倍和7.83倍的差异。水稻地上部鲜重和株高的EC20的变化区间为5.83~38.87 mg·kg~(-1)和7.12~45.60 mg·kg~(-1),表明土壤间存在6.67倍和6.40倍的差异。通过盆栽蕹菜幼苗的镉毒性测试,土壤有效镉(0.1 mol·L-1 CaCl2)基的蕹菜地上部鲜重和株高EC1o的变化区间分别为0.14~0.52 mg·kg~(-1)、0.21~0.63 mg·kg~(-1),代表了不同类型土壤间3.71倍和3倍的变异。而蕹菜地上部鲜重和株高EC20的变化区间分别为0.18~2.46 mg·kg~(-1)、0.44~3.25 mg·kg~(-1),反应出土壤间13.67倍和7.39倍的变异。
     5、土壤7种理化性质与ECX的逐步回归分析表明土壤游离氧化铁是影响土壤有效砷植物毒害临界值的主要土壤学因素,土壤有效砷(0.5 mol·L-1 NaH2PO4)基植物毒害临界值ECX(株高)的修正模型如下:[EC10]=-1.451+1.160[游离氧化铁] (R2=0.718,P=0.004,n=9)[EC20]=1.659+1.791[游离氧化铁] (R2=0.764,P=0.002,n=9)[EC50]=16.367+2.715[游离氧化铁] (R2=0.827,P<0.001,n=9)土壤7种理化性质与ECX的逐步回归分析表明土壤pH是引起土壤有效镉(0.1 mol·L-1 CaCl2)ECX值变异的最重要的参数,土壤有效镉(0.1 mol·L-1 CaCl2)基植物毒害临界值ECX(地上部鲜重)的修正模型如下:[EC10]=-0.650+0.180 [pH] (R2= 0.791, P= 0.001, n=9) [EC20]=-4.072+0.954 [pH] (R2= 0.877, P< 0.001, n=9) [EC50]=-463.488+100.680 [pH] (R2= 0.747, P= 0.003, n=9)
     6、依据90%的土壤受保护的原则和福建省农业土壤中pH值和游离氧化铁的调查数据,分别推算出福建省农业土壤校正后的有效砷(0.5 mol·L-1 NaH2PO4)植物毒害临界值(株高)EC10、EC20分别为5.1 mg·kg~(-1)、10.1 mg·kg~(-1),土壤有效镉(0.1 mol·L-1 CaCl2)植物毒害临界值(地上部鲜重)EC10、EC20、分别为0.19 mg·kg~(-1)、0.36 mg·kg~(-1)。
Sensitive disparity of 23 vegetable species that commonly cultivated in Fujian Province to As and Cd was studied by water culture. The most As- and Cd- sensitive species were selected and used in soil culture to study the threshold values of As and Cd phyto-toxicity, respectively. The influence of soil properties on As and Cd toxicity to plants were investigated using 9 soils. The threshold values of As and Cd phyto-toxicity were modified by the normalization relationships between the threshold values and soil properties, which will provide scientific basis for studies on the regional threshold values of soil heavy metals phyto-toxicity. The results were as follows:
     1. Low concentrations of As and Cd in the culture solutions had hormesis effects to same vegetable species under water culture. However, when the concentrations of As and Cd increased, the toxicitys to the crops appeared. Rice was more sensitive than vegetables to As toxicity. The typical symptoms of As toxicity were chlorosis in new leaves, rust along leaf margins. Similarly, the typical symptoms of Cd toxicity were growth inhibition, chlorosis in new leaves, hyperplasia in fibrous roots, and black root.
     2. Base on the apparent symptoms and the EC2o value (effective concentration causing a 20% reduction of shoot biomass) of each species, rice (Oryza sativa), cucumber (Cucumis sativus L.), cowpea(V. unquiculata ssp. unguioulata W.), three-coloured amaranth(Amaranthus mangostanus L), hot pepper(Capsicum annuum L), eggplant(Solanum melongena L.melongena L.) were screened as the most As sensitive vegetables, and Chinese cabbage (B. campestris L. ssp. Pekinensis (Lour.) Olsson), pakchoi (B. campestris L. ssp. Chinensis (L.)Makino), lettuce (Lactuca sativa L.) and leaf mustard(B. juncea Coss.) were screened as the most Cd sensitive vegetables. These vegetable species could be used as indicative plants in the following soil culture, which aimed at determining the threshold values of As and Cd toxicity to vegetables. Cucumber had a high resistance for Cd.
     3. Based on the EC10 and EC20 of rice under soil culture, the threshold values of As toxicity were calculated to be 1.42 mg·kg~(-1) and 3.00 mg·kg~(-1) (as NaH2PO4-As), respectively. According to the regression between soil NaH2PO4-As and total As in the field, the corresponding thresholds of As toxicity (EC10 and EC20) were estimated as 14.07 mg·kg~(-1) and 30.51 mg·kg~(-1) (total As), respectively. Based on the EC10 and EC20 of leaf mustard under soil culture, the thresholds of Cd toxicity were calculated to be 0.15 mg·kg~(-1) and 0.32 mg·kg~(-1) (as CaCl2-Cd), respectively. According to the regression between soil CaCl2-Cd and total Cd in the field, the corresponding thresholds of Cd toxicity (EC 10 and EC20) were estimated as 0.40 mg·kg~(-1) and 0.70 mg·kg~(-1) (total Cd), respectively.
     4. The disparity of soil As and Cd phyto-toxicity was studied by soil culture with 9 soils, using rice and water spinach as indicative plants, respectively. The EC10 (NaH2PO4-As) of rice shoot (fresh weight) and shoot height ranged from 3.22 to 27.96 mg·kg~(-1) and 3.72 to 29.11 mg·kg~(-1), representing 8.68 and 7.83-fold variations among soils respectively. The EC20 (NaH2PO4-As) of rice shoot (fresh weight) and shoot height varied between 5.83 and 38.87 mg·kg~(-1),7.12 and 45.60 mg·kg~(-1), representing 6.67 and 6.70-fold variations among soils respectively. The EC10 (CaCl2-Cd) of the shoot of water spinach (fresh weight) and shoot height ranged from 0.14 to 0.52 mg·kg~(-1) and 0.21 to 0.63 mg·kg~(-1), representing 3.71 and 3-fold variations among soils respectively. The EC20 (CaCl2-Cd) of the shoot of water spinach (fresh weight) and shoot height varied between 0.18 and 2.46 mg·kg~(-1),0.44 and 3.25 mg·kg~(-1), representing 13.67 and 7.39-fold variations among soils respectively.
     5. Stepwise regression analysis identified that free iron was the main factors affected soil Asbioavailability. The modified prediction model of the ECX(plant height) of soil As phyto-toxicity as NaH2PO4-As was [EC10]=-1.451+1.160 [free iron] (R2= 0.718, P= 0.004, n=9) [EC20]= 1.659+1.791 [free iron] (R2= 0.764, P= 0.002, n=9) [EC50]= 16.367+2.715[free iron] (R2= 0.827, P< 0.001, n=9)
     However, Soil pH was the main factors affected the availability of Cd in soil. The modified prediction model of the ECX (shoot fresh weight) of soil Cd phytoxicity based on CaCl2-Cd was [EC10]=-0.650+0.180 [pH] (R2= 0.791, P= 0.001, n=9) [EC20]=-4.072+0.954 [pH] (R2= 0.877, P< 0.001, n=9) [EC50]=-463.488+100.680 [pH] (R2= 0.747, P= 0.003, n=9)
     6. In order to protect 90 percent of soils from As and Cd pollution, the thresholds of As and Cd phyto-toxicity of agriculture soils were calculated from soil pH and free iron of Fujian field survey. The As thresholds of EC10 and EC20 by rice shoot height were 5.1 mg·kg~(-1) and 10.1 mg·kg~(-1) (NaH2PO4-As), respectively, while the Cd thresholds of EC10 and EC20 by the water spinach shoot were 0.19 mg·kg~(-1) and 0.36 mg·kg~(-1) (CaCl2-Cd), respectively.
引文
[1]陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996.
    [2]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995:42-57.
    [3]Zhu Y G, Chen B D, Lin A J, et al. Heavy metal contamination in Pearl River Delta 2 Status and research priorities[J].Acta Scientiae Circumstantiae,2005,25 (12):1575-1579.
    [4]Chen C J, Chuang Y C, You S L, et al. A retrospective study on malignant neoplasm of bladder, lung and liver in Blackfoot disease endemic area in Taiwan [J]. British Journal of Cancer 1986,53 (3):399-405.
    [5]Smith A H, Goycolea M, Haque R et al. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water [J]. American Journal of Epidemiology 1998,147 (7):660-669.
    [6]Meharg A A. Arsenic in rice- understanding a new disaster for South- East Asia [J]. Trends Plant Science, 2004,9:415-417.
    [7]Harvey C F, Swartz C H, Badruzzaman A B M, et al.. Arsenic mobility and groundwater extraction in Bangladesh [J]. Science,2002,298:1602-1606.
    [8]Meharg A A, Rahman M. Arsenic contamination of Bangladesh paddy field soils:implications for rice contribution to arsenic consumption[J]. Environ Sci Technol,2003,37:229-234.
    [9]Smith E, Naidu R, Alston A M. Arsenic in the soil environment:A review [J]. Advances in Agronomy,1998, 64:149-195.
    [10]Smith A H, Lingas E O, Rahman M, et al. Contamination of drinking- water by arsenic in Bangladesh:a public health emergency [J]. Bull World Health Organ,2000,78 (9):1093-1103.
    [11]金银龙,梁超轲,何公里,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519-540.
    [12]王国荃,吴顺华.地方性砷中毒的研究进展[J].新疆医科大学学报,2004,27(1):18-20.
    [13]赵其国,周炳中,杨浩.江苏省环境质量与农业安全问题研究[J].土壤,2002(1):1-8.
    [14]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [15]贾秀英,施蔡雷,刘晓旭.镉致黑斑蛙肝脏氧化损伤与金属硫蛋白含量的变化[J].生态学报,2010,30(2):416-420.
    [16]国家环境保护局,国家技术监督局.土壤环境质量标准(GB15618-1995)[S].北京:中国标准出版社,1995.
    [17]夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996:11-12.
    [18]周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订[J].农业环境科学学报,2007,26(1):1-5.
    [19]夏家淇,骆永明.我国土壤环境质量研究几个值得探讨的问题[J].生态与农村环境学报,2007,23(1):1-6.
    [20]王国庆,骆永明,宋静,等.土壤环境质量指导值与标准研究:Ⅰ.国际动态及中国的修订考虑[J].土壤学报,2005,42(4):666-673.
    [21]袁建新,王云.我国《土壤环境质量标准》现存问题与建议[J].中国环境监测,2000,16(5):41-44.
    [22]陈怀满,郑春荣,周东美,等.关于我国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报,2004,23(6):1244-1245.
    [23]吴燕玉.辽宁省土壤元素背景值[M1.北京:中国环境科学出版社,1994.
    [24]王云,贺建群.长江三峡库区部分元素土壤环境背景值研究[J].环境科学,1986,7:70-76.
    [25]李健,郑春江.环境背景值手册[M].中国环境科学出版社,1989.
    [26]李勋光,李小平.下蜀黄土地区土壤砷的临界含量[J].土壤,1992,,24(6):302-305.
    [27]涂从,苗金燕.土壤砷毒性临界值的初步研究[J].农业环境保护,1992,1](2):80-83.
    [28]简放陵,青长乐,牟树森.砷对蔬菜生长的影响和临界值的研究[J].重庆环境科学,1992,14(4):6-9.
    [29]简放陵,青长乐.砷的后效和对萝卜的临界值研究[J].西南农业大学学报,1992,14(1):74-77.
    [30]李勋光,顾宗濂,李小平.几种类型土壤中砷环境基准的比较研究[J].土壤学报,1995,32(3):341-348.
    [31]青长乐.论土壤重金属毒性临界值[J].农业环境保护,1992,11(2):51-56.
    [32]夏家淇.土壤砷的环境基准研究[J].农村生态环境,1993,4:1-4.
    [33]中国环境监测总站,中国土壤元素背景值[M].中国环境科学出版社,1990.
    [34]Bowen H J M. Elemental Chemistry of the Elements [M]. London and New York:Academic Press,1979,60
    [35]中国科学院南京土壤研究所,中国土壤[M].科学出版社,1978.
    [36]蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展[J].土壤,2004,36(3):264-270.
    [37]许炼烽,郝兴仁,冯显湘.城市蔬菜的重金属污染及其对策[J].生态科学,2000,19(1):80-85.
    [38]全国废水中其他有毒有害污染物排放量年际对比.2008年环境统计年报, http://zls.mep.gov.cn.
    [39]常思敏,马新明,蒋媛媛,等.土壤砷污染及其对作物的毒害研究进展[J].河南农业大学学报,2005,39(2):161-166.
    [40]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717.
    [41]环境科学编辑部.环境中若干元素的自然背景值及其研究方法[M].科学出版社,1982.
    [42]Munneapolis. Feed Additive Compendium (Vol.13) [M]. The Miller Publishing Company,1975.330.
    [43]WHO. Guidelines for Drinking Water Quality, Recommendations [M].2nd ed, Geneva:World Health Organization,1996.
    [44]Garcia M J. Specific sorption of trace amounts of cadmium by soil[J]. Communications in Soil Science and Plant Analysis,1980,11:1157-1166.
    [45]鲁如坤,熊礼朋,时正元.关于土壤一作物系统中镉的研究[J].土壤,1992,24(3):129-132.
    [46]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:98-113.
    [47]陈维新.农业环境保护[M].北京:中国农业出版社,1999.
    [48]Jones K C, Symon C J, Johnston A E. Retrospective analysis of an archived soil collection Cadmium [J]. Journal of Environmental Sciences,1987,67:76-89.
    [49]Doyle J J. Effect of low levels of dietary Cd in animals a review [J]. Journal of Environmental Quality,1977, 6:111-116.
    [50]鲁如坤.我国磷矿磷肥中镉的含量及其对生态环境影响的评价[J].土壤学报,1992,29(2):150-157.
    [51]Liverey N T, Huang P M. Adsorption of arsenate by soils and its relation to selected chemical properties and anions [J]. Soil Science,1981,131:88-94.
    [52]Sadiq M. Arsenic chemistry in soils:An overview of thermodynamic predictions and field observations [J]. Water, Air, Soil Pollution,1997,93:117-136.
    [53]Pongratz R. Arsenic speciation in environmental samples of contaminated soil [J]. The Science of the Total Environment,1998,224:133-141.
    [54]Newton K, Amarasirivardena D, Xing B. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard [J]. Environmental Pollution,2006,143: 197-205.
    [55]Lin C, Jin J. Heavy metals in a sulfidic mine spoil:Fractions and column leaching[J]. Pedosphere,2003, 13(1):75-80.
    [56]谢正苗,黄昌勇,何振立.土壤中砷的化学平衡[J].环境科学进展,1998,6(1):22-37.
    [57]Chang S, Jackson M L. Fractionation of soil phosphorus [J]. Soil Science,1957,84:133-144.
    [58]Williams J D H, Syers J K, Waiker T W, et al. Fractionation of soil inorganic phosphate by a modification of chang and Jackson's procedure [J]. The State Sponsored Study Abroad Programs (SSSAP),1967,31:736-739.
    [59]Pongratz R. Arsenic speciation in environmental samples of contaminated soil [J]. The Science of the Total Environment,1998,224:133-141.
    [60]Fernandez A A, Cid P B, Gomez F E, et al. Comparison between Sequential Extraction Procedures and Single Extractions for Metal Partitioning in Sewage Sludge Samples [J]. Analyst,2000, (125):1353-1357.
    [61]Wenzel W W, Kirchbaumer N, Prohaska T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure [J]. Analytica Chimica Acta,2001,436:309-323.
    [62]Herreweghe V S, Swennen R, Vandecasteele C, et al. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples [J]. Environmental Pollution, 2003,122:323-342.
    [63]Fernandez E, Jimenez R, Lallena A M, et al. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils [J]. Environment Pollution,2004,131(3):355-364.
    [64]王援高,陆景冈,潘洪明.茶园土壤砷的形态研究[.J].浙江农业大学学报,1999,25(1):10-12.
    [65]宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨[J].热带地理,2004,24(1):6-9.
    [66]Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51 (7):844-851.
    [67]Shuman L M. Fractionation method for soil microelements [J]. Soil Science,1985,140:11-22.
    [68]Gibson M J, Farmer J G. Multi-step sequential chemical extraction of heavy metals from urban soils [J]. Environment Pollutant (Series B:Chemical and Physical),1986,11:117-135.
    [69]Miller W P, Martens D C, Zelany L W. Effect of the sequence in extraction of trace metals from soils [J]. Soil Science of American Journal,1986,50:598-601.
    [70]Oughton D H, Salbu B, Riise G, et al. Radionuclide mobility and bioavailability in Norwegian and Soviet soils [J]. Analyst,1992,117:481-486.
    [71]Mossop K F., Davidson C M.. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments [J]. Analytica Chimica Acta, 2003,478:111-118.
    [72]Narwal R P, Singh B R. Effect of organic materials on partitioning, extractability and plant uptake of metal. in an alum shale soi [J]. Water, Air, and Soil Pollution,1998,103:405-421.
    [73]Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils[J]. Journal of Environmental Quality,1997,26:259-264.
    [74]Kuo S, Heilman P E, Baker A S. Distribution and forms of copper, zinc, cadmium, iron, and Manganese in soils near a copper smelter[J]. Soil Science,1983,135(2):101-109.
    [75]Dudka S A, Chlopecka A. Effect of solid-phase speciation on metal mobility and phytoavailability in sludge-amended soil[J]. Water Air Soil Pollution,1990,51:153-160.
    [76]Kunito T, Saeki K, Goto S, et al. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils [J]. Bioresource Technology.2001,79:135-146.
    [77]Woolson E A, Axley J H, Kearney P C, et al. Correlation between available soil arsenic, estimated by six methods and response of corn [J]. Soil Science Society of America Proceedings,1971,35 (1):101.
    [78]Peryea F J. Evaluation of five soil tests for predicting responses of apple trees planted in lead arsenate-contaminated soil [J]. Communications in Soil Science and Plant Analysis.2002,33:243-257.
    [79]涂从,苗金燕,何峰.土壤砷有效性研究[J].西南农业大学学报,1992,14(6):477-482.
    [80]肖玲,赵允格.石灰性土壤中有效砷提取剂的选择[J].陕西环境,1996,3(3):18-21.
    [81]黄瑞卿,王果,汤榕雁,等.酸性土壤有效砷提取方法研究[J].农业环境科学学报,2005,24(3):610-615.
    [82]Lindsay W L, Norvell W A. Development of a DTPA soil test for zinc, manganese and copper[J]. Soil Science of American Journal,1978,42:421-428.
    [83]李永涛,刘科学,张池,等.广东大宝山地区重金属污染水田土壤的Cu、Pb、Zn、Cd全量与DTPA浸提态含量的相互关系研究[J].农业环境科学学报,2004,23(6):1110-1114.
    [84]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [85]Pueyo M, Lopez-Sanchez J F, Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica Chimica Acta,2004,504: 217-226.
    [86]Chaignona V, Sanchez N I, Herrmannb P, et al. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area[J]. Environmental Pollution,2003,123: 229-238.
    [87]Peijnenburg W, Baerselman R, Groot A D, et al. Quantification of metal bioavailability for Lettuse (Lactuca sativa L.) in field soils [J]. Arch Environ Contam Toxicol,2000,39:420-430.
    [88]肖振林,王果,黄瑞卿,等.酸性土壤中有效态镉提取方法研究[J].农业环境科学学报,2008,27(2): 795-800.
    [89]Li Z B, Shuman L M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDPA [J]. The Science of the Total Environment,1996,191:95-107.
    [90]Heln A.. Influence of soil origin and plants species on the uptakes and the 99th VDVUFA congress[J]. Koblenz German Federal Rep.1987,9.
    [91]Aten C F, Gupta S K. On heavy metals in soil; rationalization of extractions by dilute salt solutions, comparison of the extracted concentrations with uptake by regress and lettuce, and the possible influence of pyrophosphate on plant uptake[J]. The Science of the Total Environment,1996,178:45-53.
    [92]孔文杰,鲁洪娟,倪吾钟.土壤重金属生物有效性的评价方法[J].广东微量元素科学,2005,12(2):1-6.
    [93]Gryschko R, Kuhnle R, Terytze K, et al. Soil extraction of readily soluble heavy metals and As with 1M NH4NO3-solution evaluation of DIN 19730[J]. The Journal of Soils and Sediments (JSS),2005,5:101-106.
    [94]Tipping E, Rieuwerts J, Pan G, et al. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales [J]. Environ. Pollut,2003,125:213-225.
    [95]Parkpian P, Klankrong K, DeLaune R, et al. Metal leach ability from sewage sludge-amended Thai soils [J]. Journal of Environmental Science and Health, Part A,2002,37:765-791.
    [96]Barreto S R G, Nozaki J, De Oliveria E, et al. Comparison of analysis in sediments using EDXRF and ICP-OES with the HC land Tessier extraction methods [J]. Talanta,2004,64:345-354.
    [97]Rana S K, Ouellette G J. Correlation between plant uptake and different methods of extraction of soil cobalt [J]. Journal of the Indian Society of Soil Science 1968,16:89.
    [98]Singh B R, Narwal R P. Plant availability of heavy metals in a sludge-treated soil Ⅱ [J]. Journal of Environmental Quality,1984,13:334.
    [99]Lakanen E, Ervio R. A comparison of eight extract ants for the determination of plant available micronutrients in soils[J]. Acta Agric. Fennica,1971,123:223-232.
    [100]Jopony M. Chemical forms of copper, zinc, nickel, and cobalt in soil and sediment of Ranau, Sabah. Copper in Agr[J]. Micronutrient News,1986,7 (1):7.
    [101]曾敏,廖柏寒,曾清如,等.3种萃取剂对土壤重金属的去除及其对重金属有效性的影响明.农业环境科学学报,2006,25(4):979-982.
    [102]Lindsay W L, Norvell W A. Development of a DPTA soil test for zinc, iron, manganese and copper[J]. soil science society of america journal.1978,42:421-428.
    [103]FAO soils Bulletin. Status of cadmium、lead、cobalt and selenium in soils and plants of thirty countries. 1992,65:15-16.
    [104]刘铮.微量元素的农业化学[M].农业出版社,1991.
    [105]王敬国.植物营养的土壤化学[M].北京:中国农业大学出版社,1995,183-186.
    [106]Bowell R J.土壤中铁的氧化物和氢氧化物对砷的吸附[M].地质科学译从,1995,12(2):52-58.
    [107]Jlayf, Demopoulos G P. Adsorption of arsenate onto ferrihydrite from aqueous solution:influence of media (sulfate vs nitrate), added gyp sum, and ph alteration [J]. Environ. Sci.Technol,2005,39:9523-9527.
    [108]廖敏,黄昌勇,谢正苗.pH对镉在水土系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    [109]Wllkins B J, Brummel N, Loch J P G. Influence of pH and zinc concentration on cadmium sorption in acid, sandy soils[J]. Water, Air and Soil Pollut,1998,101(1):349-362.
    [110]Sanchez-M M J, Sanchez C M. Adsorption and mobility of cadmium in natural, uncultivated soils [J]. Journal of Environmental Quality,1993,22:737-742.
    [111]Warwick P, Halla, All A, Pashley V, et al. Zinc and cadmium mobility in sand:effects of pH, speciation, cation exchange capacity(CEC), humic acid and metal ions[J]. Chemosphere,1998,36(10):2283-2290.
    [112]Rajaie M, Karimian N, Mafi O M. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium—enriched compost and incubation time[J]. Geoderma,2006,24 (5):9-17.
    [113]Frost R R. Effect of pH on adsorption of arsenic and selenium from landfill leach ate by clay mineral[J]. Soil Science Society of America Journal(SSSAJ),1977,41:53-57.
    [114]Belzile N, Tessiey A. Interactions between arsenic and iron oxyhydroxides in lacustrine sediments [J]. GeochimicaetCosmochimicaActa,1990,1(54):103-109.
    [115]Livesey N T, Huang P M. Adsorption of arsenate by soils and its relation to selected chemical properties and anions [J]. Soil Science,1981,131:88-94.
    [116]Appel C. Mal. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils [J]. Journal of Environmental Quality,2002,31:581-589.
    [117]Hooda P S, Alloway B J. Cadmium and lead sorption behavior of selected English and Indian soils [J]. Geoderma,1998,84:121-134.
    [118]余贵芬,蒋新,和文祥,等.腐殖酸对红壤中铅镉赋存形态及活性的影响[J].环境科学学报,2002,22(4):508-513.
    [119]张秋芳,王果,杨佩艺,等.有机物料对土壤镉形态及其生物有效性影响[J].应用生态学报,2002,13(12):1659-1662.
    [120]Kookana R S, Naldu R. Effect of soil solution composition on cadmium transport through variable charge soils [J]. Geoderma,1998,84:235-248.
    [121]孟昭福,张增强,张一平,等.几种污泥中重金属生物有效性及其影响因素的研究[J].农业环境科学学报,2004,23(1):115-118.
    [122]Temminghoff E J M, Vander Z A M, Dehaanf A M. Speciation and calcium competition effects on cadmium sorption by sandy soil at various pH[J]. European Journal of Soil Science,1995,46:649-655.
    [123]胡荣桂,李玉林,彭佩钦.重金属Cd、Pb对土壤生化活性影响的初步研究[J].农业环境保护,1990,(4):6-9.
    [124]翁焕新,张霄宇,邹乐君,等.中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报,2000,34(1):88-92.
    [125]陈同斌.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报,1996,16(20):147-153.
    [126]Lee S Z, Allen H E, Huang C P, et al. Predicting soil-water partition coefficients for cadmium [J]. Environ Sci Technol,1996,30:3418-3424.
    [127]王果,李建超,杨佩玉,等.有机物料影响下土壤溶液镐形态及其有效性研究[J].环境科学学报,2000,20(5):621-626.
    [128]高山,陈建斌,王果.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J].植物营养与肥料学报,2003,9(1):102-105.
    [129]Frost R R, Griffin A. Effect of pH on adsorption of arsenic and selenium from landfill leach ate by clay minerals [J]. Soil Science Society of America Journal,1977,41:53-57.
    [130]Goldberg S, Glaub I R A. Anion sorption on a calcareous, montmorillonitic soil-arsenic [J]. Soil Science Society of America Journal,1988,52:1297-1300.
    [131]Manning B A, Goldberg S. Modeling arsenate competitive adsorption on kaolinite, illite, and montmorillonite clays [J]. Clay Miner,1996,44:609-623.
    [132]Lin Z, Puls R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process [J]. Environmental Pollution,2000,39:753-759.
    [133]Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals [J]. Soil Science Society of America Journal,2001,65:78-86.
    [134]James W. Fourqurean et al. Arsenic and phosphorus in sea grass leaves from the Gulf of Mexico [J]. Aquatic Botany,2001,71:247-258.
    [135]雷梅,陈同斌,范稚连等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11):1989-1992.
    [136]Robinson B, Duwing C, Bolan N. et al. Uptake of arsenic by New Zealand watercress (Lipidium sativum) [J]. The Science of the Total Environment.2003, (301):67-73.
    [137]Schmidt A C, Mattusch J, Reisser W. et al. Uptake and acumulation behaviour of angiosperms irrigated with solutions of different arsenic species [J]. Chemosphere,2004(56):305-313.
    [138]宗良纲,丁园.土壤重金属(CuZnCd)复合污染的研究现状[J].农业环境保护,2001,20(2):126-128.
    [139]谢正苗.砷的土壤化学[J].农业环境保护,1989,1(8):36-38.
    [140]Naidu R, Bolan N S, Kookana R S, et al. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. Euro J Soil Sci,1994,45:419-429.
    [141]Abdel-Sablur M F, Mortvedt J J, Kelsoe J J, et al. Cadmium-Zinc interactions in plants and extractable cadmium and zine fractions in soil [J]. Soil Science,1998,145(6):424-431.
    [142]夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展[J].农业环境保护,2002,21(3):272-275.
    [143]黄益宗,朱永官,黄凤堂,等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.
    [144]Tu S, Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions [J]. Environmental and Experimental Botany,2003,50:243-251.
    [145]夏立江,华珞,韦东普.部分地区蔬菜中的含砷量[J].土壤,1996,(2):105-109.
    [146]张国祥,杨居荣.土壤环境中的砷及其生态效应[J].土壤,1996,(2):64-68.
    [147]许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素[J].土壤,1996,2:85-89.
    [148]Woolson E A. Arsenical Pesticides. ACS Symposium Series,1975,7:
    [149]李春喜,邵云,李丹丹,等.砷胁迫对小麦萌发过程中戊聚糖含量和木聚糖酶活性的影响[J].麦类作物学报,2006,26(6):108-114.
    [150]Xuh, Allardb, Grimvall A. Influence of pH and organic substance on the adsorption of As(V)on geologic materials[J]. Water Air Soil Pol 1,1988,40:293-305.
    [151]Geng C.N., Zhu Y.G., Hul Y. Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.) [J]. Plant and Soil,2006,279-297.
    [152]李勋光,李小平.土壤砷吸附及砷对水稻的毒性[J].土壤,1996,(2):98-100.
    [153]孙兆海,郑春荣,周东关.土壤Cd污染对青菜和蕹菜生长及Cd含量的影响[J].农业环境科学学报,2005,24(3):417-420.
    [154]臧惠林,郑春荣,陈怀满.控制镉污染土壤上作物吸收镉的研究Ⅱ.对小麦和后作水稻的控制效果明.农业环境保护,1989,8(1):33-34.
    [155]Zdzislsaw C, Miroslsaw W. Wladyslaw K, et al. Effect of organic and liming on the reduction cadmium uptake from soil by triticale and spring oilseed rape [J], The Science of the Total Environment.2001,28(1):37-45.
    [156]Zwarich M A, Mills J G. Heavy metal accumulation by some vegetable crops grown on sewage-sludge-amended soils [J]. Canadian Journal of Soil Science,1982,62:243-247.
    [157]何念祖,孙其伟.植物生长的有益元素[M],上海科学技术出版社,1993.241-253.
    [158]宗良纲,孙静克,沈倩宇Cd、Pb污染对几种叶类蔬菜生长的影响及其毒害症状[J].生态毒理学报,2007,2(1):63-69.
    [159]张琼.镉对几种常见蔬菜种子萌发影响的研究[J].农业环境科学学报,2006,25(B09):480-486.
    [160]肖美秀,林文雄,陈冬梅.耐Cd水稻种质资源的筛选[J].福建农林大学学报(自然科学版),2006,35(2):117-122.
    [161]Schmoger M, Oven M, Grill E. Detoxification of arsenic by phytochlafins in plant [J].Plant Physiol,2000, 122 (3):793-801.
    [162]Steffens J C. The heavy metal—binding peptides of plants [J]. Annual Review of Plant Physiology,1990, 41:553-575.
    [163]Su Y H, McGrathl S P, Zhu Y G. Highly efficient xylem transport of arsenide in the arsenic hyper accumulator Pteris vittata [J]. New phytologist,2008,180:434-441.
    [164]Lin A J, Zhang X H, Zhu Y G. Arsenate-induced toxicity:effects on antioxidative enzymes and DNA damage in VICIA FABA [J]. Environmental Toxicology and Chemistry,2008,27(2):413-419.
    [165]Asshe F, Clijster H. Effect of metal on enzyme activity in plants [J]. Plant cell environ,1990,13:195-206.
    [166]程杰,高压军.镉毒害对小麦生理生态效应的研究进展[J].水土保持研究,2006,13(6):218-222.
    [167]陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系[J].中国农业科学,1993,26(1):63-68.
    [168]Tessier A. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analysis Chemistry,1979,51:844-851.
    [169]Kevresan S, Petrovic N, Popovic M.et al. Nitogen and protein metabolism in young pea plants as affected by different concentration of nickel,cadmium,lead,and moly bdenum[J]. Journal of Plant Nutrition,2001,24(10): 1633-1644.
    [170]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005,24(4):458-460.
    [171]慈敦伟,姜东,戴廷波,等.镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报,2005.25(5):88-91.
    [172]常思敏,马新明.砷对烤烟氮代谢的影响[J].作物学报,2007,33(1):132-136.
    [173]黄运湘,廖柏寒,肖浪涛.镉处理对大豆幼苗生长及激素含量的影响[J].环境科学,2006,27(7):1398-1400.
    [174]李春喜,张黛静,邵云.砷胁迫对小麦萌发的形态指标和内源ABA含量的影响[J].江苏农业科学,2007,6:22-27.
    [175]Cui y 1, Zhu Y Q Zhai R H, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning [J].China Environment International,2004,30 (6):785-791.
    [176]Kloke A, Sauerbeck D R, Vetter H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains [J]. Changing metal cycles and human health,1984,113-141.
    [177]Warran G P, Alloway B J, Lepp N W. Field trial to assess the uptake of arsenic by arsenic by vegetables from contaminated soil remediation with iron oxides [J]. The Science of the Total Environment,2003(311):19-33.
    [178]Wang G, Sum Y, Chen Y H, et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China [J]. Environmental Pollution,2006,144 (1):127-135.
    [179]Minneapolis. Feed Additive Compendium (Vol.13) [M]. The Miller Publishing Company,1975.330.
    [180]黄瑞卿.土壤—蔬菜系统中的砷及其转移规律的研究.福建农林大学硕士论文,2005.
    [181]陈玉成,赵中金,孙彭寿,等.重庆市土壤-蔬菜系统中重金属的分布特征及其化学调控研究[J].农业环境科学学报,2003,22(1):44-47.
    [182]汪雅各,章家骐.上海农业环境污染研究[M].上海科学技术出版社,1991.
    [183]Tlustos P, Szakova J, Pavkikova, et al. the Accumulation of Arsenic and Cadmium by Different Species of Vegetables [J]. Environment Pollution,2002,12:217-224.
    [184]林君峰,高树芳,陈伟平,等.蔬菜对土壤镉铜锌富集能力的研究[J].土壤与环境科学报,2002,4(1):248-251.
    [185]王庆仁,刘秀梅,董艺婷,等.典型重工业区与污灌区植物的重金属染污状况及特征[J].农业环境保护,2002,21(2):115-118,149.
    [186]北京市农林科学院环保所,北京市丰台区菜田土壤及大白菜污染现状调查报告.1988.
    [187]Lehoczky E. Cadmium and zinc uptake by ryegrass in relation to soil metals [J]. Communications and soil science and plant analysis,2002,33(15-18):3177-3187.
    [188]Schmidt A C. Uptake and accumulation behavior of angiosperms irrigated with solutions of different arsenic species [J]. Chemosphere,2004, (56):305-313.
    [189]中华人民共和国卫生部,中国国家标准化管理委员会.食品中污染物限量标准(GB2762-2005).中华人民共和国国家标准,2005.
    [190]USEPA. Soil Screening Guidance:User's Guide. Office of Solid Waste and Emergency Response, Washington, DC,1996.
    [191]USEPA. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, DC,2003.
    [192]EA, DEFRA. The Contaminated Land Exposure Assessment (CLEA) Model:Technical Basis and Algorithms. London,2002.
    [193]CCME. A Protocol for the Derivation of Environmental and Human Health Soil Quali2ty Guidelines. Winnipeg,1996.
    [194]VROM.Annexes Circular on Target Values and Intervention Values for Soil Remediation. The Hague, 2000.
    [195]NEPC. Schedule B (1) Guideline on the Investigation Levels for Soil and Groundwater. National Environmental Protection (Assessment of Site Contamination).Canberra,1999.
    [196]ANZECC/NHMRC. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Canberra,1992.
    [197]Darmendrail D. The French Approach to Contaminated21and Management. Revision 1. BRGM/ RP2522762FR,2003.
    [198]DEPA. Guidelines on Remediation of Contaminated Sites. Copenhagen,2002.
    [199]Dudka S, Piotrowska M. Transfer of cadmium, lead an Zinc from industrially contaminated soil to crop plants:a field study[J]. Environmental Pollution,1994(2):181-188.
    [200]福建省质量技术监督局.福建省农业土壤重金属污染分类标准(DB35/T 859-2008)[S].福建省地方标准,2008.
    [201]许炼锋.砖红壤添加砷对花生生长和残留的影响[J].广东农业科学,1991,(1):27-30.
    [202]杨居荣,任燕.砷对土壤微生物及土壤生化活性的影响[J].土壤,1996,2:101-104.
    [203]刘更另.土壤中砷对植物生长的影响—南方砷毒田的研究[J].中国农业科学,1985,18(4):9-16.
    [204]高树芳,王果,苏苗育,等.土壤环境质量基准中Cd限量指标的推算[J].福建农林大学学报(自然科学版),2006,35(6):644-647.
    [205]李志博,骆永明,宋静,等.基于稻米摄入风险的稻田土壤镉临界值研究:个案研究[J].土壤学报,2008,45(1):76-80.
    [206]李志博,骆永明,宋静,等.土壤环境质量指导值与标准研究,Ⅱ污染土壤的健康风险评估.土壤学报,2006,143(1):142-151.
    [207]US EPA a, Ecological Soil Screening Levels for Cadmium, Interim Final, OSWER Directive 9285.7-65. 2005.
    [208]US EPA b, Ecological Soil Screening Levels for Chromium, Interim Final, OSWER Directive 9285.7-66. 2005.
    [209]US EPA c, Ecological Soil Screening Levels for Cobalt, Interim Final, OSWER Directive 9285.7-67.2005.
    [210]US EPA d, Ecological Soil Screening Levels for Copper, Interim Final, OSWER Directive 9285.7-68. 2005.
    [211]US EPA e, Ecological Soil Screening Levels for Lead, Interim Final, OSWER Directive 9285.7-70.2005.
    [212]US EPA f. Ecological Soil Screening Levels for Nickel, Interim Final, OSWER Directive 9285.7-76.2007.
    [213]. Rooney C P, Zhao F J, McGrath S P. Phytotoxicity of nickel in a range of European soils:Influence of soil properties, Ni solubility and speciation. Environmental Pollution,2007,145:596-605.
    [214]. Mico C, Li H F, Zhao F J, et al. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils [J]. Environmental Pollution,2008,156:883-890.
    [215]. Heemsbergen D A, Warne M S, J, Broos K, et al. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids [J]. Science of The Total Environment,2009,407(8):2546-2556.
    [216]Warne M St J, Heemsbergen D, Stevens D, et al. Modeling the Toxicity of Copper and Zinc Salts to Wheat in 14 Soils [J]. Environmental Toxicology and Chemistry,2008a,27(4):786-792.
    [217]Warne M St J, Heemsbergen D, McLaughlin M, et al. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models [J]. Environmental Pollution, 2008b,156:707-714.
    [218]. Luo X S, Li L Z, Zhou D M. Effect of cations on copper toxicity to wheat root:Implications for the biotic ligand model [J]. Chemosphere,2008,73:401-406.
    [219]Song J, Zhao F J, Megrath S P, et al. Influence of soil properties and aging on arsenic phytotoxicity. Environmental [J]. Toxicology and Chemistry,2006,25(6):1663-1670.
    [220]刘术新,郑海峰,丁枫华,等.18种蔬菜品种对B毒害敏感性的研究[J].农业环境科学学报,2009(10):2017-2022.
    [221]罗丹,胡欣欣,郑海锋,等.钴对蔬菜毒害的临界值[J],生态学杂志,2010,29(6):1-7.
    [222]丁枫华,刘术新,罗丹,等.基于水培毒性测试的砷对19种常见蔬菜的毒性[J].环境化学,2010,29(3):439-443.
    [223]马建军,于凤鸣,朱京涛,等.潮土施镍对小白菜的生物效应及其临界值研究[J].安全与环境学报,2006,6(3):64-67.
    [224]林匡飞,徐小清,金霞,等.锗对水稻的生态毒理效应及临界指标[J].生态学报,2005,25(1):108-114.
    [225]OECD. Guideline for the testing of chemicals proposal for updating guideline 208,2000.
    [226]ISO 11269-2-2005. Soil quality—Determination of the effects of pollutants on soil flora[S]. International Organization for Standardization,2005.
    [227]Plette A C C, Nederlof M M, Temminghoff E J M, et al. Bioavailability of heavy metals in terrestrial and aquatic systems:a quantitative approach [J]. Environmental Toxicology and Chemistry,1999,18:1882-1890.
    [228]Lofts S, Spurgeon D J, Svendsen C et al. Deriving Soil Critical Limits for Cu, Zn, Cd, and Pb:A Method Based on Free Ion Concentrations[J]. Environ. Sci. Technol.2004,38:3623-3631.
    [229]Weng L P, Lexmond T, Wolthoorn A, et al. Phytotoxicity And Bioavailability of Nickel:Chemical Speciation And Bioaccumulation[J]. Environmental Toxicology and Chemistry,2003,22(9):2180-2187.
    [230]Lock K, Criel P, De Schamphelaere K A C, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare) [J]. Ecotoxicology and Environmental Safety,2007,68: 299-304.
    [231]Antosiewicz D M. Study of calcium-dependent lead-tolerance on plants differing in their level of —Ca-deficiency tolerance[J]. Environmental Pollution,2005,134:23-34.
    [232]Saleh A A H, El-Meleigy S A, Fawzia A E, et al. Base cations ameliorate Zn toxicity but not Cu toxicity in sugar beet (Beta vulgaris) [J]. Journal of Plant Nutrition and Soil Science,1999,162:275-279.
    [233]Zhang C C, Wang L J, Nie Q, et al. Long-term effects of exogenous silicon on cadmium translocation and —toxicity in rice (Oryza sativa L.) [J]. Environmental and Experimental Botany,2008,62:300-307.
    [234]Sharma S S, Kaul S, Metwally A, et al. Cadmium toxicity to barley(Hordeum vulgare) as affected by varying Fe nutritional status[J]. Plant Science,2004,166:1287-1295.
    [235]Kumpiene J, Montesinos I C, Lagerkvist A, et al.Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil [J]. Chemosphere,2007,67:410-417.
    [236]Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments, A review[J]. Waste Management,2008,28:215-225.
    [237]Lefevrea I, Marchala Q Meertsb P, et al. Chloride salinity reduces cadmium accumulation by the Mediterranean. halophyte species Atriplex halimus L [J]. Environmental and Experimental Botany,2009,65: 142-152.
    [238]Brooks K, Warne M St J, Heemsbergen D A, et al. Soil factors controlling the toxicity of copper and zinc to Microbial processes in Australian soils [J]. Environmental Toxicology and Chemistry,2007,26(4) 583-590.
    [239]Brus D J, Gruijte J J. Probabilistic quality standards for heavy metals in soil derived from quality standards in crops [J]. Geoderma,2005,128:301-311.
    [240]何忠俊,梁社往,洪常青,等.土壤环境质量标准研究现状及展望[J].云南农业大学学报,2004,19(6):700-704.
    [241]USEPA. Generic ecological assessment endpoints (GEAEs) for ecological risk assessment[S]. Risk Assessment Forum. Washington, DC:USEPA; 2003.
    [242]Carlon, C. Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization [R]. European Commission, Joint Research Centre, Ispra, UR 22805-EN,2007, 10-25.
    [243]Greenslade P, Vaughan G T. A comparison of Collembola species for toxicity testing of Australian soils [J]. Pedobiologia,2003,47:171-179.
    [244]ISO 11269-1:1993(E), Soil quality—Determination of the effects of pollutants on soil flora—Part 1: Method for the measurement of inhibition of root growth [S]. International Organization for Standardization,1993.
    [245]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717.
    [246]Semenzin E, Temminghoff E J M, Marcomini A. Improving ecological risk assessment by including bioavailability into species sensitivity distributions:An example for plants exposed to nickel in soil. Environmental Pollution,2007,148:642-647
    [247]国家环境保护局,国家技术监督总局.GB/T17137-1997,土壤质量镉的测定[S](1997-12-08发布,1998-05-01实施).
    [248]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [249]全国农业技术推广中心.土壤分析技术规范(第二版)[M].中国农业出版社,2006.
    [250]Warren G P, Alloway B J, Lepp N W. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides [J]. The Science of the Total Environment,2003,311: 19-33
    [251]Metwally A, Safronova V I, Belimov A A, et al. Genotypic variation of the response to cadmium toxicity in Pisum sativum L[J]. Journal of Experimental Botany,2005,56 (409):167-178.
    [252]Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment,2006,370:302-309.
    [253]Anderson R H, Basta N T, Lanno R P. Partitioning species variability from soil property effects on phytotoxicity:ECx normalization using a plant contaminant sensitivity index [J]. Journal of Environmental Quality, 2008,37:1701-1709.
    [254]Kapustka L A, Eskew D, Yocum J M. Plant toxicity testing to derive ecological soil screening levels for cobalt and nickel [J]. Environmental Toxicology and Chemistry,2006,25(3):865-874.
    [255]OPPTS 850-4230, Ecological effects test guidelines, early seedling growth toxicity test [S]. Washington, DC:USEPA; 1996.
    [256]Doncheva Sn, Poschenrieder C, Stoyanova Z L, et al. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn tolerant maize varieties. Environmental and Experimental Botany [J]. Environmental and Experimental Botany,2009,65:189-197.
    [257]Sanseverino J, Eldridge M L, Layton A C, et al. Screening of Potentially Hormonally Active Chemicals Using Bioluminescent Yeast Bioreporters [J]. Toxicological Sciences,2009,107(1):2-134.
    [258]Zhu Z J, Wei G Q, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.) [J]. Plant Science,2007,167:527-533.
    [259]尹升华,杨定清.土壤中镍对蔬菜生长的影响及镍的临界值研究[J].农业环境保护,1992,11(2):88-89.
    [260]McBride M B. Chemisorption of Cd2+ on calcite sulfaces [J]. soil science society of america journal,1980, 44:26-28.
    [261]Navrot J, Singer A., Banin A. Adsorption of cadmium and its exchange characteristics in some Israeli soils[J]. Journal of Soil Science,1978,29:505-511.
    [262]Gardiner J. The chemistry of cadmium in natural water:Ⅱ. The adsorption of cadmium on river muds and naturally occurring solids[J]. Water Resources Research,1974,8:157-164.
    [263]Santillan M J. Jurinak J J. The chemistry of lead and cadmium in soil:Solid phase formation [J]. Soil Science Society of America Proceedings,1975,39:851-856.
    [264]Tiller, K G, Gerth J, Brummer G The sorption of Cd, Zn and Ni by soil clay fractions:procedures for partition of bound forms and their inter pretation [J]. Geoderma,1984a,34:1-16.
    [265]罗金发,夏增禄.土壤容量化学[M].北京.气象出版社,1989.
    [266]Leeper G W. Managing the heavy metal on the land[M]. New York and Baser. Marcel Dekker Inc,1978.
    [267]福建省土壤普查办公室.福建土壤[M].福州.福建科学技术出版社,1991.
    [268]庄卫民.福建省分县土壤图集[M].福州.福建省地图出版社,2008.