绕组分段永磁直线同步电机电流预测控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁直线同步电机(Permanent magnet linear sⅦchronous motor,PMLSM)因其具有力能指标高、损耗小、响应速度快等优点,在数控机床、高速运输、电磁弹射和提升系统等场合部有着广泛的应用前景。而绕组分段永磁直线同步电机(Segment windmg PMLSM,SW-PMLSM),由于其初级绕组分段的结构特点,降低了直流母线的供电电压,方便了电机的维护,提高了系统安全性。并且,通过有效的供电、控制,可以降低电机损耗,提高系统效率。因此,实现SW-PMLSM的有效控制,对其应用推广具有积极的意义。
     用于控制算法的电磁参数的精确度对伺服控制系统性能影响至关重要。考虑到动子位置变化对SW-PMLSM电磁参数的影响,根据有无动子将电机模型分为有动子区域和无动子区域。基于电磁场理论对两区域的电磁场进行解析分析,得到动子在不同位置时的气隙磁密表达式。进一步推导了单段电机的绕组自感、互感和两段电机绕组问的互感,得到动子位置变化对这些电感的影响规律。基于磁场定向控制理论推导了直交轴电感受动子位置变化的影响规律。同时基于反电势产生机理,提出根据段边界处两段电机的反电势获取子段电机永磁体磁链的方法。另外,通过对一个波动周期的定位力进行仿真分析,得到定位力的谐波成分,并采用曲线拟台方法识别出定位力的变化规律,为定位力的补偿控制奠定了基础。
     从电机推力动态响应性能的角度,本文在对多种电流控制策略进行比较的基础上,确定了将预测控制作为本课题SW-PMLSM的电流控制策略。基于磁场定向控制理论,分别推导了动子在非共用区和共用区的SW-PMLSM的连续与离散系统模型,建立了SW-PMLSM的运动方程表达式,完善了SW-PMLSM的全程控制模型表达式,为电流预测控制奠定了理论基础。在完成对逆变器模型、SW-PMLSM模型进行建模的基础上,提出了一种基于电流误差矢量的电流预测控制方法(CEVPC),提高了系统电流的动态响应能力。鉴于CEVPC控制不能实现零电流误差的缺点,兼顾SW-PMLSM的优点,提出了基于svPWM的[)eadbeat电流预测控制方法(SVPWM-DBPC)通过矩阵与向量之积及dq平面电压矢量的图解形象地说明了SVPWM-DBPC的原理。
     预测控制为基于系统模型的控制方法,其控制效果与模型参数的准确度直接相关。文中分别基于绕组电阻、直交轴电感和永磁体磁链三个参数的变化对CEVPC控制系统与SVPWM-DBPC控制系统性能的影响规律进行分析;研宄直流母线电压限制和逆变器电流限制对系统性能的影响;并研宄受限制条件下,参考电压矢量的调整方法。针对数字处理器存在延时问题,剖析产生延时的机理,研究不同运动状态下子预测量的延时现象及其补偿方法。
     基于Flux软件和Matlab软件的联合仿真平台对控制系统进行仿真分析。对基于CEVPC和SVPWM-DBPC的段间恒推力控制和段间匀速运动控制分别进行仿真分析。搭建系统的驱动控制硬件平台,重点考虑关键单元电路的设计与关键参数的选取,为系统稳定、安全运行提供保障。分别对基于CEVPC和SVPWM-DBPC的SW-PMLSM段间恒推力控制和段间匀速运动控制进行实验研究,对断提方法加以验证。此外,对定子段非正确导通对系统运动性能的影响进行实验研究。
     理论分析、仿真研究和实验验证表明:本文断提出的基于CEVPC和SVPWM-DBPC的SW-PMLSM控制系统,通过段问恒推力控制实现了全行程恒推力特性,适合于要求推力平稳的应用场合;而通过段问匀速运动控制实现了全行程匀速运动特性,适合于要求匀速运动场合。另外,两种运动控制的实现为SW-PMLSM的精确定位提供技术储备,使其应用于数控机床成为可能。
Compared with other sophisticated systems, Permanent magnet linear synchronous motor (PMLSM) shows obvious advantage because of high thrust ability, low loss, fast response and ease maintenance. The PMLSM is expected to have a wide range of applications in the Computerized Numerical Control (CNC) machine tools, high-speed transport, electromagnetic catapults and elevating systems. The segment winding PMLSM (SW-PMLSM), whose primary winding is divided into sections with only one unit iron core, can improve the efficiency of the system with reasonable power supply and effective control strategy. Therefore, it is of great meaning to implement effective control of the SW-PMLSM.
     It's of significance to the high-performance servo systems that the electromagnetic parameters used in the algorithm are precisely evaluated. Taking into account the effect to the SW-PMLSM electromagnetic parameters caused by the rotor position change, the machine model is classified into two kinds: one is the area with the mover; the other is the area without the mover, according to the mover position. The electromagnetic fields of both areas are analyzed based on the electromagnetic theory, and the flux density expression is obtained with the mover in different positions. The self inductance, mutual inductance of one single section and mutual inductance between the two sections are all derived, and the relationships between them and the motor position are acquired. Based on Field Oriented Control (FOC) theory, the relationships between the d-axis, q-axis inductance and the motor position are deduced also. Meanwhile, it's proposed that the flux linkages of the two sections can be acquired through the back EMFs of these section windings, based on the production mechanism of EMF. In addition, the harmonic components of the detent force are gained by its simulation in one periodic. And the curve fitting method is used to reconstruct the detent force, which sets a foundation for the detent force compensation.
     In the view of the SW-PMLSM dynamic performance, the predictive control strategy is selected to control the current after the comparison among various current control strategies. Based on vector control theory, continuous and discrete system model of the SW-PMLSM are deduced when the mover isn't above the shared area and when it is respectively. Also, the motion equations are derived, which improves the overall control model for the SW-PMLSM, and lays a theoretical foundation for the current predictive control. Having constructed the inverter model and the SW-PMLSM model, this thesis proposes a current predictive control method which is based on the current error vector (named "CEVPC"). The shortcoming of CEVPC control is that it can not realize zero current error. To overcome this disadvantage, another current predictive method is proposed based on SVPWM (named "SVPWM-DBPC") control. The working principle of SVPWM-DBPC is described with the diagram to the product between a matrix and a vector and the voltage vector diagram in the dq coordinate.
     Since the two current predictive control methods are based on machine model, the control effectiveness relates to the accuracy of the model parameters directly. The relationships between the winding resistance, d-axis and q-axis inductances, flux linkage and the two current predictive control methods are analyzed; the influence of DC-link voltage and inverter current to the system performance are investigated; the adjustment method of the reference voltage vector are studied when the reference voltage vector magnitude exceeds the limit voltage. To the system delay problem, this thesis gains an insight to its mechanism. And the delay phenomena of the predictive quantities are studied, so are the corresponding compensation methods.
     The whole control system is modeled based on the Flux and Simulink co-simulation platform. The simulations such as: inter-section constant thrust control and inter-section constant velocity control are carried out in the two co-simulation models for CEVPC and SVPWM-DBPC control system respectively. The hardward platform of the system is constructed and full consideration is paid to the critical unit circuits and critical parameters which guarantees stable and safe operation of the SW-PMLSM. The inter-section constant thrust control and inter-section constant speed control for SW-PMLSM based on CEVPC and SVPWM-DBPC are carried out experimentally and respectively, whereby verifies the proposed methods. Experiment test are carried out on the condition that the related primary section is not enable correctly when the mover is on the shared area.
     Theoretical analysis, simulation and experimental results show that: the proposed control system of the SW-PMLSM based on CEVPC or SVPWM-DBPC realizes whole-range constant thrust control with inter-section constant thrust control method, which is adapt to constant thrust applications; the control system realizes whole-range constant velocity control with inter-section constant velocity control method, which is adapt to constant velocity applications. The completion of both motion control reserves essential techniques for precise position control of SW-PMLSM, and make it to be used in CNC machine tools possible.
引文
1 E R Laithwaite Linear electric machines A personal view-.Proc of theIEEE 1975,63(2):250~290
    2王先逵,陈定积,吴丹机床进给系统用直线电动机综述带l_造技术与机床2001.f81:18-20
    3 R Jayabalan.and B Fahimi On Electromagnetic Response of the Field Oriented Linear Induction Motor【)rives IEEE International Conference on Electric Machilles and Drives.San Antonio.TX.USA.2005:1576-1583
    4 G Stumberger,D Zarko.M T Aydemir and T A Lipo Design and COlrg:Iaxison of LineaJ"Svnchronous Motor and Linear Induction Motor for Electromagnetic Aircraft Launch System IEEE Int IEMDC’03 Cone,W~consin,USA 2003:494-500
    5 T R Haller and W 1L MischleE A Comparison of Linear Induction andLinear Synchronous Motors for High Speed Transportation IEEE TransMagn,1978,14(5):924~926
    6 Y Zhu.K Jung.Y Cho The Reduction ofForce Ripples ofPMLSM Using Field Oriented Contr01 Method IEEE 5th Int Power ElectronicS and Motion Contr01 Colff.Shanghai.China.2006:1-5
    7 B Reck Fujii First Design Study of an Electrical Catapult for UnmannedAir Vehicles in the Several Hundred Kilogram Range IEEE Trans on Magn2003.39(1):310~312
    8 K Yoshida.H nkami.and A Fujii Smooth Section Crossing ofContr01led.Repulsive PMLSM Vehicle by DTC Method Based on New-Concept of Fictitious Section IEEE Trans on Industrial Electronics 2004,51(4):821-826
    9上官璇峰,励庆孚,袁世鹰多段初级永磁直线同步电动机系统建模及带l_动仿真西安交通大学学报2006,40(6):694~698
    10上官璇峰,励庆孚,袁世鹰等不连续定子永磁直线同步电动机运行过程分析西安交通大学学报2004,38(12):1292~1300
    11 K Hermann Schwebebahn Mit Rtiderlosen Fahrzeugen,die an Eisernen Fahrschienen Mittels Magnetischer Felder Entlang Schwebend GefahrtWerden Deutsches Reichspatent,Nr.6433 16.1934
    12 K Yoshida,H Takami,and A Fujii Smooth Section Crossing ofControlled- Repulsive PM LSM Vehicle by DTC Method Based on New-Concept of Fictitious Section IEEE Tmns on Industrial ElectronicS 2004,51(4):821-826
    13 K№shida.H Takami.C Jozaki and S Kinosh~a Levitation andPropulsion Motion Control in a New-PM LSM Controlled-Repulsive MaglevVehicle International Conference IEMD’99,Washington,USA1999:580-582
    14 K№shida.H Takami.X Kong.and A Sonoda Mass Reduction andPropulsion Contr01 for a Permanent.magnet ineaJ"Synchronous MotorVehicle IEEE Trans on Ind Appt 2001.37(1):67~72
    15 K Yoshida,X Kong and H Ta~ami Network Transport Automation Studyof PMLSM Vehicle on Orthogonally-Switching-Guideway.IEEE Ind ApplSociety,Rome,Italy,2000,2:1109~1114
    16 M Ono.S Koga and H Ohtsuki Japan’S Superconducting Maglev TrainIEEE Imgumen~tion&Measurement Magazine 2002:9~15
    17王江潮,欧阳华,杜朝辉德国磁悬浮列车的悬浮与驱动系统国外铁道车辆2004,41(3):1~5
    18 H Lee.K Kim and J Lee Review-ofMaglev Train Techn010gieS IEEETram on Magi 2006,42(7):1917-1925
    19 Q Zhang,F Lin,X You and T Q Zheng ANovel Stator Section Crossing Method of Long Stator Linear Synchronous Motor for Maglev Vehicles IPEMC2006.Shanghai.China.2006.3:1-5
    20 Y Kim.M Watada and H Dohmeki Proposal of the Stationary DisCOntinuous Armature Permanent Ma~met Linear Synchronous Motor for Factory Automation Systems IAS Annual Meeting,Tampa,FL USA 2006,3:1323-1330
    21 Y Kim.M Watada and H Dohmeki Reduction of the Cogging Force at theOutlet Edge of a Stationary Discontinuous Primary Linear SynchronousMotoc IEEE Tra~ls on Magrt 2007,43(1):40~45
    22 Y Kim and H Dohmeki Cogging Force Verification by Deforming the Shape of the Outlet Ed∞at the Armature of a Stationary DiscontinuousArmature PM-LsM IEEE Tra~ls on Magi 2007.43(6):2540~2542
    23 K Seki.M Watada,S Torii and D Ebihara Discontinuous Arrangement ofLong Stator Linear Synchronous Motor for Transportation System IEEEPEDSl997,Singapore,1997,2:697~702
    24 K Yoshida,X Kong and H Takami Network Transport Automation Studyof PMLSM Vehicle on Orthogonally-switching-guideway.2000 IEEE-IAS,2000.2:1109-111 4
    25 J M M Rovers.J W Jansen and E A Lomonova Novel Force RippleEduction Method for a Moving-magnet Linear Synchronous Motor with aSegnented Stator.ICEMS2008,Wuhaxl,China,2008:2942~2947
    26 W A Jacobs Magnetic Launch Assist NASA's Vision for the Future IEEETrans on Magi 2001,37(1):55~57
    27张磊,栗琳美军下一代航母新技术解析中国科技信息2007,(24):344~345
    28 M R Doyle.D J Samuel.T Conway and R 1L KlimowskiElectromagnetic Akcrafl Launch System-EMALS IEEE Trans on Magn1995,31(1):528~533
    29 T Bertoncelli,D Patterson,A Monti,C Brice,R Dougal,R Pettus,DSrinivas and K Dilipchandra Design and Simulation of an ElectromagneticAircraft Launch System IEEE 33rd Annual Power Electronics SpecialistsConference(PESC),Cakns,Australia,2002,3:1475-1482
    30 A Monti,K Patel,D Patterson and R Dougal Modular Control ForElectromagnetic Aircraft Launching System IEEE 34th Annual PowerElectronics Specialists Conference(PESC),Acapulco,Mexico,2003,4:1877-1882
    31 X N Lu Z Zabar,E Levi and L Birenbaum Transition Between twoSections in a Linear Induction Launcher(LIL)IEEE Trans on Magn 1995,31(1):493~498
    32 A Balikci.Z Zabar,and L Birenbaum Improved Energy Utilization ofLinear Induction Launchers by Considering Each Section as an IndividualSub-Launcher IEEE Trans on Magn 2009,45(1):241~243
    33 Sn Barmada,An Musolino,Mn Raugi and R Rizzo Analysis of thePerformance ofa Multi-stage Pulsed Linear Induction Launche£IEEE TransonMagn.. 2001, 37(1):111~115
    34 Z. Zabar, X. N. Lu, E. Levi, L. Birenbaum and J. Creedon. Experimental Results and Performance Analysis of a 500 ms-1 Linear Induction Launcher (IIL). IEEE Trans. onMagn.. 1995, 31(1):522~527
    35叶云岳国内外直线电机技术的发展与应用综述电器工业2003,r1、:12~16
    36崔皆凡永磁直线同步电机推力及其直接推力控带l_系统研宄沈阳工业大学博士论文2006:10~15
    37陈宇,卢琴芬,叶云岳长定子同步直线电动机的设计及其优化电工技术学报2003,18(21:18~21,40
    38范承志,李子鑫,王宇峰,叶云岳长定子直线电机驱动的传输系统微电机(伺服技术)2002,(4):27~29
    39杨伟民,徐月同,陆华才,陈子辰基于DsP的永磁同步直线电机无位置传感器控带l_系统控带l_与应用技术2007,34(4):28~32
    40陆华才,李满华基于改进积分器的永磁同步直线电机无位置传感器控带l_方法电机与控带l_应用2007,34(10):23~26
    41陆华才,徐月同,杨伟民,陈子辰无位置传感器表面式永磁同步直线电机初始位置估计新方法中国电机工程学报2008,28(151:109~113
    42袁江南,李锻能,肖曙红永磁同步直线电机初始位置检测的研宄微计算机信息2008,24(8):226~227
    43潘霞远,刘希拮,吴捷,马平永磁同步直线电机的鲁棒PID控带l_电机与控带l_应用2007,:35(9):34~38
    44梁霭明,马平,陈爱民,龚政永磁直流直线电机的双闭环调速系统的设计与研究机床与液压2010,38(31:18~20
    45罗宏浩,吴峻,常文森动磁式永磁无刷直流直线电机的齿槽力最小化中国电机工程学报2007,28(6):12~16
    46刘少克,罗宏浩磁悬浮列车用异步直线电机新型PID控带l_算法研宄电气传动自动化2005,27(6):41~44
    47金颖琦,贾正春,金振荣长行程永磁同步直线电机初级绕组结构研宄微电机2004,37f31:10~13
    48穆海华,周云飞,温新,周艳红直线电机齿槽推力波动的标定与补偿方法电机与控带l_学报2009,13(5):721~727
    49石阳春,周云飞,李鸿,李介明,黄永红长行程直线电机的迭代学习控制中国电机工程学报2007,27(24):92~95
    50曾理湛,陈学东,李长诗,农先鹏,伞晓刚永磁直线电机精确相变量建模方法中国电机工程学报2009,29(25):98~103
    51赵彤,王先逵,刘成颖等机床进给用永磁同步直线伺服单元的设计与实验研究中国机械工程2006,17(23):242 1-2425
    52李勇,李立毅,程树康等电磁弹射技术的原理与现状微特电机2001,(5):3~4,18
    53 B M Perreault Optimizing Operation of Segmented Stator LinearSynchronous Motors Proc of the IEEE(inv~ed paper) 2009,97(11):1777~1785
    54 M W Naouar.A A Naassani.E Moninasson and I S1ama.Belkhodja FPGA.Based Predictive Current Contr01lerfor Synchronous Machine Speed Drive IEEE Tram on Power Electronics 2008.23(4):2115-2126
    55 M W Naoua~E Monmasson.A A Naassani.I S1ama.Belkhodia and N Patin FPGA.Based Current Controllers for AC Machine Drives A Rcview-.IEEE Traxis on Industrial E】ectronics 2007.54(4):1907-1924
    56 M N Uddin.T S Radwan.G H George and M A Rahman Performanceof Current Controllers for VSI-fed IPMSM Drive 1999 IEEE-IAS,1999,2:1018-1025
    57 F Morel.X Lin_Shi.J R6tif,B Allard and C Buttay.A Comparative Study ofPredictive Current Contr01 Schemes for a Permanent.Magnet Synchronous Machine Drive IEEE Trans on Industrial electronics 2009,56(7):2715~2727
    58 A Kawamura and K Ishihara Real Time Digital Feedback Contr01 of Three Phase PWM Inverter with 0uick Transient Response Suitable for Uninterruptible Power Supply.1988 IEEE-IAS.1988.1:728~734
    59 A Kawamura T Hanevoshi and R G Hoft Deadbeat Contr01led PWM Inve~er with Parameter Estimation Using Only Voltage Senson IEEE Trans on Power E~ctronics 1988,3(2):118~125
    60 L Ben-Brahim and A Kawamura Digital Contr01 of Induction Motor Current with Deadbeat Response Using Predictive State ObserveE IEEE Trans on Power Electronics 1992,7(3):55 1-5 59
    61 O.Kukrer Discrete.time Current Contr01 of VoRage.fed Three.phase PWMInverters. IEEE Trans, on Power Electronics. 1996, ll(2):260~269
    62 H. Abu-Rub, J. Guzinski, Z. Krzeminski and H. A Predictive Current Control of Voltage-Source Inverters. IEEE Trans, on Industrial Electronics. 2004, 51(3):585~592
    63 S. Yang and C. Lee. A Deadbeat Current Controller for Field Oriented Induction Motor Drives. IEEE Trans, on Power Electronics. 2002, 17(5)772-778
    64 G Gatto, I. Marongiu, A. Serpi and A. Perfetto. P Predictive Control of Synchronous Reluctance Motor Drive. IEEE IS IE 2007, Vigo, Spain. 2007,:1147~1152
    65 P. Wipasuramonton, Z. Q. Zhu and D. Howe. Predictive Current Control With Current-Error Correction for PM Brushless AC Drives. IEEE Trans, on Industrial Applications. 2006, 42(4):1071~1078
    66 H. Moon, H. Kim and M. Youn. A Discrete-Time Predictive Current Control for PMSM. IEEE Trans, on Power Electronics. 2003, 18(1):464~471
    67 Y A. I. Mohamed and E. F. El-Saadany. Robust High Bandwidth Discrete-Time Predictive Current Control with Predictive Internal Model—A Unified Approach for Voltage-Source PWM Converters. IEEE Trans, on Power Electronics. 2008, 23(1):126~135
    68 Y A. I. Mohamed and E. F. El-Saadany. An Improved Deadbeat Current Control Scheme With a Novel Adaptive Self-Tuning Load Model for a Three-Phase PWM Voltage-Source Inverter. IEEE Trans, on Industrial Electronics. 2007, 54(2):747~758
    69 J. Rodriguez, J. Pontt, C. Silva, M. Salgado, S. Rees, U. Ammann, P. Lezana, R. Huerta and P. Cortes. Predictive Control of Three-phase Inverter. Electronics Letters. 2004, 40(9):561~563
    70 N. Patin, W. NAOUAR, E. Monmassonand J. Louis. Predictive Control of a Doubly-fed Induction Generator Connected to an Isolated Grid. IECON2006, Paris, France. 2006:873-878
    71 R. Vargas, P. Cortes, U. Ammann, J. Rodriguez and J. Pontt. Predictive Control of a Three-phase Neutral-point-clamped Inverter. IEEE Trans, on Industrial Electronics. 2007, 54(5):2697~2704
    72 X. Lin-Shi, F. Morel, A. M. Llor, B. Allard and J. Retif Implementation ofHybrid Control for Motor Drives IEEE Trans on Industrial Electronics2007,54(4):1946~1 95 1
    73许强,贾正春,李朗如永磁同步电动机数字化电流控带l_方法大学学报1997,25(2):4+-46
    74许强,贾正春,李朗如永磁同步电机的自适应预测电流控带l_1997,(4):19~24华中理工电报传动
    75 A Benchaib S Poullain.J L Thomas and J C Alacoaue Discrete-Time Field.Oriented Contr01 for SM.PMSM Including Voltage and Current Constraints IEMDC’03 2003.2:99%q005
    76 J Eloy-Garcia.S Poullain and A Benchaib Discrete.Time Dead.Beat Contr01 of a VSC_lhnsmission Scheme Including VoRage and Current Limitations for Wind Farm Connection EPE-PEMC2006.Port0roi.Slovenia 2006:1425~1430
    77 J Eloy-Garcim S Poullain and A Discrete.Tiflle S1idin}Mode COntr01 ofa ST姗0M Including VoRage and Current Limitations for Wind Farm Applications EPE-PEMC2006,Portoro~,Sbvenia 2006:1448~-1453
    78 J W K01ar,H Ertl and F C Zach Analvsis ofOn-and OⅡ:Line Optimized Predictive Current Contr01lers for PWM Converter Svstems IEEE Tmns on Power E~ctronics 1991.6(3):451~462
    79 H Le-Huy,K S1imani and E Viarouge AnalvsiS and Imdementation of a ReaLTime Predictive Current Contr01ler for Permanent.Magnet Synchronous Servo Drives IEEE Trans on Industrial Electronics 1994.41r1、:110-117
    80 L Springob and J Holtz High-Bandwidth Current Control for Torque-Ripple Compensation in PM Synchronous Machines IEEE Trans onIndustrial Electronics 1998.45(5):713~720
    81 T Sukegawa,K Kamiyama.K Mizuno.T Matsui and T Okuyama Fully Digital.VeCtor.COntr01led PWM VSI.Fed ac DriveS with an Inverter Dead.Time Compensation Strategy.IEEE Trans on Ind Appl 199 1,27(3):552~558
    82 A R Mufioz and T A Lipo On-Line Dead-Time Compensation Techniquefor Open-Loop PWM-VSI Drives IEEE Trans on Power Electronics 1999.14(4):683~689
    83 N Urasaki.T Senjyu.K Uezato and T Funabashi An Adaptive Dead-TimeCompensation Strategy for Voltage Source Inverter Fed Motor Drives IEEETram on Power Electronics 2005.20(5):1150~1160
    84 K-Y ChO.J.-D Bae.S-K Chung and M-J Youn Torque Harmonics Minimization in Permanent Ma~met Svnchronous Motor with Back EMF IEE Proc of Electric Power Applications 1994,141(6):323~330
    85 B Nahid.Mobarake h.F Meibod~-nbar and F Sargos Back EMF Estimation-Based Sensorless COntr01 ofPMSM:RobustnesS With Respect to Measurement Errors and Inverter Irregularities IEEE Trans on Ind Appl 2007,43(2):485~494
    86 F Parasiliti.R Petrella and M Tursini Sensorless Speed Contr01 of a PMSynchronous Motor by Sliding Mode Observer.IEEE ISIE’97,Guimar~s,Portugal 1997:1106~111 1
    87 P Blaha and E Vaclavek The Algorithm for Online Stator ResistanceIdenfification ofan AC Induction Moton INES’06,London,UK 2006:86~-91
    88 P Blaha and P、bclavek Adaptive Deadbeat Current COntr01lers for AC Induction Motor COntr01 PECON2008.Johor Bahru.Malaysia 2008:712~-717
    89 T NO~uchi.S Kondo and I Takahashi Field.Oriented COntr01 of an Induction Motor with Robust On-1ine Tuning of Its Parameters IEEE Trrans on Ind Appt 1997,33(1):35~41
    90 J J R Melgoza,G T Heydt,A Keyhani,B L Agrawal and D Selin Svnchronous Machine Paxameter Estimation Using the Hartle~Series IEEE Tram On Energy Conv.2001,16(1):49~54
    91张翊诚,唐小琦参数在线估计的电主轴调速系统研宄电气传动2009,39(4):47~50
    92 P Cort6s.J Rodriguez.1L Vargas and U Ammann Cost Function-BasedPredictive Control for Power Converters IECON2006,Paris,France2006:2268~2273
    93 D Casadei.G Serra.A nni.and L Zarri A Space Vector Modulation Strategy for Matrix Converters Minimizing the RMS Value of the Load Current Ripple IECON2006.Paris.France 2006:2757~2762
    94 P Cort6s,M P Kazmierkowski,1L M Kennel,D E Quevedo and J Rodriguez Predictive Contr01 in Power Electronics and DriveS IEEE Trranson~dmtry Electronics 2008,55(12):4312~4321
    95 L Chang An Improved FE Inductance Calculation for Electrical Machines IEEE Trasis Magrt 1996.32f41:3237~3244
    96 B Stumberger,G Stumberger,D Dolinar,A Hamler and M TrlepEvaluation of Saturation and Cross-magnetization Effects in InteriorPermanent-magnet Synchronous Moron IEEE Trans Ind Appl 2003,39(5):1264~1270
    97 S Jang.J Park.J Choi and H Cho Analvtical Prediction and MeasurementS for Inductance Profile of Linear Switched Reluctance Moton IEEE Trans MagrL 2006.42(10):3428-3430
    98 K J Meessen,P Thelin.J Soulard a11d E A Lomonova Inductance Calculations of Permanent.magnet Synchronous Machines Including Flux Change and Self-and Cross-saturations IEEE Trans Magn 2008,44(10):2324~233 1
    99 E S Obe Direct Computation of AC Machine Inductances Based onWinding Function Theor;~IEEE Tra~ls Energy Cony 2009,50(3):539~542
    100叶云岳直线电机原理与应用机械工业出版社2000:65~80
    101叶云岳直线电机技术手册机械工业出版社2003:15-21
    102 Z Deng,I Boldea and S A Nasar.Fields in permanent magnet linearsynchronous machines IEEE Tra~ls Magn 1986,M.dg-22(2):107~112
    103 Z Deng,I Boldea and S A Nasan Forces and parame~m of permanentmagnet linear synchronous machines IEEE Trans Magn 1986,Mag-23(1):305~309
    104 R Sergeant,F D Belie and J Melkebeek Elyect of Rotor Geometry andMagnetic Saturation in Sensorless Control of PM Synchronous MachinesIEEE Trasis Magrt 2009.45(3):1756-1759
    105汤蕴璎,史乃电机学机械工业出版社2001:331-333
    106唐任远现代永磁电机理论与设计机械工业出版社1997:244-248